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Abstract. We consider a mathematical model that describes the quasi-state flow of blood

involving the Bingham model. We derive a weak formulation of the system consisting of

a stationary motion equation, a convection-diffusion-reaction equation and an energy con-

servation equation. We prove the existence of weak solutions and some properties of the

solutions. We also study the mathematical modelling of blood coagulation, for which we

prove a maximum principle.

1. Introduction

The study of blood flow is complicated in many aspects and thus simplifying
assumptions are often made. Plasma behaves as a Newtonian fluid, but whole
blood has non-Newtonian properties. In the large vessels where shear rates
are high enough, it is also reasonable to assume that blood has a constant
viscosity and a Newtonian behaviour. However, in smaller vessels, or in some
diseased conditions, the presence of the cells induces low shear rate and whole
blood exhibits remarkable non-Newtonian characteristics, like shear-thinning
viscosity, thixotropy, viscoelasticity and possibly a yield stress. In particular,
at rest or at low shear rates, blood seems to have a high apparent viscosity due
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to red blood cells (RBCs) aggregation into clusters, called “rouleaux”. While
at high shear rates the cells become disaggregated and deform into an infinite
variety of shapes without changing volume (deformability of RBCs), resulting
in a reduction in the blood’s viscosity. The deformed RBCs align with the
flow field and tend to slide upon plasma layers formed in between. Attempts
to recognize the shear-thinning nature of blood were initiated by Chien et al.
[9, 10] in the 1960s. Empirical models like the power-law, Cross, Herschel-
Bulkely, Bingham, Carreau or W-S generalized Newtonian fluid models, see.
[3, 4, 28], have been obtained by fitting experimental data in one dimensional
flow. Recently, Vlastos, Lerche and Koch [27] proposed a modified Carreau
equation to capture the shear dependence of blood viscosity. The model of
Bingham has been frequently used to describe the bahaviour of blood due
to the yield limit and blockage phenomenon which can describe the blood
coagulation. Such model is quite sensitive to a number of factors including
hematocrit, temperature, plasma viscosity, exercise level and gender or dis-
ease state. Some numerical results concerning blood flow through a stenosis
artery has been obtained in [1]. Convection-diffusion-reaction phenomena in
the study of coagulation and formation blood clots are the topic of numerous
papers, e.g. [2, 3, 23]. Reviews detailing the structure of the blood coagulation
system are available elsewhere [4, 25].

The aim of this paper is to study the flow of blood involving the non-
Newtonian model of Bingham. The paper is organized as follows. In Section
2, we present the bio-mechanical problem of blood flow. The problem is mod-
elled by a mathematical system consisting of a motion equation for the incom-
pressible viscous fluid of Bingham, a convection-diffusion-reaction equation
and an energy conservation equation. Moreover, we introduce some notations
and preliminaries. In Section 3, we derive the variational formulation of the
quasi-state problem. We prove in Section 4 the existence of weak solutions
and some properties of the solutions. Section 5 is devoted to the mathematical
study of blood coagulation, for which we prove a maximum principle for the
concentration.

2. Problem statement

Let T > 0, Ω ⊂ Rn be a bounded domain with a Lipschitz boundary Γ and
let Q = Ω×(0, T ) . We denote by Sn the space of symmetric tensors on Rn. We
define the inner product and the Euclidean norm on Rn and Sn, respectively,
by

u · v = uivi, ∀ u,v ∈ Rn and σ · τ = σijτij , ∀ σ, τ ∈ Sn,

|u| = (u · u)
1
2 , ∀ u ∈ Rn and |σ| = (σ · σ)

1
2 , ∀ σ ∈ Sn.
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Here and below, the indices i and j run from 1 to n and the summation
convention over repeated indices is used. We denote by σ̃ the deviator of
σ = (σij) given by

σ̃ = (σ̃ij) , σ̃ij = σij −
σkk
n
δij ,

We consider the rate of deformation operator defined for every u ∈ H1 (Ω)n

by

ε (u) = (εij (u)) , εij (u) =
1

2
(ui,j + uj,i ) .

ν denotes the unit outward normal vector on the boundary Γ.

The bio-mechanical setting is the following. We adopt the viscous and
incompressible Bingham fluid to describe the behaviour of blood, the domain
Ω represents a part of the vascular system (an artery, a vessel or a simple
vein). The fluid is acted upon by given volume forces of density f . In addition,
we admit a possible external heat source given by function h. The velocity
is supposed equal to zero on Γ × (0, T ) . We suppose that on Γ × (0, T ) the
concentration and temperature are given by an homogeneous Neumann and a
Fourier boundary conditions, respectively.

The quasi-state bio-mechanical problem may be formulated as follows.

Problem P1. Find the velocity field u = (ui) : Q −→ Rn, the stress field
σ = (σij) : Q −→ Sn, the concentration C : Q −→ R and the temperature
θ : Q −→ R such that

u · ∇u = div (σ) + f in Q, (2.1) σ̃ = 2µ (C, θ) ε (u) + g (C, θ)
ε (u)

|ε (u)|
if |ε (u)| 6= 0

|σ̃| ≤ g (C, θ) if |ε (u)| = 0
in Q, (2.2)

div (u) = 0 in Q, (2.3)

∂C

∂t
+ u · ∇C − div (η (C, θ)∇C) = R in Q, (2.4)

∂θ

∂t
+ u · ∇θ − div (κ (C, θ)∇θ) = σ · ε (u) + h in Q, (2.5)

u = 0 on Γ× (0, T ) , (2.6)

∂C

∂ν
= 0 on Γ× (0, T ) , (2.7)

κ (C, θ)
∂θ

∂ν
+ β (C, θ) θ = 0 on Γ× (0, T ) , (2.8)

C (0) = C0, θ (0) = θ0 in Ω, (2.9)
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where div(σ) = (σij,j) and div(u) = ui,i. The flow during the time (0, T ) is
given by equation (2.1) where the density is assumed equal to one. Equa-
tion (2.2) represents the constitutive law of a Bingham fluid whose the vis-
cosity µ and yield limit g depend on the concentration and temperature.
(2.3) represents the incompressibility condition. Equation (2.4) represents
the convection-diffusion-reaction equation modelling the evolution in space of
various enzymes, proteins and platelets involved in the extrinsic pathway of
coagulation process, where C stands for the concentration of the different reac-
tants, η denotes the diffusion coefficient of blood and R is non-linear reaction
term which represents the production or depletion due to the enzymatic cas-
cade of reactions. Equation (2.5) represents the energy conservation where the
specific heat is assumed equal to one, k is the thermal conductivity and the
term h denotes the external heat source. (2.6) gives the velocity on Γ× (0, T ) .
(2.7) is an homogeneous Neumann boundary condition on Γ × (0, T ) for the
concentration. (2.8) represents a Fourier boundary condition on Γ × (0, T )
for the temperature, where β represents the Robin coefficient. Finally, (2.9)
gives the initial data. Our model, see [2], includes not only rheological factors
but also biochemical indicators that are essential to describe coagulation and
fibrinolysis and consequently the formation, growth and dissolution of clots.

For the rest of this article, we will denote by c possibly different positive
constants depending only on the data of the problem. Denoting by q′ and r′

the conjugates of q and r, where r ∈ [1,+∞[ , 1 ≤ q <
n

n− 1
and let s ≥ n.

We define the function spaces

V =
{
v ∈ H1

0 (Ω)n : div (v) = 0 in Ω
}
,

X =

{
ζ ∈ L2

(
0, T ;H1 (Ω)

)
∩ C0

(
[0, T ] , L2 (Ω)

)
,
∂ζ

∂t
∈ L2

(
0, T ;H1 (Ω)′

)}
,

Yq,r =

{
ζ ∈ Lr

(
0, T ;W 1,q (Ω)

)
,
∂ζ

∂t
∈ L1

(
0, T ;W−1,1 (Ω)

)}
,

Zq,r =
{
ζ ∈W 1,r

(
0, T ;W 1,q (Ω)

)
, ζ (x, T ) = 0 sur Ω

}
,

whereH1 (Ω)′ represents the topological dual ofH1 (Ω) , for more details about
the definition of this space see, [17].
V is a Hilbert space equipped with the inner product and the induced norm,

respectively,

(u,v)V = (ui, vi)H1(Ω) , ‖v‖V = (u,u)V , ∀ u,v ∈ V.

X , Yq,r and Zq,r are Banach spaces equipped, respectively, with the norms

‖ζ‖X = ‖ζ‖L2(0,T ;H1(Ω)) + ‖ζ‖C0([0,T ],L2(Ω)) +

∥∥∥∥∂ζ∂t
∥∥∥∥
L2(0,T ;H1(Ω)′)

, ∀ ζ ∈ X ,
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‖ζ‖Yq,r = ‖ζ‖Lr(0,T ;W 1,q(Ω)) +

∥∥∥∥∂ζ∂t
∥∥∥∥
L1(0,T ;W−1,1(Ω))

, ∀ ζ ∈ Yq,r,

‖ζ‖Zq,r = ‖ζ‖Lr(0,T ;W 1,q(Ω)) +

∥∥∥∥∂ζ∂t
∥∥∥∥
Lr(0,T ;W 1,q(Ω))

, ∀ ζ ∈ Zq,r.

We introduce the following functionals
B : V × V × V → R, B(u,v,w) =

∫
Ω

u · ∇v ·w dx,

E : W 1,q (Ω)×W 1,q′ (Ω)× Ls (Ω)n −→ R,

E (ξ, ζ,v) =

∫
Ω
ξ∇ζ · vdx.

(2.10)

In the study of the bio-mechanical problem (P1), we consider the following
hypotheses 

µ, g, η, κ, β ∈ C0
(
R2
)
,

∃ µ∗, µ∗ > 0 : µ∗ ≤ µ (ξ, ζ) ≤ µ∗, ∀ (ξ, ζ) ∈ R2,

∃ g∗ > 0 : 0 ≤ g (ξ, ζ) ≤ g∗, ∀ (ξ, ζ) ∈ R,
∃ η∗, η∗ > 0 : η∗ ≤ η (ξ, ζ) ≤ η∗, ∀ (ξ, ζ) ∈ R2,

∃ κ∗, κ∗ > 0 : κ∗ ≤ κ (ξ, ζ) ≤ κ∗, ∀ (ξ, ζ) ∈ R2,

∃ β∗, β∗ > 0 : β∗ ≤ β (ξ, ζ) ≤ β∗, ∀ (ξ, ζ) ∈ R2,

(2.11)

f ∈ L∞
(
0, T ;V ′

)
, R ∈ L2

(
0, T ;H1 (Ω)′

)
and h ∈ L1 (Q) , (2.12)

C0 ∈ L2 (Ω) , θ0 ∈ L1 (Ω) . (2.13)

Lemma 2.1.

(1) B is trilinear, continuous on V × V × V. Moreover,
B (u,v,w) = −B (u,w,v) , ∀ (u,v,w) ∈ V × V × V.

(2) E is trilinear, continuous on W 1,q (Ω) ×W 1,q′ (Ω) × Ls (Ω)n and on
H1 (Ω)×H1 (Ω)×V. Moreover, E (ξ, ζ,v) = −E (ζ, ξ,v) , ∀ (ξ, ζ,v) ∈
W 1,q (Ω)×W 1,q′ (Ω)× Ls (Ω)n and ∀ (ξ, ζ,v) ∈ H1 (Ω)×H1 (Ω)× V.

Proof. For the proof of this lemma see for instance [18, 19, 20]. �

Remark 2.2. In the constitutive law (2.2) of Bingham fluid the blood pressure
is given by the scalar

P = − 1

n
tr (σ) . (2.14)
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3. Variational formulation

The use of Green’s formula permits us to derive the following variational
formulation of bio-mechanical problem (P1).

Problem P2. Find the velocity field u = (ui) : Ω × (0, T ) −→ Rn, the
concentration C : Ω× (0, T ) −→ R and the temperature θ : Ω× (0, T ) −→ R
satisfying the variational system

B (u,u,v) + 2

∫
Ω
µ (C, θ) ε(u) · ε (v − u) dx

+

∫
Ω
g (C, θ) |ε (v)| dx−

∫
Ω
g (C, θ) |ε (u)| dx

≥
∫

Ω
f · (v − u) dx, ∀ v ∈ V,

(3.1)

∫
Ω

∂C

∂t
ξdx− E (C, ξ,u) +

∫
Ω
η (C, θ)∇C · ∇ξdx

=

∫
Ω
Rξdx, ∀ ξ ∈ H1 (Ω) ,

(3.2)

∫
Ω

∂θ

∂t
ζdx− E (θ, ζ,u) +

∫
Ω
κ (C, θ)∇θ · ∇ζdx+

∫
Γ
β (C, θ) θζds

=

∫
Ω
F (u, C, θ) ζdx+

∫
Ω
hζdx, ∀ ζ ∈W 1,q′ (Ω) ,

(3.3)

where
F (u, C, θ) = 2µ (C, θ) |ε(u)|2 + g (C, θ) |ε(u)| (3.4)

and ds denotes the surface element.

Remark 3.1. In (3.3), the first and second terms on the right hand side has

sense, since the injection W 1,q′ (Ω) −→ C0
(
Ω̄
)

is continuous for q′ > n, that

is, q <
n

n− 1
.

Definition 3.2. We will say that a function θ ∈ Yq,r is a weak solution of the
variational equation (3.3) if

−
∫
Q
θ
∂ζ

∂t
dxdt−

T∫
0

E (θ, ζ,u) dt+

∫
Q
κ (C, θ)∇θ · ∇ζdxdt

+

∫
Γ×(0,T )

β (C, θ) θζdsdt

=

∫
Q
F (u, C, θ) ζdxdt+

∫
Ω
θ0ζ (0) dx+

∫
Q
hζdxdt, ∀ ζ ∈ Zq′,r′ .

(3.5)
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We can then reformulate the variational problem (P2) as follows.

Problem P3. Find the velocity field u (t) ∈ V, the concentration C (t) ∈
H1 (Ω) and the temperature θ ∈ Yq,r satisfying the variational system

B (u,u,v) + 2

∫
Ω
µ (C, θ) ε(u) · ε (v − u) dx

+

∫
Ω
g (C, θ) |ε (v)| dx−

∫
Ω
g (C, θ) |ε (u) | dx

≥
∫

Ω
f · (v − u) dx, ∀ v ∈ V,

(3.5)

∫
Ω

∂C

∂t
ξdx− E (C, ξ,u) +

∫
Ω
η (C, θ)∇C · ∇ξdx

=

∫
Ω
Rξdx, ∀ ξ ∈ H1 (Ω) ,

(3.6)

−
∫
Q
θ
∂ζ

∂t
dxdt−

T∫
0

E (θ, ζ,u) dt+

∫
Q
κ (C, θ)∇θ · ∇ζdxdt

+

∫
Γ×(0,T )

β (C, θ) θζdsdt

=

∫
Q
F (u, C, θ) ζdxdt+

∫
Ω
θ0ζ (0) dx+

∫
Q
hζdxdt, ∀ ζ ∈ Zq′,r′ .

(3.7)

4. Main results

In this section we establish an existence theorem to the problem (P3) and
some properties of the solutions.

Theorem 4.1. Under the assumptions (2.11), (2.12) and (2.13), the problem
(P3) admits at least one solution (u, C, θ) satisfying the regularity

u ∈ L∞ (0, T ;V) , (4.1)

C ∈ X , (4.2)

θ ∈ Yq,r, (4.3)

where r is such that

1 ≤ r < 2 and
2

r
+
n

q
> n+ 1. (4.4)

The proof of Theorem 4.1 is based on the application of the Kakutani-
Glicksberg fixed point theorem for multivalued mappings, see [15, 20], using
three auxiliary existence results. The first one results from the theory of elliptic
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inequalities with convex functionals, see [8, 13]. The second one results from
the theory of parabolic equations, see [15], and the third one results from the
L1−Data theory for linear parabolic equations, see [6]. Finally, compactness
arguments are used to conclude the proof.

The first auxiliary existence result is given by.

Proposition 4.2. For every (w, α, γ) ∈ L∞ (0, T ;Ls (Ω)n) × X × Yq,r, there
exists a unique solution u = u (w, α, γ) ∈ L∞ (0, T ;V) to the problem

B (w,u,v) + 2

∫
Ω
µ (α, γ) ε(u) · ε (v − u) dx

+

∫
Ω
g (α, γ) |ε (v)| dx−

∫
Ω
g (α, γ) |ε (u) | dx

≥
∫

Ω
f · (v − u) dx, ∀ v ∈ V,

(4.5)

and it satisfies the estimate

‖u‖L∞(0,T ;V) ≤ d1, (4.6)

where d1 is a positive constant.

Proof. Introducing for every (w, α, γ) ∈ L∞ (0, T ;Ls (Ω)n) × X × Yq,r the
following form

(w,α,γ) : V × V −→ R,

(w,α,γ) (u,v) = B (w,u,v) + 2

∫
Ω
µ (α, γ) ε(u) · ε (v − u) dx. (4.7)

It follows from Lemma 2.1 that (w,α,γ) is bilinear, continuous and coercive on

V × V. Furthermore, the functional v 7−→
∫

Ω g (α, γ) |ε (v)| dx is continuous
and convex on V, it is then lower semi-continuous on V. Consequently, the
existence and uniqueness of the solution result from the classical theorems,
see [8, 13] on elliptic variational inequalities.

To prove the estimate (4.6) we proceed as follows, by choosing v = 0 as test
function in (4.5) and using assumption (2.11), we find

µ∗

∫
Ω
|ε (u (t))|2 dx ≤ ‖f‖V ′ ‖u (t)‖V a.e. t ∈ (0, T ) .

Hence, Korn’s inequality and assumption (2.12) permit us to conclude the
proof. �

The second auxiliary existence result is given by.
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Proposition 4.3. Let u = u (w, α, γ) ∈ L∞ (0, T ;V) be the solution of prob-
lem (4.5) given by Proposition 4.2. Then, there exists a unique solution
C = C (w, α, γ) ∈ X to the problem∫

Ω

∂C

∂t
ξdx− E (C, ξ,u) +

∫
Ω
η (α, γ)∇C · ∇ξdx

=

∫
Ω
Rξdx, ∀ ξ ∈ H1 (Ω)

(4.8)

and it satisfies the estimate

‖C‖X ≤ d2, (4.9)

where d2 is a positive constant.

Proof. The continuity of E on H1 (Ω) × H1 (Ω) × V leads, using Hölder’s
inequality with respect to the time variable and the estimate (4.6), to∣∣∣∣∣∣

T∫
0

E (C, ξ,u) dt

∣∣∣∣∣∣ ≤ ‖C‖L2(0,T ;H1(Ω)) ‖ξ‖L2(0,T ;H1(Ω)) ‖u‖L∞(0,T ;V) . (4.10)

Thus, E is continuous on L2
(
0, T ;H1 (Ω)

)2 × L∞ (0, T ;V) . Now, let us con-
sider the bilinear form

G(u,α,γ) : H1 (Ω)×H1 (Ω) −→ R,

G(u,α,γ) (C, ξ) = −E (C, ξ,u) +

∫
Ω
η (α, γ)∇C · ∇ξdx. (4.11)

We know, due to the Neumann boundary condition, that the form G(u,α,γ) is

not H1 (Ω)−elliptic. To solve this problem we introduce the functions

C̃ (t) = e−tC (t) ,

ξ̃ (t) = e−tξ (t) .

Consequently, (3.12) is equivalent to the following equation∫
Ω

∂C̃

∂t
ξ̃dx+

∫
Ω
C̃ξ̃dx− E

(
C̃, ξ̃,u

)
+

∫
Ω
η (α, γ)∇C̃ · ∇ξ̃dx

=

∫
Ω
e−tRξ̃dx, ∀ ξ̃ ∈ H1 (Ω) ,

(4.12)

Hypothesis (2.11) and Lemma 2.1 imply that

G(u,α,γ)

(
ξ̃, ξ̃
)

+
(
ξ̃, ξ̃

)
L2(Ω)

≥ c1

∥∥∥ξ̃∥∥∥2

H1(Ω)
, ∀ ξ̃ ∈ H1 (Ω) ,

where

c1 = min (η∗, 1) .
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Which permits us to deduce, using classical arguments of functional analysis
concerning linear parabolic equations, see [16] and assumptions (2.12) and

(2.13), that equation (4.12) admits a unique solution C̃ ∈ L2
(
0, T ;H1 (Ω)

)
∩

L∞
(
(0, T ) ;L2 (Ω)

)
. Setting now ξ̃ = C̃ as test function in (4.12), integrating

over the interval time (0, t) and using Hölder’s and Young’s inequalities, the
following energy inequality holds∥∥∥C̃ (t)

∥∥∥2

L2(Ω)
+ c1

t∫
0

∥∥∥C̃ (a)
∥∥∥2

H1(Ω)
da ≤ 1

c1
‖R‖2L2(Q) + ‖C0‖2L2(Ω) .

On the other hand, by virtue of Lemma 2.1 there exists a linear and con-
tinuous operator A : H1 (Ω) −→ H1 (Ω)′ , defined for every ζ̃, ξ̃ ∈ H1 (Ω)
by

A
(
ζ̃, ξ̃
)

=

∫
Ω
ζ̃ ξ̃dx− E

(
ζ̃, ξ̃,u

)
+

∫
Ω
η (α, γ)∇ζ̃ · ∇ξ̃dx.

Therefore, (4.12) can be rewritten, using the operator A

∂C̃

∂t
+AC̃ = e−tR in H1 (Ω)′ .

Then
∂C̃

∂t
∈ L2

(
0, T ;H1 (Ω)′

)
.

Hence, from trace theorems, see [17], after a possible modification on a set

of measure zero, C̃ is continuous from [0, T ] into L2 (Ω) . The estimate (4.9)
becomes a simple consequence of the energy inequality and the previous esti-
mate. �

The third auxiliary existence result is given by.

Proposition 4.4. Let u = u (w, α, γ) ∈ L∞ (0, T ;V) be the solution of prob-
lem (4.5) given by Proposition 4.2. Then, there exists θ = θ (w, α, γ) ∈ Yq,r, r
given by (4.4), a solution to the weak problem

−
∫
Q
θ
∂ζ

∂t
dxdt−

T∫
0

E (θ, ζ,u) dt+

∫
Q
κ (α, γ)∇θ · ∇ζdxdt

+

∫
Γ×(0,T )

β (α, γ) θζdsdt

=

∫
Q
F (u, α, γ) ζdxdt+

∫
Ω
θ0ζ (0) dx+

∫
Q
hζdxdt, ∀ ζ ∈ Zq′,r′ ,

(4.13)

and it satisfies the estimate
‖θ‖Yq,r ≤ d3, (4.14)
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where d3 is a positive constant.

Proof. Since s ≥ n, 1 ≤ q <
n

n− 1
and W 1,q′ (Ω) ⊂ C0

(
Ω̄
)
, we obtain using

Hölder’s inequality and the antisymmetry of E with respect to the two first
variables∣∣∣∣∣∣

T∫
0

E (θ, ζ,u) dt

∣∣∣∣∣∣ ≤
T∫

0

‖θ‖W 1,q(Ω) ‖ζ‖W 1,q′ (Ω) ‖u‖Ls (Ω)n dt. (4.15)

Thus, we can infer, using Hölder’s inequality with respect to the time variable∣∣∣∣∣∣
T∫

0

E (θ, ζ,u) dt

∣∣∣∣∣∣ ≤ ‖θ‖Lr(0,T ;W 1,q(Ω)) ‖ζ‖Lr′(0,T ;W 1,q′ (Ω)) ‖u‖L∞(0,T ;Ls (Ω)n) .

This entrains by exploiting the Sobolev imbedding V ⊂ Ls (Ω)n , n ≤ s ≤
2n

n− 2∣∣∣∣∣∣
T∫

0

E (θ, ζ,u) dt

∣∣∣∣∣∣ ≤ ‖θ‖Lr(0,T ;W 1,q(Ω)) ‖ζ‖Lr′(0,T ;W 1,q′ (Ω)) ‖u‖L∞(0,T ;V)

≤ ‖θ‖Yq,r ‖ζ‖Zq′,r′ ‖u‖L∞(0,T ;V) .

Consequently, E is continuous on Yq,r ×Zq′,r′ × L∞ (0, T ;V) . However, tech-
nically, it is difficult to obtain a solution of problem (4.13). To this end we
introduce for each m ∈ N the following approximate standard weak equations

∫
Ω

∂θm
∂t

ζdx− E (θm, ζ,u) +

∫
Ω
κ (α, γ)∇θm · ∇ζdx

+

∫
Γ
β (α, γ) θmζds =

∫
Ω

(Fm + hm) ζdx, ∀ ζ ∈ H1 (Ω) ,

θm (0) = θ0m in Ω,

(4.16)

where

Fm =
mF (u, λ, µ)

m+ F (u, λ, µ)
∈ L∞ (Q) , hm =

mh

m+ h
∈ L∞ (Q) , (4.17)

(if is also possible to take hm ∈ L2 (Q) such that hm converges to h in L1 (Q)).
Therefore, we choose θ0m ∈ L2 (Ω) such that θ0m converges to θ0 in L1 (Ω) .

Let us consider the bilinear form

T(u,α,γ) : H1 (Ω)×H1 (Ω) −→ R,

T(u,α,γ) (θ, ζ) = −E (θ, ζ,u) +

∫
Ω
κ (α, γ)∇θ · ∇ζdx+

∫
Γ
β (α, γ) θζds. (4.18)
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Combining Lemma 2.1 and hypothesis (2.11) with the Poincaré-Freidrics type
inequality, it follows that T(u,α,γ) is continuous and coercive on H1 (Ω) ×
H1 (Ω) . Consequently, we deduce from classical arguments of functional anal-
ysis concerning linear parabolic equations, see [16], via assumptions (2.12)
and (2.13), that equation (4.16) admits a unique solution θm satisfying the
regularity 

θm ∈ L2
(
0, T ;H1 (Ω)

)
∩ C0

(
[0, T ] , L2 (Ω)

)
,

∂θm
∂t
∈ L2

(
0, T ;H1 (Ω)′

)
.

(4.19)

Furthermore, the use of Hölder’s inequality for 1 ≤ q <
n

n− 1
and λ > 1,

leads for almost every t ∈ [0, T ] to∫
Ω
|∇θm (x, t)|q dx

≤

(∫
Ω

|∇θm (x, t)|2

(1 + |θm (x, t)|)λ
dx

) q
2 (∫

Ω
(1 + |θm (x, t)|)

λq
2−q dx

) 2−q
2

.

Which eventually gives

‖∇θm (t)‖q
Lq(Ω)n

≤

(∫
Ω

|∇θm| (x, t)2

(1 + |θm (x, t)|)λ
dx

) q
2(∫

Ω
(1 + |θm (x, t)|)

λq
2−q dx

) 2−q
2

.

Raising to the power
r

q
where 1 ≤ r < 2 and using Hölder’s inequality with

respect to the time variable, the following inequality holds

T∫
0

‖∇θm (t)‖rLq(Ω)n dt

≤

(∫
Q

|∇θm (x, t)|2

(1 + |θm (x, t)|)λ
dxdt

) r
2

×


T∫

0

(∫
Ω

(1 + |θm (x, t)|)
λq
2−q dx

) (2−q)r
(2−r)q

 dt


2−r
2

.

(4.20)

On the other hand, the use of estimate (4.19) permits us to find, for almost
every t ∈ [0, T ]∫

Ω

|∇θm (x, t)|2

(1 + |θm (x, t)|)λ
dx ≤

∫
Ω
|∇θm (x, t)|2 dx ≤ c. (4.21)
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From, (2.20), (2.21) and some algebraic calculations, we can infer

T∫
0

‖∇θm (t)‖rLq(Ω)n dt ≤ c

1 +

 T∫
0

‖θm (t)‖
λr
2−r

L
λq
2−q (Ω)

dt


2−r
2

 . (4.22)

Gagliardo-Nirenberg’s imbedding, see [21] gives for almost every t ∈ [0, T ]

‖θm (t)‖
L
λq
2−q (Ω)

≤ c ‖∇θm (t)‖σLq(Ω)n ‖θm (t)‖1−σL1(Ω) ,

for every σ satisfying 
2− q
λq

= σ
n− q
nq

+ 1− σ,

0 ≤ σ ≤ 1.
(4.23)

It follows using Hölder’s inequality and the fact that θm ∈ C0
(
[0, T ] , L2 (Ω)

)
‖θm (t)‖

L
qλ
2−q (Ω)

≤ c ‖∇θm (t)‖σLq(Ω)n .

Raising the inequality above to the power
r

σ
and integrating over the interval

time (0, T ) , we obtain

T∫
0

‖θm (t)‖
r
σ

L
qλ
2−q (Ω)

dt ≤ c

T∫
0

‖∇θm (t)‖rLq(Ω)n dt. (4.24)

Now, we assume that
λr

2− r
=
r

σ
. (4.25)

Hence, (4.22) and (4.24) imply

T∫
0

‖∇θm (t)‖rLq(Ω)n dt ≤ c

1 +

 T∫
0

‖∇θm (t)‖rLq(Ω)n dt


2−r
2

 . (4.26)

Since
2− r

2
< 1, we can obtain an a priori estimate on the term ∇θm in the

space Lr (0, T ;Lq (Ω)) . Putting together (4.23) and (4.25), we obtain after
some manipulations 

1 ≤ r < 2,

λ =
2q + nq + nr − rq − nrq

nq
.
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We deduce, using the fact that λ > 1

1 ≤ r < 2,
2

r
+
n

q
> n+ 1.

This gives sense to hypothesis (4.4). Which, together with the fact that 1 ≤
q <

n

n− 1
and standard imbedding theorems between Lebesgue spaces, the

following estimate holds

θm ∈ Lr
(
0, T ;W 1,q (Ω)

)
. (4.27)

We can then extract, using the estimate (4.27) a subsequence of θm, still
denoted by θm satisfying

θm −→ θ in Lr
(
0, T ;W 1,q (Ω)

)
weakly. (4.28)

Furthermore, the estimate (4.27) can also gives

∇θm ∈ Lr (0, T ;Lq (Ω)n) ⊂ L1
(
0, T ;L1 (Ω)n

)
.

Thus, we find using hypothesis (2.11)

div (κ (α, γ)∇θm) ∈ L1
(
0, T ;W−1,1 (Ω)

)
. (4.29)

On the other hand, the use of the Sobolev imbedding V ⊂ Ln (Ω)n , Hölder’s
inequality and estimates (4.6) and (4.27), permits us to obtain, keeping in mind

the fact that 1 ≤ q < n

n− 1

uθm ∈ Lr
(
0, T ;L1 (Ω)n

)
⊂ L1

(
0, T ;L1 (Ω)n

)
.

This leads, recalling the incompressibility condition (2.3), to

u · ∇θm = div (uθm) ∈ L1
(
0, T ;W−1,1 (Ω)

)
. (4.30)

Moreover, by virtue of the approximate strong system
∂θm
∂t

+ u · ∇θm − div (κ (α, γ)∇θm) = Fm + hm in Q,

κ (α, γ)
∂θm
∂ν

+ β (α, γ) θm = 0 on Γ× (0, T ) ,

θm (0) = θ0m in Ω,

(4.31)

and by the definition of the functions Fm and hm due to (4.29) and (4.30),we
can infer

∂θm
∂t
∈ L1

(
0, T ;W−1,1 (Ω)

)
. (4.32)

Using (4.32) and compactness arguments, see [24] it is easy to see that

θm −→ θ in L1 (Q) strongly and a.e.in Q. (4.33)
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From Sobolev’s theorem, the trace of θm belongs to Lr
(

0, T ;W
1− 1

q
,q

(Ω)
)
,

and via the Sobolev imbedding W
1− 1

q
,q

(Γ) −→ Lq (Γ) , we obtain, after a new
extraction, still denoted by θm

θm −→ θ in Lr (0, T ;Lq (Γ)) weakly. (4.34)

We conclude from (4.16), (4.17), (4.28), (4.33) and (4.34) that problem (4.13)
admits a solution θ = θ (u, α, γ) ∈ Yq,r. Moreover, the estimate (4.14) can be
obtained as a consequence of (4.27) and (4.32). �

Proof of Theorem 4.1. In order to apply the Kakutani-Glicksberg fixed point
theorem, let us consider the closed convex ball

K =
{

(w, α, γ) ∈ L∞ (0, T ;V)×X × Yq,r : ‖w‖L∞(0,T ;V) ≤ d1,

‖α‖X ≤ d2 and ‖γ‖Yq,r ≤ d3

}
,

(4.35)

where d1, d2 and d3 are the constants given by estimates (4.6), (4.9) and (4.14).
The ball K is compact when the topological vector space is provided by the
weak star topology of L∞ (0, T ;V) and the weak topology of X ×Yq,r. Let us
built the mapping L : K −→ 2K , as follows

(w, α, γ) 7−→ L (w, α, γ) = {(u, C, θ)} ⊂ K. (4.36)

For every (w, α, γ) ∈ K, equations (4.8), (4.13) are linear with respect to the
functions C and θ, respectively. Moreover, u is the unique solution of problem
(4.5) in the space L∞ (0, T ;V) . Consequently the set L (w, α, γ) is convex. To
conclude the proof it remains to verify the closeness in K×K of the graph set

G (L) = {((w, α, γ) , (u, C, θ)) ∈ K ×K : (u, C, θ) ∈ L (w, α, γ)} . (4.37)

To do so, we consider a sequence (wm, αm, γm) ∈ K, such that{
wm −→ w in L∞ (0, T ;V) weakly*,

(αm, γm) −→ (α, γ) in X × Yq,r weakly,
(4.38)

and let (um, Cm, θm) ∈ L (wm, αm, γm) . Let us remember that (um, Cm, θm)
is solution to the following system

B (wm,um,v) + 2

∫
Ω
µ (αm, γm) ε(um) · ε (v − um) dx

+

∫
Ω
g (αm, γm) |ε (v)| dx−

∫
Ω
g (αm, γm) |ε(um)| dx

≥
∫

Ω
f · (v − um) dx, ∀ v ∈ V,

(4.39)



408 A. Merouani and F. Messelmi

∫
Ω

∂Cm
∂t

ξdx− E (Cm, ξ,um) +

∫
Ω
η (αm, γm)∇Cm · ∇ξdx

=

∫
Ω
Rξdx, ∀ ξ ∈ H1 (Ω) ,

Cm (0) = C0m,

(4.40)

−
∫
Q
θm

∂ζ

∂t
dxdt−

T∫
0

E (θm, ζ,um) dt+

∫
Q
κ (αm, γm)∇θm · ∇ζdxdt

+

∫
Γ×(0,T )

β (αm, γm) θmζdsdt

=

∫
Q
F (um, αm, γm) ζdxdt+

∫
Ω
θ0mζ (0) dx+

∫
Q
hζdxdt, ∀ ζ ∈ Zq′,r′ .

(4.41)
Then, from Propositions 4.2, 4.3 and 4.4

‖um‖L∞(0,T ;V) ≤ d1, ‖Cm‖X ≤ d2 and ‖θm‖Yq,r ≤ d3.

Thus, we can extract a subsequences, still denoted by um, Cm and θm such
that

um −→ u in L∞ (0, T ;V) weakly*, (4.42)

Cm −→ C in X weakly, (4.43)

θm −→ θ in Lr
(
0, T ;W 1,q (Ω)

)
weakly, (4.44)

∂θm
∂t
∈ L1

(
0, T ;W−1,1 (Ω)

)
. (4.45)

It follows by compactness theorems, that we can also extract subsequences,
still denoted by Cm, θm, αm and γm such that

Cm −→ C in L2 (Q) strongly and a.e. in Q, (4.46)

θm −→ θ in L1 (Q) strongly and a.e. in Q, (4.47)

θm −→ θ in L1 (Γ× (0, T )) strongly and a.e. on Γ× (0, T ) , (4.48)

αm −→ α in L2 (Q) strongly and a.e. in Q, (4.49)

γm −→ γ in L1 (Q) strongly and a.e. in Q. (4.50)

The inequality (4.39) gives

B (wm,um,v) + 2

∫
Ω
µ (αm, γm) ε(um) · ε (v) dx

+

∫
Ω
g (αm, γm) |ε (v)| dx−

∫
Ω

f · (v − um) dx

≥ 2

∫
Ω
µ (αm, γm) |ε(um)|2 dx+

∫
Ω
g (αm, γm) |ε(um)| dx, ∀ v ∈ V.

(4.51)
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The use of Lemma 2.1 and Lebesgue’s dominated convergence theorem permits
us to find the following limit, see [20]

B (wm,um,v) −→ B (w,u,v) , ∀ v ∈ V in L∞ (0, T ) . (4.52)

On the other hand, since αm −→ α and γm −→ γ a.e. in Q, the functions µ
and g are continuous and due to the weak lower semicontinuity of the contin-
uous and convex functional v ∈ V 7−→

∫
Ω g (αm, γm) |ε (v)| dx, combined with

the convergence result (4.42), we deduce from Fatou’s lemma that

lim inf

∫
Ω
µ (αm, γm) |ε(um)|2 dx ≥

∫
Ω
µ (α, γ) |ε(u)|2 dx in L∞ (0, T ) , (4.53)

lim inf

∫
Ω
g (αm, γm) |ε(um)| dx ≥

∫
Ω
g (α, γ) |ε(u)| dx in L∞ (0, T ) (4.54)

and, by using Lebesgue’s dominated convergence theorem, we find∫
Ω
µ (αm, γm) ε(um) · ε (v) dx

−→
∫

Ω
µ (α, γ) ε(u) · ε (v) dx, ∀ v ∈ V in L∞ (0, T ) ,

(4.55)

∫
Ω
g (αm, γm) |ε (v)| dx −→

∫
Ω
g (α, γ) |ε (v)| dx, ∀ v ∈ V. (4.56)

We conclude, from (4.39), (4.42), (4.52), (4.53), (4.54), (4.55) and (4.56), that

u solves the problem (4.5). Moreover, if we choose v =
um + u

2
as test function

in (4.5) and (4.39), and we subtract the obtained inequalities, we find after
simplification∫

Ω
µ (αm, γm) |ε (um − u)|2 dx+

∫
Ω

(g (αm, γm)− g (α, γ)) |ε (un)| dx

≤ B (w −wm,u,um) +

∫
Ω

(µ (α, γ)− µ (αm, γm)) ε (u) · ε (um − u) dx

+

∫
Ω

(g (αm, γm)− g (α, γ)) |ε (u)| dx.

Keeping in mind the fact that αm −→ α and γm −→ γ a.e. in Q and that the
functions µ and g are continuous and due to hypothesis (2.11), we can apply
Fatou’s lemma to the second term on the left hand side and Lebesgue’s domi-
nated convergence theorem to the right hand side, thanks to Korn’s inequality,
we obtain the following strong convergence

um −→ u in L∞ (0, T ;V) strongly. (4.57)

Furthermore, the Sobolev imbedding V ⊂ L4 (Ω)n and H1 (Ω) ⊂ L4 (Ω) leads
easily to

E (Cm, ξ,um) −→ E (C, ξ,u) , ∀ ξ ∈ H1 (Ω) . (4.58)
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Hence, by virtue of (4.40) and (4.58), it easily follows that C solves the problem
(4.8). For the passage to the limit in equation (4.41) we proceed as follows.
Sobolev’s imbedding asserts that

L∞ (0, T ;V) ⊂ L∞ (0, T ;Ln (Ω)n) ,

Lr
(
0, T ;W 1,q (Ω)

)
⊂ Lr

(
0, T ;L

nq
n−q (Ω)

)
.

Then, the fact that um ∈ L∞ (0, T ;V) and θm ∈ Lr
(
0, T ;W 1,q (Ω)

)
permits

us to get, by application of the Hölder inequality

θmum ∈ Lr (0, T ;Lq (Ω)n) .

Thus, since ∇ζ ∈ Lr′ (0, T ;Lq′ (Ω)n) , the following limit holds

T∫
0

E (θm, ζ,um) dt −→
T∫

0

E (θ, ζ,u) dt, ∀ ζ ∈ Zq′,r′ . (4.59)

Therefore, since θm ∈ Lr
(
0, T ;W 1,q (Ω)

)
and

∂ζ

∂t
∈ Lr′

(
0, T ;W 1,q′ (Ω)

)
, we

find the following limit∫
Q
θm

∂ζ

∂t
dxdt −→

∫
Q
θm

∂ζ

∂t
dxdt, ∀ ζ ∈ Zq′,r′ . (4.60)

Moreover, since αm −→ α and γm −→ γ a.e. in Q, the functions µ and
g are continuous and due to the fact that Zq′,r′ ⊂ Lr

′ (
0, T ; C0

(
Ω̄
))

(by the

Sobolev imbedding W 1,q′ (Ω) ⊂ C0
(
Ω̄
)
), we get, by application of the Lebesgue

dominated convergence theorem and thanks to (4.57)∫
Q
F (um, λm, µm) ζdxdt −→

∫
Q
F (u, λ, µ) ζdxdt, ∀ ζ ∈ Zq′,r′ . (4.61)

Now, it remains to prove the following limit∫
Ω
θ0mζ (0) dx −→

∫
Ω
θ0ζ (0) dx, ∀ ζ ∈ Zq′,r′ . (4.62)

To this aim, let us remark, by the definition of the space function Yq,r, that

θm ∈ Lr
(
0, T ;W 1,q (Ω)

)
and

∂θm
∂t
∈ L1

(
0, T ;W−1,1 (Ω)

)
. Consequently, from

trace theorems, after a possible modification on a set of measure zero, θm is
continuous from [0, T ] into L1 (Ω) , which asserts that the condition θm (0) =
θ0m has sense in the space L1 (Ω) and

θ0m −→ θ0 in L1 (Ω) weakly. (4.63)

On the other hand, the condition ζ ∈ Zq′,r′ entrains that

ζ ∈ Lr′
(

0, T ;W 1,q′ (Ω)
)

and
∂ζ

∂t
∈ Lr′

(
0, T ;W 1,q′ (Ω)

)
.
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Hence, after a possible modification on a set of measure zero, ζ is continu-
ous from [0, T ] into W 1,q′ (Ω) , then, via the Sobolev imbedding W 1,q′ (Ω) ⊂
C0
(
Ω̄
)
, we get

ζ (0) ∈ C0
(
Ω̄
)
. (4.64)

Thus, (4.62) is an immediate consequence of (4.63) and (4.64). From (4.41),
(4.59), (4.60), (4.61) and (4.62), we deduce that θ is solution to problem
(4.14). We conclude finally that um −→ u in L∞ (0, T ;V) strongly and
(Cm, θm) −→ (C, θ) in X × Yq,r weakly, where (u, C, θ) ∈ L (w, α, γ) . By
virtue of Kakutani-Glicksberg’s fixed point theorem, the mapping L admits a
fixed point (u, C, θ) ∈ L (u, C, θ) , which solves the problem (P3). �

Remark 4.5. This proof permits also to verify the continuous dependence of

the solution
(
u (w, α, γ) , C̃ (w, α, γ) , θ (w, α, γ)

)
∈ L∞ (0, T ;V) × X × Yq,r

of problems (4.5), (4.8) and (4.14) with respect to the auxiliary function
(w, α, γ) ∈ L∞ (0, T ;V)×X × Yq,r.

Theorem 4.6. (Positivity of the concentration) Let the hypotheses of Theo-
rem 4.1 hold and suppose in addition that

R ≥ 0 a.e. in Q, (4.65)

C0 ≥ 0 a.e. in Ω. (4.66)

Then, the concentration C is such that

C (x, t) ≥ 0 for a.e. in Q. (4.67)

Proof. Let us replace in equation (3.7) C and ξ by the functions C (t) = etC (t)

and ξ (t) = etξ̃ (t) (as in the proof of Proposition 4.3), it follows that∫
Ω

∂C

∂t
ξ̃dx+

∫
Ω
Cξ̃dx− E

(
C, ξ̃,u

)
+

∫
Ω
η (α, γ)∇C · ∇ξ̃dx

=

∫
Ω
e−tRξ̃dx, ∀ ξ̃ ∈ H1 (Ω) ,

Testing the equation above by the function−C− and integrate over the interval
time (0, t) . We find, using Lemma 2.1 and (4.66)

∥∥C− (t)
∥∥2

L2(Ω)
+ c1

t∫
0

∥∥C− (a)
∥∥2

H1(Ω)
da

≤ −
t∫

0

∫
Ω
e−aR (x, a)C− (x, a) dxda a.e. t ∈ (0, T ) .
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Then, via (4.65), one can easily obtain∥∥C−∥∥
L2(0,T ;H1(Ω))∩L2(0,T ;L∞(Ω))

≤ 0.

Which permits us to conclude the proof. �

We show in the following Theorem a property of integral of the temperature.

Theorem 4.7. Let the hypotheses of Theorem 4.1 hold and suppose in addition
that the Robin coefficient β = 0 and

h ≥ 0 a.e. in Q, (4.68)

θ0 ≥ 0 a.e. in Ω. (4.69)

Then, there exists a positive constant d depending only on the data of problem,
such that ∫

Ω
θ0 (x) dx ≤

∫
Ω
θ (x, t) dx ≤ d a.e. t ∈ (0, T ) . (4.70)

Proof. We proceed by testing the inequality (3.1) by the constant vector 0 and
the equation (3.3) by the constant function 1. It follows∫

Ω

(
2µ (C, θ) |ε(u) |2 dx+ g (C, θ) |ε (u)|

)
dx ≤

∫
Ω

f · udx, (4.71)

∫
Ω

∂θ

∂t
dx =

∫
Ω

(
2µ (C, θ) |ε(u) |2 dx+ g (C, θ) |ε (u)|

)
dx+

∫
Ω
hdx. (4.72)

Hence, from (4.68) and hypothesis (2.11), we eventually get∫
Ω

∂θ

∂t
dx ≥ 0 a.e. t ∈ (0, T ) . (4.73)

Furthermore, combining (4.71) with (4.72) and integrating over the interval
time (0, t) one obtains, using standard arguments

0 ≤
∫

Ω
(θ (x, t)− θ0 (x)) dx

≤ ‖f‖L∞(0,T ;V ′) ‖u‖L∞(0,T ;V) + ‖h‖L1(Q) a.e. t ∈ (0, T ) .

Consequently, (4.70) can be easily deduced, recalling (4.1) and (4.69). �
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5. Coagulation modelling

We study in this section the mathematical modelling of blood coagulation.
To this aim, we consider the steady-state flow without taking into account the
thermal effects and we suppose that the blood diffusion coefficient η depends
only on the space variable x and such that η > 0 and η ∈ L∞ (Ω) . In addi-
tion, we replace the Neumann boundary condition for the concentration by an
homogeneous Dirichlet boundary condition. The bio-mechanical problem can
be formulated as follows.

Problem P4. Find the velocity field u = (ui) : Ω −→ Rn, the stress field
σ = (σij) : Ω −→ Sn and the concentration C : Ω −→ R such that

u · ∇u = div (σ) + f in Ω, (5.1) σ̃ = µ (C) ε (u) + g (C)
ε (u)

|ε (u)|
if |ε (u)| 6= 0

|σ̃| ≤ g (C, θ) if |ε (u)| = 0
in Ω, (5.2)

div (u) = 0 in Ω, (5.3)

u · ∇C − div (η∇C) = R in Ω, (5.4)

u = 0 on Γ, (5.5)

C = 0 on Γ. (5.6)

We can easily prove, using Green’s formula, that the variational formulation
of bio-mechanical problem (P4) can be written.

Problem P5. For prescribed data f ∈ V ′, R ∈ H−1 (Ω) . Find the velocity
field u ∈ V and the concentration C ∈ H1

0 (Ω) satisfying the system

B (u,u,v) + 2

∫
Ω
µ (C) ε(u) · ε (v − u) dx+

∫
Ω
g (C) |ε (v)| dx

−
∫

Ω
g (C) |ε (u) | dx ≥

∫
Ω

f · (v − u) dx, ∀ v ∈ V,
(5.7)

−E (C, ξ,u) +

∫
Ω
η∇C · ∇ξdx =

∫
Ω
Rξdx, ∀ ξ ∈ H1

0 (Ω) , (5.8)

Kakutani-Gliksberg’s fixed point theorem permits also to deduce that the
variational problem P5 admits a solution (u, C) ∈ V × H1

0 (Ω) , see [19, 20].
Our goal now is to give the mathematical interpretation of blood coagulation
for the steady-state problem. To do this, let us recall the following standard
definition.

Definition 5.1. The blood is coagulated in the domain Ω, if the fluid is
blocked in Ω, it means that u ≡ 0 is solution of the variational inequality
(5.7).
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Thus, one can easily verify that the blood is coagulated in the domain Ω if
and only if the following system holds∫

Ω
g (Cg) |ε (v)| dx ≥

∫
Ω

f · vdx, ∀ v ∈ V, (5.9)∫
Ω
η∇Cg · ∇ξdx =

∫
Ω
Rξdx, ∀ ξ ∈ H1

0 (Ω) . (5.10)

It is easy to check that equation (5.10) admits one and one solution Cg ∈
H1

0 (Ω) . Hence, the mathematical study of the blood coagulation consists in
finding the link between g (Cg) and f such that the inequality (5.9) holds.

The following proposition has been obtained by H. Patrick et al [22], which
ensures the existence of a blocking state for large enough yield limit.

Proposition 5.2. If f ∈ L∞ (Ω)n then

gcoag = sup
v∈V\{0}

∫
Ω f · vdx∫

Ω |ε (v)| dx
< +∞, (5.11)

and if g (Cg) ≥ gcoag a.e. x ∈ Ω, then the blocking occurs, i.e. (5.9) holds,
which means in our case that the blood is coagulated in the domain Ω.

We compare in the following statement the concentration for the non-
coagulation phase and that of coagulation phase.

Theorem 5.3. (Maximum principle) Let (u, C) ∈ V ×H1
0 (Ω) be the solution

of probelm P5 and Cg the unique solution of equation (5.10). Suppose that
R ≥ 0 a.e. x ∈ Ω, then

C, Cg ≥ 0, (5.12)

‖∇Cg‖L2(Ω)n ≥ ‖∇C‖L2(Ω)n . (5.13)

In addition, if the function R verifies the following assumption

∃ b ∈ Lρ (Ω)n : R = −div (b) , ρ > n, (5.14)

then

C, Cg ∈ L∞ (Ω) . (5.15)

Proof. To prove (5.12) it is enough to choose −C− and −C−g as test functions
in equations (5.8) and (5.10), respectively, and proceeding as in the proof of
theorem 4.7. For the proof of (5.13), we proceed as follows. Subtracting (5.10)
from (5.8) and choosing Cg − C as test function in the obtained equation, it
follows via Lemma 2.1

ess inf (η)

∫
Ω
|∇ (Cg − C)|2 dx+ E (C,Cg,u) = 0.
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Which asserts that
E (C,Cg,u) ≤ 0. (5.16)

On the other hand, it follows by setting Cg and C as test functions in (5.8)
and (5.10), respectively, and subtracting the two obtained equations

E (C,Cg,u) =

∫
Ω
R (C − Cg) dx. (5.17)

Furthermore, by choosing C and Cg as test functions in (5.8) and (5.10), re-
spectively, and subtracting the two obtained equations, the following equation
holds

ess inf (η)

∫
Ω

(
|∇Cg|2 − |∇C|2

)
dx =

∫
Ω
R (Cg − C) dx. (5.18)

Thus, (5.13) can be easily deduced from (5.16), (5.17), (5.18).
Now, we prove (5.15). To do this, let us consider for each k ≥ 0, the cut

functions Tk defined by

Tk = (x− k)− − (x+ k)+ .

We now, see [26] that ∇Tk (C) = 1EC,k∇C ∈ H1
0 (Ω) where 1EC,k is the

indicator function of the set EC,k = {|C| ≥ k} . We use Tk (Cg) as test function
in (5.10), keeping in mind (5.14), we can infer∫

Ω
b · 1EC,k∇Cgdx =

∫
Ω
η∇Cg ·

(
1EC,k∇Cg

)
dx

=

∫
Ω
η
(
1EC,k∇Cg

)
·
(
1EC,k∇Cg

)
dx

≥ ess inf (η)

∫
Ω
|∇Tk (Cg)|2 dx.

Hence, we find using Hölder’s inequality∫
Ω
|∇Tk (Cg)|2 dx ≤

‖b‖Lρ(Ω)n

ess inf (η)

(∫
Ω
|∇Tk (Cg)|ρ

′
dx

) 1
ρ′

. (5.19)

Moreover, Hölder’s inequality leads also to∫
Ω
|∇Tk (Cg)|ρ

′
dx =

∫
Ω

1Ek |∇Tk (Cg)|ρ
′
dx

≤
(∫

Ω
|∇Tk (Cg)|2 dx

) ρ′
2 ∣∣ECg ,k∣∣ 2−ρ′2 ,

(5.20)

where |.| denotes the Lebesgue measure. Combining now (5.19) and (5.20), we
can infer

‖∇Tk (Cg)‖L2(Ω) ≤
‖b‖Lρ(Ω)n

ess inf (η)

∣∣ECg ,k∣∣ 2−ρ′2ρ′ . (5.21)
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Let us choose h ≥ k. We remark that in the set ECg ,h, |Tk (Cg)| ≥ h− k. Thus∫
Ω
|Tk (Cg)|

n
n−1 dx ≥

∫
ECg,h

(h− k)
n
n−1 dx

= (h− k)
n
n−1

∣∣ECg ,h∣∣ . (5.22)

Furthermore, the Sobolev imbedding W 1,1
0 (Ω) ⊂ L

n
n−1 (Ω) gives∫

Ω
|Tk (Cg)|

n
n−1 dx = ‖Tk (Cg)‖

n
n−1

L
n
n−1 (Ω)

≤ c ‖Tk (Cg)‖
n
n−1

W 1,1
0 (Ω)

= c

(∫
Ω
|∇Tk (Cg)| dx

) n
n−1

.

(5.23)

(5.22) and (5.23) permit us to find, using again (5.21) and Hölder’s inequality

(h− k)
∣∣ECg ,h∣∣n−1

n ≤ c
∫

Ω
|∇Tk (Cg)|1EC,kdx

≤ c ‖∇Tk (Cg)‖L2(Ω)

∣∣ECg ,k∣∣ 12
≤ c
‖b‖Lρ(Ω)n

ess inf (η)

∣∣ECg ,k∣∣ 2−ρ′2ρ′ + 1
2 .

We obtain finally ∣∣ECg ,h∣∣ ≤ M

(h− k)λ2

∣∣ECg ,k∣∣λ1 ,
where

λ1 =
n

ρ′ (n− 1)
> 1, λ2 =

n

n− 1
and M =

(
c
‖b‖Lρ(Ω)n

ess inf (η)

) n
n−1

.

Then, if there exists h0 such that
∣∣ECg ,h0∣∣ = 0, inequality (5.22) gives |Cg| ≤ h0

a.e. x ∈ Ω, which permits as to deduce that Cg ∈ L∞ (Ω) .
For the existence of h0, we recall following result due to Droniu and Imbert

[12].

Lemma 5.4. Let Φ : R+ −→ R+ be a decreasing function such that there
exists λ1 > 1 and λ2 > 0 satisfying, for every h > k

Φ (h) ≤ M

(h− k)λ2
Φ (k)λ1 .
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Then, there exists a constant c0 such that

Φ

(
c0 (2M)

1
λ2 Φ (0)

λ1
λ2−1

)
= 0.

Now, to achieve the proof of the theorem it remains to verify that C ∈
L∞ (Ω) . To this end, it is enough to choose Tk (C) as test function in (5.8)
and remark, using the definition of 1ECg,k and Lemma 2.1, that

E (C, Tk (C) ,u) =

∫
Ω
C1ECg,k∇ (C) · udx = 0.

�
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