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Abstract. We present a local convergence analysis for King’s fourth-order iterative methods

in order to approximate a solution of a nonlinear equation. We use hypotheses up to the

first derivative in contrast to earlier studies such as [1, 7]–[27] using hypotheses up to the

third derivative (or even higher). This way the applicability of these methods is extended

under weaker hypotheses. Moreover the radius of convergence and computable error bounds

on the distances involved are also given in this study. Numerical examples where earlier

results cannot be used to solve equations but our results can be used are also presented in

this study.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

F (x) = 0, (1.1)

where F : D ⊆ S → S is a nonlinear function, D is a convex subset of S and
S is R or C. Newton-like methods are used for finding solution of (1.1), these
methods are usually studied based on: semi-local and local convergence. The
semi-local convergence matter is, based on the information around an initial
point, to give conditions ensuring the convergence of the iterative procedure;
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while the local one is, based on the information around a solution, to find
estimates of the radii of convergence balls [1]-[27].

Third order methods such as Euler’s, Halley’s, super Halley’s, Chebyshev’s
[1]–[27] require the evaluation of the second derivative F ′′ at each step, which
in general is very expensive. To overcome this difficulty, many third order
methods have been introduced. In particular, J. Kou, Y.Li and X. Wang in
[16] introduced iterative methods defined for each n = 0, 1, 2, · · · by

yn = xn −
F (xn)

F ′(xn) + λnF (xn)
,

xn+1 = xn −
2F (xn)

F ′(yn) + F ′(xn) + µnF 2(xn)
(1.2)

and

zn = xn −
F (xn)

2(F ′(xn) + λnF (xn))
,

xn+1 = xn −
F (xn)

F ′(zn) + µnF 2(xn)
, (1.3)

where x0 is an initial point and {λn}, {µn} are given bounded sequences in S.
The third order of convergence was shown in [16] under the assumptions that
there exists a single root x∗ ∈ D;F is three times differentiable;

sign(λnF (xn)) = sign(F ′(xn)),

sign(µn) = sign(F ′(xn) + F ′(yn)) (for method (1.2))

and

sign(µnF (xn)) = sign(F ′(xn)),

sign(µn) = sign(F ′(
1

2
(xn + zn)),

for each n = 0, 1, 2, · · · (for method (1.3)), where

sign(t) =

{
1, t ≥ 0,
−1, t < 0,

is the sign function. Method (1.2) and Method (1.3) were introduced as alter-
natives to other iterative methods that do not converge to x∗ if the derivative
of the function is either zero or very small in the vicinity of the solution (see
e.g. [1, 7, 14]-[16], [19, 26, 27]) King’s family of iterative methods defined for
each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)−1F (xn),

xn+1 = yn −A−1n F ′(xn)−1F (yn), (1.4)
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where An = F (xn)+αF (yn)
F (xn)+(2+α)F (yn)

and α is a parameter, is a popular fourth order

method [1, 3, 7]. This family includes the Ostrowski’s method for β = −2
[2, 3, 21, 24]. Other single and multi-point methods can be found in [2, 3, 19,
24] and the references there in. The convergence of the preceding methods
has been shown under hypotheses up to the third derivative (or even higher).
These hypotheses restrict the applicability of the preceeding methods. As a
motivational example, let us define function f on D = [−1

2 ,
5
2 ] by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0,
0, x = 0.

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously, function f ′′′ is unbounded on D. In the present paper we
only use hypotheses on the first Fréchet derivative. This way we expand the
applicability of method (1.4).

The rest of the paper is organized as follows: Section 2 contains the local
convergence analysis of methods (1.4). The numerical examples are presented
in the concluding Section 3.

2. Local convergence for method (1.4)

We present the local convergence analysis of method (1.4) in this section.
Let U(v, ρ), Ū(v, ρ) the open and closed balls in S, respectively, with center
v ∈ S and of radius ρ > 0.

For the local convergence analysis that follows, we define some functions
and parameters. Let L0 > 0, L > 0,M ≥ 1 and α > −5

2 be given parameters.
Let

r1 =
2

2L0 + L
<

1

L0
.

Define functions on the interval [0, 1
L0

) by

g1(t) =
Lt

2(1− L0t)
,

g0(t) = |α+ 3|−1[L0

2
(1 + |α+ 2|g21(t))t+ |α+ 2|(1 + g1(t))],

h0(t) = g0(t)− 1,

g2(t) =
2Mg1(t)t

|α+ 3|(1− g0(t))
,
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h2(t) = 2Mg1(t)t+ |α+ 3|(g0(t)− 1),

g3(t) = (1 +
M

(1− L0t)(1− g2(t))
)g1(t)

and

h3(t) = g3(t)− 1.

Then, we have that g1(r1) = 1 and 0 ≤ g1(t) < 1 for each t ∈ [0, r1). We

also get by the choice of α that h0(0) = g0(0) − 1 = |α+2|
|α+3| − 1 < 0 and

h0(t)→ +∞ as t→ 1
L0

−
. It follows from the Intermediate value theorem that

function h0 has zeros in the interval (0, 1
L0

). Denote by r0 the smallest such

zero. Moreover, we obtain that h2(0) = |α+3|(g0(0)−1) < 0 and h2(t)→ +∞
as t → 1

L0

−
. Hence, function h2 has also zero in the interval (0, 1

L0
). Denote

by r2 the smallest such zero. Furthermore, we also get that h3(0) = −1 < 0

and h3(t) → +∞ as t → 1
L0

−
. Denote by r3 the smallest zero of function h3

in the interval (0, 1
L0

). Set

r = min{ri}, i = 0, 1, 2, 3. (2.1)

Then, we have that

0 ≤ g1(t) < 1, (2.2)

0 ≤ g0(t)t < 1, (2.3)

0 ≤ g2(t)t < 1 (2.4)

and

0 ≤ g3(t) < 1 for each t ∈ [0, r). (2.5)

Next, using the above notation we can show the local convergence result for
method (1.4).

Theorem 2.1. Let F : D ⊆ S → S be a differentiable function. Suppose that
there exist x∗ ∈ D, parameters L0 > 0, L > 0,M ≥ 1 and α > −5

2 such that
for each x, y ∈ D the following hold

F (x∗) = 0, F ′(x∗) 6= 0,

|F ′(x∗)−1(F ′(x)− F ′(x∗))| ≤ L0|x− x∗|, (2.6)

|F ′(x∗)−1(F ′(x)− F ′(y))| ≤ L|x− y|, (2.7)

|F ′(x∗)−1F ′(x)| ≤M, (2.8)

and

Ū(x∗, r) ⊆ D, (2.9)

where r is given by (2.1). Then, sequence {xn} generated for x0 ∈ U(x∗, r)−
{x∗} by method (1.4) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, · · ·
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and converges to x∗. Moreover, the following estimates hold for each n =
0, 1, 2, · · · ,

|yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| < |xn − x∗| < r, (2.10)

|A−1n | ≤
1

1− g2(|xn − x∗|)
(2.11)

and

|xn+1 − x∗| ≤ g3(|xn − x∗|)|xn − x∗| < |xn − x∗|, (2.12)

where the “g” functions are defined above Theorem 2.1. Furthermore, suppose
that there exists T ∈ [r, 2

L0
) such that Ū(x∗, T ) ⊂ D, then the limit point x∗ is

the only solution of equation F (x) = 0 in Ū(x∗, T ).

Proof. By hypothesis x0 ∈ U(x∗, r), the definition of r2 and (2.6) we get that

|F ′(x∗)−1(F ′(x0)− F ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1. (2.13)

It follows from (2.13) and the Banach Lemma on invertible functions [2, 3, 21,
24] that F ′(x0) is invertible and

|F ′(x0)−1F ′(x∗)| ≤
1

1− L0|x0 − x∗|
<

1

1− L0r
. (2.14)

Hence, y0 is well defined by the first substep of method (1.4) for n = 0. Using
(2.8), we get the estimate

|F ′(x∗)−1F (x0)| = |F ′(x∗)−1(F (x0)− F (x∗))|

=

∣∣∣∣ ∫ 1

0
F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ

∣∣∣∣
≤ M |x0 − x∗|, (2.15)

since |x∗ + θ(x0 − x∗)− x∗| = θ|x0 − x∗| < r for each θ ∈ [0, 1]. We also have
that

y0 − x∗ = x0 − x∗ −
F (x0)

F ′(x0)
. (2.16)

Using (2.1), (2.3), (2.7) and (2.14) we get in turn that

|y0 − x∗| ≤ |F ′(x0)−1F ′(x∗)|
∣∣∣∣ ∫ 1

0
F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))

−F ′(x0)]dθ(x0 − x∗)
∣∣∣∣

≤ L|x0 − x∗|2

2(1− L0|x0 − x∗|)
= g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,

which shows (2.10) for n = 0.
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Next, we shall show that A0 is invertible. In view of (2.1), (2.2), (2.10) (for
n = 0) and (2.15) we get in turn since x0 6= x∗ that

|((α+3)F ′(x∗)(x0−x∗))−1(F (x0)+(2+α)F (y0)−(α+3)F ′(x∗)(x0−x∗)|

≤ (|α+ 3||x0 − x∗|)−1
[
|F ′(x∗)−1(F (x0)− F (x∗)− F ′(x∗)(x0 − x∗)|

+|α+ 2||F ′(x∗)−1(F (y0)− F (x∗)− F ′(x∗)(y0 − x∗)|

+|α+ 2|(|x0 − x∗|+ |y0 − x∗|)
]

≤ (|α+ 3||x0 − x∗|)−1
[
L0

2
(|x0 − x∗|2 + |α+ 2||y0 − x∗|2)

+|α+ 2|(1 + g1(|x0 − x∗|))|x0 − x∗|
]

≤ |α+ 3|−1
[
L0

2
(1 + |α+ 2|g21(|x0 − x∗|))|x0 − x∗|

+|α+ 2|(1 + g1(|x0 − x∗|))
]

= g0(|x0 − x∗|) < g0(r) < 1. (2.17)

It follows from (2.17) that F (x0) + (α+ 2)F (y0) is invertible and

|(F (x0)+(α+2)F (y0))
−1F ′(x∗)| ≤ 1

|α+3||x0 − x∗|(1− g0(|x0 − x∗|))
. (2.18)

Then, using (2.1), (2.4), (2.15) (for n = 0) and (2.18), we get that

|A0 − I| = |2(F (x0) + (α+ 2)F (y0))
−1F ′(x∗)(F ′(x∗)−1F (y0))|

≤ 2M |y0 − x∗|
|α+ 3||x0 − x∗|(1− g0(|x0 − x∗|))

≤ 2Mg1(|x0 − x∗|)|x0 − x∗|
|α+ 3|(1− g0(|x0 − x∗|))

= g2(|x0 − x∗|) < g2(r) < 1. (2.19)

It follows from (2.19) that A0 is invertible and (2.11) satisfied for n = 0.
Then, using the second substep of method (1.4) for n = 0, (2.1), (2.5), (2.10),
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(2.11)(for n = 0), (2.14) and (2.15) (for y0 = x0) we get in turn that

|x1 − x∗| ≤ |y0 − x∗|+ |A−10 ||F
′(x0)

−1F ′(x∗)||F ′(x∗)−1F (y0)|

≤ |y0 − x∗|+
M |y0 − x∗|

(1− L0|x0 − x∗|)(1− g2(|x0 − x∗|))

=

[
1 +

M

(1− L0|x0 − x∗|)(1− g2(|x0 − x∗|))

]
|y0 − x∗|

≤
[
1 +

M

(1− L0|x0 − x∗|)(1− g2(|x0 − x∗|))

]
g1(|x0 − x∗|)|x0 − x∗|

= g3(|x0 − x∗|)|x0 − x∗|
< g3(r)|x0 − x∗| < |x0 − x∗| < r,

which shows (2.12) for n = 0. By simply replacing x0, y0, x1 by xk, yk, xk+1

in the preceding estimates we arrive at estimate (2.10)–(2.12). Using the
estimate |xk+1 − x∗| < |xk − x∗| < r, we deduce that xk+1 ∈ U(x∗, r) and

limk→∞ xk = x∗. To show the uniqueness part, let Q =
∫ 1
0 F

′(y∗+θ(x∗−y∗)dθ
for some y∗ ∈ Ū(x∗, T ) with F (y∗) = 0. Using (2.6) we get that

|F ′(x∗)−1(Q− F ′(x∗))| ≤
∫ 1

0
L0|y∗ + θ(x∗ − y∗)− x∗|dθ

≤
∫ 1

0
(1− θ)|x∗ − y∗|dθ ≤ L0

2
T < 1. (2.20)

It follows from (2.20) and the Banach Lemma on invertible functions that Q
is invertible. Finally, from the identity 0 = F (x∗) − F (y∗) = Q(x∗ − y∗), we
deduce that x∗ = y∗. �

Remark 2.2. (1) In view of (2.6) and the estimate

|F ′(x∗)−1F ′(x)| = |F ′(x∗)−1(F ′(x)− F ′(x∗)) + I|
≤ 1 + |F ′(x∗)−1(F ′(x)− F ′(x∗))| ≤ 1 + L0|x− x∗|

condition (2.8) can be dropped and M can be replaced by

M(t) = 1 + L0t.

(2) The results obtained here can be used for operators F satisfying au-
tonomous differential equations [3] of the form

F ′(x) = P (F (x)),

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0), we
can apply the results without actually knowing x∗. For example, let F (x) =
ex − 1. Then, we can choose: P (x) = x+ 1.
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(3) It is worth noticing that method (1.4) is not changing when we use the
conditions of Theorem 2.1 instead of the stronger conditions used in [1, 7, 14,
15, 16, 19, 26, 27]. Moreover, we can compute the computational order of
convergence (COC) defined by

ξ = ln

(
|xn+1 − x∗|
|xn − x∗|

)
/ ln

(
|xn − x∗|
|xn−1 − x∗|

)
or the approximate computational order of convergence

ξ1 = ln

(
|xn+1 − xn|
|xn − xn−1|

)
/ ln

(
|xn − xn−1|
|xn−1 − xn−2|

)
.

This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates using estimates higher than the first Fréchet
derivative of operator F.

3. Numerical examples

We present two numerical examples in this section.

Example 3.1. Returning back to the motivational example at the introduc-
tion of this study, we have L0 = L = 146.6629073, M = 101.5578008, α = 1.
The parameters are given in Table 1.

r0 = 0.0175
r1 = 0.0045
r2 = 0.0945
r3 = 0.0001
r = 0.0001
ξ1 = 0.9997
ξ = 0.9994

Table 1

Example 3.2. Let D = [−1, 1]. Define function f of D by

f(x) = ex − 1. (3.1)

Using (3.1) and x∗ = 0, we get that L0 = e − 1 < L = M = e, α = 1. The
parameters are given in Table 2.



Ball convergence theorems for King’s fourth-order iterative methods 427

r0 = 0.6597
r1 = 0.3249
r2 = 0.3413
r3 = 0.1332
r = 0.1332
ξ1 = 0.9932
ξ = 0.9932

Table 2
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[17] A.Y. Özban, Some new variants of Newton’s method, Appl. Math. Lett., 17 (2004),
677–682.



428 I. K. Argyros and S. George

[18] S.K. Parhi and D.K. Gupta, Semilocal convergence of a Stirling-like method in Banach
spaces, Int. J. Comput. Methods, 7(02) (2010), 215–228.

[19] M.S. Petkovic, B. Neta, L. Petkovic and J. Džunič, Multipoint methods for solving
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