
Nonlinear Functional Analysis and Applications
Vol. 20, No. 3 (2015), pp. 429-440

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2015 Kyungnam University Press KUPress

SOME FIXED POINT THEOREMS FOR GENERALIZED
T -CONTRACTION MAPPING IN COMPLETE CONE

METRIC SPACES

G. S. Saluja

Department of Mathematics
Govt. Nagarjuna P.G. College of Science

Raipur - 492001 (C.G.), India
e-mail: saluja1963@gmail.com

Abstract. The purpose of this paper is to establish some fixed point theorems for general-

ized T -contraction mapping in the framework of complete cone metric spaces. The results

presented in this paper extend, generalize and unify several known results from the existing

literature.

1. Introduction

The classical Banach’s contraction principle which was published in 1922
is one of the most useful result in fixed point theory. In 1968, Kannan [15]
established a fixed point theorem, extending Banach’s contraction principle to
mappings that need not be continuous. Kannan’s theorem was followed by a
lot of papers, devoted to obtaining fixed point theorems for various class of
contractive type condition that do not require continuity of the correspond-
ing mappings. One of them, actually a sort of dual of Kannan’s fixed point
theorem, is of Chatterjea [6]. Another important result on fixed points for con-
tractive type mapping in the frame work of compact metric space is generally
attributed to Edelstein [9].

Recently, Huang and Zhang [11] used the notion of cone metric spaces as
a generalization of metric spaces. They have replaced the real numbers by
an ordered Banach space. The authors described the convergence in cone
metric spaces and introduced their completeness. Then they proved some
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fixed point theorems for contractive single-valued mappings in such spaces. In
their theorems cone is normal. For more fixed point results in cone metric
spaces, see [1, 3, 13, 20, 21, 24]. In this paper we establish some fixed point
theorems for T -contraction mapping in the framework of complete cone metric
spaces.

The concepts of T -Banach contraction and T -contractive mappings were
introduced by Beiranvand et al. [5] in 2009 and they extended Banach’s con-
traction principle and Edelstein fixed point theorem. Followed by this, Moradi
[16] introduced T -Kannan contractive mappings, extending in the way, the
well-known Kannan fixed point theorem [15].

Recently, Morales and Rojas ([17], [18]) have extended the concept of T -
contraction mappings to cone metric space by proving fixed point theorems
for T -Kannan, T -Zamfirescu and T -weakly contraction mappings.

On the other hand, Subrahmanyam [22] obtained the fixed point of continu-
ous Banach operator of type k in a complete metric space. Recently, Chen and
Li [7] extended the concept of Banach operator of type k to Banach operator
pair and proved various best approximation results using common fixed point
theorems for f -nonexpansive mappings, where f is a self mapping of the subset
M of a metric space X. Hussain [12], Al-thagafi and Shahzad [2] generalizing
the results of Chen and Li [7], and proved various common fixed point theo-
rems and invariant approximation results for generalized nonexpansive Banach
operator pair mappings.

The new class of noncommuting mappings is different from the class of
commuting mappings (viz. R-weakly commuting, R-subweakly commuting,
compatible, weakly compatible, Cq-commuting etc.) existing in the literature
so far. Hence the concept of Banach operator pair is of basic importance for
study of common fixed points in best approximation.

The purpose of this paper is to prove fixed point theorem for generalized
T -contraction mapping in the setting of cone metric spaces. If in addition,
the pair of mappings is a Banach pair, then we have obtained a common
fixed point. Our results generalize recent existing results in the literature of
T -contraction mappings and cone metric space.

2. Definitions and preliminaries

Here we recall some definitions and other results that will be needed in the
sequel.
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Definition 2.1. Let (X, d) be a metric space and T : X → X be a mapping.
A mapping T is said be a contraction mapping, if there exists a real number
k ∈ [0, 1) such that for all x, y ∈ X, d(Tx, Ty) ≤ k d(x, y).

The following new definition is recently introduced by Beiranvand et al. [5].

Definition 2.2. ([5]) Let (X, d) be a metric space and S, T : X → X be two
mappings. A mapping S is said be T -contraction, if there exists a real number
k ∈ [0, 1) such that for all x, y ∈ X, d(TSx, TSy) ≤ k d(Tx, Ty).

If we take T = I, the identity map, in the Definition 2.2, then we obtain
the definition of Banach’s contraction.

The following example shows that a T -contraction mapping need not be a
contraction mapping.

Example 2.3. Let X = [1,∞) be with the usual metric. Define two mappings
T, S : X → X as Tx = 1

2x + 2 and Sx = 3x. Obviously, S is not contraction
but S is T -contraction which is seen from the following:

|TSx− TSy| =
∣∣∣ 1

6x
− 1

6y

∣∣∣ =
1

3
|Tx− Ty|.

Definition 2.4. ([5]) Let T be a self mapping of a metric space (X, d). Then

(1) the mapping T is said to be sequentially convergent, if the sequence
{yn} in X is convergent whenever {Tyn} is convergent.

(2) the mapping T is said to be subsequentially convergent, if {yn} has a
convergent subsequence whenever {Tyn} is convergent.

The following theorem has been proved by Beiranvand et al. [5].

Theorem 2.5. ([5]) Let (X, d) be a complete metric space and T : X → X be
a one-to-one, continuous and subsequentially convergent mapping. Then every
T -contraction and continuous self mapping f : X → X has a unique fixed point
in X. Also, if T is sequentially convergent, then for each x0 ∈ X, the sequence
of iterates {fnx0} converges to the fixed point.

The following is the definition introduced by Subrahmanyam [22].

Definition 2.6. ([22]) Let T be a self mapping of a normed space X. Then
T is called a Banach operator of type k if

‖T 2x− Tx‖ ≤ k‖Tx− x‖,

for some k ≥ 0 and for all x ∈ X.
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Extending the concept of Subrahmanyam [22], Chen and Li [7] introduced
the following definition in the setting of normed linear space.

Definition 2.7. ([7]) Let T and f be two self mappings of a nonempty subset
M of a normed linear space X. Then (T, f) is a Banach operator pair, if any
one of the following conditions is satisfied:

(1) T [F (f)] ⊆ F (f), i.e. F (f) is T -invariant.
(2) fTx = Tx for each x ∈ F (f).
(3) fTx = Tfx for each x ∈ F (f).
(4) ‖Tfx− fx‖ ≤ k‖fx− x‖ for some k ≥ 0.

Definition 2.8. ([11]) Let E be a real Banach space. A subset P of E is
called a cone whenever the following conditions hold:

(c1) P is closed, nonempty and P 6= {0};
(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;
(c3) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y−x ∈ P . We shall write x < y to indicate that x ≤ y but
x 6= y, while x � y will stand for y − x ∈ int P (interior of P ). If int P 6= ∅
then P is called a solid cone (see [23]).

There exist two kinds of cones- normal (with the normal constant K) and
non-normal ones [8].

Let E be a real Banach space, P ⊂ E a cone and ≤ partial ordering defined
by P . Then P is called normal if there is a number K > 0 such that for all
x, y ∈ P ,

0 ≤ x ≤ y imply ‖x‖ ≤ K ‖y‖, (2.1)

or equivalently, if (∀n) xn ≤ yn ≤ zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (2.2)

The least positive number K satisfying (2.1) is called the normal constant of
P . It is clear that K ≥ 1.

Example 2.9. ([23]) Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞+‖x′‖∞ on P = {x ∈

E : x(t) ≥ 0}. This cone is not normal. Consider, for example, xn(t) = tn

n and

yn(t) = 1
n . Then 0 ≤ xn ≤ yn, and limn→∞ yn = 0, but ‖xn‖ = maxt∈[0,1] | t

n

n |+
maxt∈[0,1] |tn−1| = 1

n + 1 > 1; hence xn does not converge to zero. It follows
by (2.2) that P is a non-normal cone.
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Definition 2.10. ([11, 25]) Let X be a nonempty set. Suppose that the
mapping d : X ×X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a cone metric [11] on X and (X, d) is called a cone metric
space [11].

The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where E = R and
P = [0,+∞).

Example 2.11. ([11]) Let E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, X = R
and d : X × X → E defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is
a constant. Then (X, d) is a cone metric space with normal cone P where
K = 1.

Example 2.12. ([20]) Let E = `2, P = {{xn}n≥1 ∈ E : xn ≥ 0, for alln},
(X, ρ) a metric space, and d : X×X → E defined by d(x, y) = {ρ(x, y)/2n}n≥1.
Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains
the class of metric spaces.

Definition 2.13. ([11]) Let (X, d) be a cone metric space. We say that {xn}
is:

(i) a Cauchy sequence if for every ε in E with 0� ε, then there is an N
such that for all n,m > N , d(xn, xm)� ε;

(ii) a convergent sequence if for every ε in E with 0� ε, then there is an
N such that for all n > N , d(xn, x)� ε for some fixed x in X;

(iii) a cone metric space X is said to be complete if every Cauchy sequence
in X is convergent in X;

(iv) a self mapping T : X → X is said to be continuous at a point x ∈ X,
if limn→∞ xn = x implies that limn→∞ Txn = Tx for every {xn} in X.

The following two lemmas of Huang and Zhang [11] will be required in the
sequel.

Lemma 2.14. ([11]) Let (X, d) be a cone metric space and P be a normal
cone with normal constant K. A sequence {xn} in X converges to x if and
only if d(xn, x)→ 0 as n→∞.
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Lemma 2.15. ([11]) Let (X, d) be a cone metric space and P be a normal
cone with normal constant K. A sequence {xn} in X is a Cauchy sequence if
and only if d(xn, xm)→ 0 as n,m→∞.

The following corollary of Rezapour [20] will be needed in the sequel.

Corollary 2.16. ([20]) Let a, b, c, u ∈ E, the real Banach space,

(i) If a ≤ b and b� c, then a� c.
(ii) If a� b and b� c, then a� c.

(iii) If 0 ≤ u� c for each c ∈ int P , then u = 0.

Remark 2.17. ([14]) If c ∈ int P , 0 ≤ an and an → 0, then there exists n0
such that for all n > n0, it follows that an � c.

In the sequel we assume that E is a real Banach space and that P is a nor-
mal solid cone in E, that is, normal cone with intP 6= ∅. The last assumption
is necessary in order to obtain reasonable results connected with convergence
and continuity. The partial ordering induced by the cone P will be denoted
by ≤.

Generalized T -Contraction Mapping

Let X be a cone metric space and S, T : X → X be two mappings. Then S is
called generalized T -contraction mapping if it satisfies the following condition:

d(TSx, TSy) ≤ a d(Tx, Ty) + b [d(Tx, TSx) + d(Ty, TSy)]

+c [d(Tx, TSy) + d(Ty, TSx)], (2.3)

for all x, y ∈ X and a, b, c ∈ [0, 1) are constants such that a+ 2b+ 2c < 1.

Remark 2.18. (1) If T = I (the identity map), b = c = 0 and a ∈ [0, 1), then
(2.3) reduces to contraction mapping defined by Banach [4].
(2) If T = I (the identity map), a = c = 0 and b ∈ [0, 1/2), then (2.3) reduces
to contraction mapping defined by Kannan [15].
(3) If T = I (the identity map), c = 0 and a, b ∈ [0, 1/2), then (2.3) reduces
to contraction mapping defined by Fisher [10].
(4) If T = I (the identity map), a = b = 0 and c ∈ [0, 1/2), then (2.3) reduces
to contraction mapping defined by Chatterjae [6].
(5) If T = I (the identity map), b = 0 and a, c ∈ [0, 1), then (2.3) reduces to
contraction mapping defined by Reich [19].
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3. Main results

In this section we shall prove some fixed point theorems for generalized
T -contractive condition.

Theorem 3.1. Let T and S be two continuous self mappings of a complete
cone metric space (X, d). Assume that T is an injective mapping and P be
a normal cone with normal constant K. If the mappings T and S satisfy
generalized T -contractive condition (2.3) with a+2b+2c < 1 for some a, b, c ∈
[0, 1). Then S has a unique fixed point in X. Moreover, if (T, S) is a Banach
pair, then T and S have a unique common fixed point in X.

Proof. Choose x0 ∈ X. Define a sequence {xn} in X such that xn+1 = Sxn
for each n = 0, 1, 2, . . . ,∞. Consider,

d(Txn, Txn+1) = d(TSxn−1, TSxn)

≤ a d(Txn−1, Txn) + b [d(Txn−1, TSxn−1) + d(Txn, TSxn)]

+c [d(Txn−1, TSxn) + d(Txn, TSxn−1)]

≤ a d(Txn−1, Txn) + b [d(Txn−1, Txn) + d(Txn, Txn+1)]

+c [d(Txn−1, Txn+1) + d(Txn, Txn)]

≤ a d(Txn−1, Txn) + b [d(Txn−1, Txn) + d(Txn, Txn+1)]

+c [d(Txn−1, Txn) + d(Txn, Txn+1) + d(Txn, Txn)]

= (a+ b+ c) d(Txn−1, Txn) + (b+ c) d(Txn, Txn+1)

implies

d(Txn, Txn+1) ≤
(a+ b+ c)

(1− b− c)
d(Txn−1, Txn)

= h d(Txn−1, Txn), (3.1)

where

h =
(a+ b+ c)

(1− b− c)
.

As a + 2b + 2c < 1 by the assumption of the theorem, we obtain that h < 1.
Proceeding further, we have

d(Txn, Txn+1) ≤ hn d(Tx0, Tx1). (3.2)

Next, we claim that {Txn} is a Cauchy sequence. Consider m, n ∈ N such
that m > n, we have
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d(Txn, Txm) ≤ d(Txn, Txn+1) + d(Txn+1, Txn+2) + . . .

+d(Txm−1, Txm)

≤ (hn + hn+1 + · · ·+ hm−1)d(Tx1, Tx0)

≤ hn

1− h
d(Tx0, Tx1).

From equation (2.1), it follows that

‖d(Txm, Txn)‖ ≤ hn

1− h
K ‖d(Tx0, Tx1)‖. (3.3)

Since h ∈ (0, 1), hn → 0 as n → ∞. Therefore ‖d(Txm, Txn)‖ → 0 as
m,n → ∞. Thus {Txn} is a Cauchy sequence in X. As X is a complete
cone metric space, there exists z ∈ X such that limn→∞ Txn = z. Since T is
subsequentially convergent, {xn} has the convergent subsequence {xm} such
that limm→∞ xm = u. As T is continuous,

lim
m→∞

Txm = Tu. (3.4)

By the uniqueness of the limit, z = Tu. Since S is continuous, limm→∞ Sxm =
Su. Again as T is continuous, limm→∞ TSxm = TSu. Therefore

lim
m→∞

Txm+1 = TSu. (3.5)

Now consider,

d(TSu, Tu) ≤ d(TSu, Txm) + d(Txm, Tu)

= d(TSu, TSxm−1) + d(Txm, Tu)

≤ a d(Tu, Txm−1) + b [d(Tu, TSu) + d(Txm−1, TSxm−1)]

+c [d(Tu, TSxm−1) + d(Txm−1, TSu)] + d(Txm, Tu)

= a d(Tu, Txm−1) + b [d(Tu, TSu) + d(Txm−1, Txm)]

+c [d(Tu, Txm) + d(Txm−1, TSu)] + d(Txm, Tu)

≤ a

1− b
d(Tu, Txm−1) +

b

1− b
d(Txm−1, Txm)

+
1 + c

1− b
d(Txm, Tu) +

c

1− b
d(Txm−1, TSu)

≤ a

1− b
[d(Tu, Txm) + d(Txm, Txm−1] +

b

1− b
d(Txm−1, Txm)

+
1 + c

1− b
d(Txm, Tu) +

c

1− b
[d(Txm−1, Txm)

+d(Txm, Tu) + d(Tu, TSu)]
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implies (
1− c

1− b

)
d(Tu, TSu) ≤

(1 + a+ 2c

1− b

)
d(Tu, Txm)

+
(a+ b+ c

1− b

)
d(Txm−1, Txm).

Therefore,

d(Tu, TSu) ≤
(1 + a+ 2c

1− b− c

)
d(Tu, Txm)

+
(a+ b+ c

1− b− c

)
d(Txm−1, Txm). (3.6)

Let 0� ε be arbitrary. By equation (3.4), d(Tu, Txm)� ε(1−b−c)
2(1+a+2c) . Similarly

by equation (3.5), d(Txm, Txm−1)� ε(1−b−c)
2(a+b+c) . Then, equation (3.6) becomes

d(Tu, TSu)� ε

2
+
ε

2
= ε.

Thus d(Tu, TSu) � ε for each ε ∈ int P . Now, using Corollary 2.16(iii), it
follows that d(Tu, TSu) = 0 which implies that Tu = TSu. As T is injective,
u = Su. This shows that u is a fixed point of S.

To Prove Uniqueness: If v is another fixed point of S, then v = Sv.

d(Tu, Tv) = d(TSu, TSv) ≤ a d(Tu, Tv) + b [d(Tu, TSu) + d(Tv, TSv)]

+c [d(Tu, TSv) + d(Tv, TSu)]

= (a+ 2c) d(Tu, Tv)

≤ (a+ 2b+ 2c) d(Tu, Tv)

< d(Tu, Tv) as a+ 2b+ 2c < 1,

a contradiction. Hence d(Tu, Tv) = 0 which implies Tu = Tv. As T is
injective, u = v is the unique common fixed point of S.

As per assumption of the theorem (T, S) is a Banach pair, T and S com-
mutes at the fixed point of S which implies that TSu = STu for u ∈ F (S),
that is, Tu = STu which implies that Tu is another fixed point of S. By
uniqueness of fixed point of S, u = Tu. Hence u = Su = Tu is the unique
common fixed point of S and T in X. This completes the proof. �

The following corollary extends the main result of Beiranvand et al. [5] to
cone metric space.

Corollary 3.2. Let T and S be two continuous self mappings of a complete
cone metric space (X, d). Assume that T be injective and P be a normal cone
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with normal constant K. If the mappings T and S satisfy

d(TSx, TSy) ≤ k d(Tx, Ty)

for all x, y ∈ X, for some k < 1, then S has a unique fixed point in X.

Proof. The proof of this Corollary follows by taking a = k, b = c = 0 in
Theorem 3.1. Then k = a ≤ a+ 2b+ 2c < 1. This completes the proof. �

The following Corollaries are Theorems 1, 3, 4 and Theorems 2.3, 2.6, 2.7
of Huang and Zhang [11] and Rezapour and Hamlbarani [21] respectively in
the setup of cone metric space.

Corollary 3.3. ([11, Theorem 1], [21, Theorem 2.3]) Let (X, d) be a complete
cone metric space. Assume that P is a normal cone with normal constant K.
If the mapping S : X → X satisfies the condition

d(Sx, Sy) ≤ k d(x, y),

for all x, y ∈ X, where k ∈ [0, 1) is a constant. Then S has a unique fixed
point in X.

Proof. The proof of this Corollary follows by taking T = I (the identity map),
a = k and b = c = 0 in Theorem 3.1. Then k = a ≤ a + 2b + 2c < 1. This
completes the proof. �

Corollary 3.4. ([11, Theorem 3], [21, Theorem 2.6]) Let (X, d) be a complete
cone metric space. Assume that P is a normal cone with normal constant K.
If the mapping S : X → X satisfies the condition

d(Sx, Sy) ≤ k [d(x, Sx) + d(y, Sy)],

for all x, y ∈ X, where k ∈ [0, 1/2) is a constant. Then S has a unique fixed
point in X.

Proof. The proof of this Corollary follows by taking T = I (the identity map),
b = k and a = c = 0 in Theorem 3.1. This completes the proof. �

Corollary 3.5. ([11, Theorem 4], [21, Theorem 2.7]) Let (X, d) be a complete
cone metric space. Assume that P is a normal cone with normal constant K.
If the mapping S : X → X satisfies the condition

d(Sx, Sy) ≤ k [d(x, Sy) + d(y, Sx)],

for all x, y ∈ X, where k ∈ [0, 1/2) is a constant. Then S has a unique fixed
point in X.

Proof. The proof of this Corollary follows by taking T = I (the identity map),
c = k and b = c = 0 in Theorem 3.1. This completes the proof. �
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The following examples show that we cannot omit subsequentially conver-
gence hypothesis of the function T in Theorem 3.1.

Example 3.6. Let us consider R with the usual metric defined by d(x, y) =
|x− y|. Let T, S : R→ R be two functions defined Tx = e−x and Sx = x+ 1.
As we see S is a T contraction but T is not subsequentially convergent, because
T (n)→ 0 as n→∞ but the sequence (n) has not any convergent subsequence
and S has not a fixed point.

Example 3.7. Let M = [1, 104] with the usual metric defined by d(x, y) =

|x− y|. Consider the mappings T, S : M →M defined by Sx = e
1

104
(x−1) and

Tx = x1/2. One can show that

(1) d(Sx, Sy) ≤ 18
10 d(x, y), that is, S is not a Banach contraction on M .

(2) d(TSx, TSy) ≤ 4
10 d(Tx, Ty), that is, S is a T -contraction for k ∈

[0, 4/10).

Since the mapping T is non-decreasing, continuous and injective, then it is
sequentially convergent on M . Thus, from Theorem 3.1, we have that u = 1
is the unique fixed point of S on M .

Remark 3.8. Our results generalize recent existing results in the literature
of T -contraction mappings and cone metric space.

4. Concluding remarks

The generalized T contraction mapping include T -contraction introduced by
[5], the Banach contraction, the Kannan contraction, the Chatterjea contrac-
tion and the Fisher contraction mappings. Thus the results presented in this
paper extend, generalize and unify several results from the existing literature
(see, for example, [5, 11, 21] and many others).
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