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Abstract. Let P (z) be a polynomial of degree n. In this paper we estimate the maximum

and minimum modulli of the B-Operator of kth polar derivative of P (z) in terms of the

modulus of P (z) on the unit circle and there by obtain generalisations of some results recently

proved by Bidkham and Mezerji. This interalia generalise the results earlier proved by Aziz

and Shah, Shah and Liman and a conjecture of Erdös proved by Lax.

1. Introduction

Let P (z) :=
n∑
j=0

ajz
j be a polynomial of degree n and P ′(z) its derivative,

then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)| (1.1)

and

max
|z|=R>1

|P (z)| ≤ Rn max
|z|=1

|P (z)|. (1.2)

Inequality (1.1) is an immediate consequence of Bernstein’s theorem on the
derivative of a trigonometric polynomial (For reference, see [6]), where as
inequality (1.2) is a simple deduction from the maximum modulus principle
[13, p.346]. Concerning the minimum modulus of a polynomial P (z) and its
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derivative P ′(z), Aziz and Dawood [3] proved that, if P (z) has all its zeros in
|z| ≤ 1 ,then

min
|z|=1
|P ′(z)| ≥ n min

|z|=1
|P (z)| (1.3)

and

min
|z|=R>1

|P (z)| ≥ Rn min
|z|=1
|P (z)|. (1.4)

For any complex number α, let DαP (z) denote the polar differentiation of
the polynomial P (z) of degree n with respect to the point α, then DαP (z) :=
nP (z)+(α−z)P ′(z) is a polynomial of degree at most n−1 and it generalizes
the ordinary derivative in the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

Concerning the inequalities for the polar derivative of P (z), Aziz and Shah
[5] proved :

Theorem 1.1. If P (z) is a polynomial of degree n, having all its zeros in
|z| ≤ 1, then for any real or complex number α, with |α| ≥ 1,

|DαP (z)| ≥ n|α||zn−1| min
|z|=1
|P (z)| for |z| ≥ 1. (1.5)

Theorem 1.2. If P (z) is a polynomial of degree n which has no zero in the
disk |z| < 1, then for every real or complex number α, with |α| ≥ 1,

|DαP (z)| ≤ n

2

{
(|α||zn−1|+1) max

|z|=1
|P (z)|−(|α||zn−1|−1) min

|z|=1
|P (z)|

}
(1.6)

for |z| ≥ 1.

Like polar derivatives there are many other operators which are just as
interesting (for reference see [14]). As an attempt to this characterisation,
Shah and Liman [14] considered an operator B, which was earlier discussed by
Rahman [12] and carries a polynomial P (z) into

B[P (z)] := λoP (z) + λ1

(
nz

2

)
P ′(z) + λ2

(
nz

2

)2P ′′(z)

2!
(1.7)

where λo, λ1, and λ2 are such that

U(z) := λo + C(n, 1)λ1z + C(n, 2)λ2z
2 6= 0, (1.8)

for Re(z) ≤ n
4 , C(n, r) = n!

r!(n−r)! .

Concerning the inequalities for B-operator Shah and Liman [14, Theorem
1.1] infact proved:
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Theorem 1.3. If P (z) is a polynomial of degree n such that P (z) 6= 0 in
|z| > 1, then

|B[P (z)]| ≥ |B[zn]| min
|z|=1
|P (z)| for |z| ≥ 1. (1.9)

Theorem 1.4. If P (z) is a polynomial of degree n such that P (z) 6= 0 in
|z| < 1, then

|B[P (z)]| ≤ 1

2

[
{|B[zn]|+|λ0|}max

|z|=1
|P (z)|−{|B[zn]|−|λ0|}min

|z|=1
|P (z)|

]
(1.10)

for |z| ≥ 1.

Recently Bidkham and Mezerji combined the two operators Dα and B and
obtained the following:

Theorem 1.5. If P (z) is a polynomial of degree n, having all its zeros in
|z| ≤ 1, then for every complex number α, with |α| ≥ 1,

|B[DαP (z)]| ≥ n|α||B[zn−1]| min
|z|=1
|P (z)| for |z| ≥ 1. (1.11)

Theorem 1.6. If P (z) is a polynomial of degree n such that P (z) has no zeros
in |z| < 1, then for every complex number α, with |α| ≥ 1,

|B[DαP (z)]| ≤ n

2

[
{|α||B[zn−1]|+ |λ0|} max

|z|=1
|P (z)|

− {|α||B[zn−1]| − |λ0|} min
|z|=1
|P (z)|

]
for |z| ≥ 1.

(1.12)

The aim of this paper is to prove some new results which generalises the
recently proved inequalities of Bidkham and Mezerji [7] and provide some
extensions of Bernstien type inequalities proved earlier.

2. Lemmas

The following lemmas are required for our investigation.

Lemma 2.1. If all the zeros of an nth degree polynomial P (z) lie in a circular
region C and if none of the points α1, α2, ..., αk lie in the region C, then each
of the polar derivatives Dα1 ...DαkP (z), k = 1, 2, ..., n − 1 has all its zeros in
C.

The above lemma follows by repeated application of Laguerre’s theroem [8,
p.52].
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The next Lemma which we require follows from Corollary 18.3 of [9, p.65]
(see also[12, Lemma 14.5.7, p.540]).

Lemma 2.2. If all the zeros of polynomial P (z) of degree n lie in the circle
|z| ≤ 1, then all the zeros of polynomial B[P (z)] also lie in the circle |z| ≤ 1.

On combining Lemma 2.1 and Lemma 2.2, we easily get the following.

Lemma 2.3. If all the zeros of a polynomial P (z) of degree n lie in |z| ≤ 1,
then for complex numbers α1, α2, ...αk with |αi| ≥ 1, 1 ≤ i ≤ k, the polynomial
B[Dα1 ...DαkP (z)] has all its zeros in |z| ≤ 1.

Lemma 2.4. If the polynomial P (z) of degree n has no zero in |z| ≤ 1 then
for real or complex numbers α1, α2, ...αk, with |αi| ≥ 1, 1 ≤ i ≤ k, we have

|B[Dα1 ...DαkP (z)]| ≤ |B[Dα1 ...DαkQ(z)]| (2.1)

for |z| ≥ 1, where Q(z) = znP (1z ).

Proof. Since Q(z) = znP (1z ) and all the zeros of P (z) lie in |z| ≥ 1, therefore

all the zeros of Q(z) lie in |z| ≤ 1 and |P (z)| = |Q(z)| for |z| = 1. Hence Q(z)
P (z) is

analytic in |z| ≤ 1 and |Q(z)
P (z) | = 1 for |z| = 1. By maximum modulus principle,

|Q(z)| ≤ |P (z)| for |z| ≤ 1. This gives |P (z)| ≤ |Q(z)| for |z| ≥ 1. So by
Rouche’s theorem, for every β with |β| > 1, the polynomial P (z)− βQ(z) has
all its zeros in |z| ≤ 1. Using Lemma 2.3, it follows that the polynomial

T (z) = B[Dα1 ...Dαk(P (z)− βQ(z))]

= B[Dα1 ...DαkP (z)]− β[Dα1 ...DαkQ(z)]
(2.2)

has all its zeros in |z| ≤ 1. This in particular gives

|B[Dα1 ...DαkP (z)]| ≤ |B[Dα1 ...DαkQ(z)]| for |z| ≥ 1

and the proof is complete. �

Lemma 2.5. If P (z) is a polynomial of degree n then for complex numbers
α1, α2, ..., αk with |αi| ≥ 1, 1 ≤ i ≤ k, we have for |z| ≥ 1

|B[Dα1 ...DαkP (z)]|+ |B[Dα1 ...DαkQ(z)]|

≤ n(n− 1)...(n− k + 1){|α1...αk||B[zn−k] + |λo|} max
|z|=1

|P (z)| (2.3)

where Q(z) = znP (1z ).
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Proof. Let M = max|z|=1 |P (z)|, then |P (z)| ≤M for |z| = 1. If β is a complex
number with |β| > 1, then by Rouche’s theorem P (z) − βM does not vanish
in |z| ≤ 1. Using Lemma 2.4, it follows that for |z| ≥ 1

|B[Dα1 ...Dαk(P (z)− βM)]| ≤ |B[Dα1 ...Dαk(Q(z)− βMzn)]|

where Q(z) = znP (1z ). This implies for |z| ≥ 1,

|B[Dα1 ...DαkP (z)]−Mn(n− 1)...(n− k + 1)βλ0|

≤ |B[Dα1 ...DαkQ(z)]− (α1...αk)Mn(n− 1)...(n− k + 1)β̄B[zn−k]|.
(2.4)

Since Q(z)− βMzn has all its zeros in |z| < 1, by Lemma 2.3, it follows that
all the zeros of

B[Dα1 ...Dαk(Q(z)− βMzn)]

= B[Dα1 ...DαkQ(z)]− n(n− 1)...(n− k + 1)βM(α1...αk)B[zn−k]

lie in |z| < 1. This gives by the same argument as in the proof of Lemma 2.4

|B[Dα1 ...DαkQ(z)]| ≤ n(n− 1)...(n− k + 1)|α1...αk||β||B[zn−k]|M (2.5)

for |z| ≥ 1. Choosing argument of β in the right hand side of (2.4) which is
possible by (2.5) such that

|B[Dα1 ...DαkQ(z)]− n(n− 1)...(n− k + 1)β(α1...αk)B[zn−k]M |

= n(n− 1)...(n− k + 1)|β||α1...αk||B[zn−k]|M − |B[Dα1 ...DαkQ(z)]|

we obtain from (2.4)

|B[Dα1 ...DαkP (z)]| − n(n− 1)...(n− k + 1)|β|||λ0|M

≤ n(n− 1)...(n− k + 1)|β||α1...αk||B[zn−k]|M − |B[Dα1 ...DαkQ(z)]|

for |z| ≥ 1. Equivalently

|B[Dα1 ...DαkP (z)]|+ |B[Dα1 ...DαkQ(z)]|

≤ n(n− 1)...(n− k + 1)|β|{|α1...αk||B[zn−k]|+ |λ0|}M
(2.6)

for |z| ≥ 1.
Finally letting |β| → 1, we get the desired result and the proof of Lemma

2.5 is complete. �

Remark 2.6. A result of Aziz [1] is a special case of Lemma 2.5 and is obtained
by suitable choice of λi, i = 0, 1, 2. Also a result of Govil and Rahman[10]
follows from inequality (2.6) with a special choice of λi and αi.



446 A. Liman and S. L. Wali

3. Main results

Theorem 3.1. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ 1, then for complex numbers α1, α2, ..., αk with |αk| ≥ 1, k = 1, 2, ..., n,

|B[Dα1 ...DαkP (z)]|

≥ n(n− 1)...(n− k + 1)|α1...αk||B[zn−k]| min
|z|=1
|P (z)| (3.1)

for |z| ≥ 1. The result is sharp and equality holds for P (z) = azn.

Proof. If P (z) has a zero on |z| = 1, then m = min|z|=1 |P (z)| = 0 and there is
nothing to prove. Suppose that all the zeros of P (z) lie in |z| < 1. Then m > 0
and so we have m ≤ |P (z)| for |z| = 1. Therefore, for every complex number
β with |β| < 1, we have |mβzn| < |P (z)| for |z| = 1. Applying Rouche’s
theorem, it follows that all the zeros of P (z)−mβzn lie in |z| < 1. Hence by
Lemma 2.3, all the zeros of

H(z) : = B[Dα1 ...Dαk(P (z)−mβzn)]

= B[Dα1 ...DαkP (z)]−mβn(n−1)...(n−k+1)(α1...αk)B[zn−k]
(3.2)

also lie in |z| < 1. This gives for |z| ≥ 1,

mn(n− 1) . . . (n− k + 1)|α1 . . . αk||B[zn−k]| ≤ |B[Dα1 . . . DαkP (z)]|. (3.3)

If the inequality (3.3) is not true, then there is a point z = zo with |zo| ≥ 1,
such that

mn(n− 1) . . . (n− k + 1)|α1 . . . αk||B[zn−ko ]| > |B[Dα1 . . . DαkP (zo)]|.
We take

β =
B[Dα1 . . . DαkP (zo)]

mn(n− 1) . . . (n− k + 1)α1 . . . αkB[zn−ko ]
,

so that |β| < 1 and for this value of β, we have from (3.2) H(zo) = 0 for
|zo| ≥ 1. This is contradiction to the fact that all the zeros of H(z) lie in
|z| < 1. Thus

mn(n− 1) . . . (n− k + 1)|α1 . . . αk||B[zn−k]| ≤ |B[Dα1 . . . DαkP (z)]|,
for |z| ≥ 1. This completes the proof of Theorem 3.1. �

Now taking α1 = α2 = ... = αk = α in Theorem 3.1, we have

Corollary 3.2. If P (z) is a polynomial of degree n, having all its zeros in
|z| ≤ 1, then for every complex number α with |α| > 1, we have

|B[Dk
αP (z)]| ≥ n(n− 1)...(n− k + 1)|αk||B[zn−k]| min

|z|=1
|P (z)| (3.4)

for |z| ≥ 1.
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Dividing both sides by |αk| and noting that limα→∞
DkαP (z)
αk

= P k(z), we
get the following result:

Corollary 3.3. If P (z) is a polynomial of degree n, having all its zeros in
|z| ≤ 1, then for every complex number α, with |α| > 1, we have for |z| ≥ 1,

|B[P k(z)]| ≥ n(n− 1)...(n− k + 1)|B[zn−k]| min
|z|=1
|P (z)|. (3.5)

For k = 1, this reduces to a result due to Shah and Liman [14, Theorem 1.1].

Again for k = 1, we have from (3.1) for |z| ≥ 1,

|B[DαP (z)]| ≥ n|α||B[zn−1]| min
|z|=1
|P (z)|. (3.6)

Substituting for DαP (z) in (3.6), we get

|B[nP (z) + (α− z)P ′(z)]| ≥ n|B[αzn−1]| min
|z|=1
|P (z)| for |z| ≥ 1.

For z = α, this gives

|B[P (z)]| ≥ |B[zn]| min
|z|=1
|P (z)| for |z| ≥ 1. (3.7)

Which is the result due to Shah and Liman [14, Theorem 1.1].

Next, we have the following:

Theorem 3.4. If P (z) is a polynomial of degree n having no zeros in |z| ≤ 1,
then for complex numbers αk with |αk| ≥ 1, k = 1, 2, ..., n,

|B[Dα1 ...DαkP (z)]|

≤ n(n− 1)...(n− k + 1)

2

{
|α1...αk||B[zn−k|] + |λo|

}
max
|z|=1

|P (z)|,
(3.8)

for |z| ≥ 1. The result is sharp and equality holds for polynomials whose zeros
lie on the unit disc.

Proof. Combining Lemma 2.4 and Lemma 2.5, we have, for |z| ≥ 1,

2|B[Dα1 ...DαkP (z)]|
≤ |B[Dα1 ...DαkP (z)]|+ |B[Dα1 ...DαkQ(z)]|

≤ n(n− 1)...(n− k + 1)

{
|α1...αk||B[zn−k]|+ |λ0|

}
max
|z|=1

|P (z)|.

From this proof of Theorem 3.4 follows.
Substituting for B[Dα1 ...DαkP (z)] in (3.8), we have for |z| ≥ 1,
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∣∣∣∣λoDα1 ...DαkP (z)+λ1(
mz

2
)Dα1 ...DαkP

′(z)+λ2(
mz

2
)2
Dα1 ...DαkP

′′(z)

2!

∣∣∣∣
≤ n(n−1)...(n−k+1)

2

{
|α1...αk|

∣∣∣∣λozn−k+λ1

(
(n− k)z

2

)
(n−k)zn−k−1

+ λ2

(
(n− k)z

2

)2 (n− k)(n− k − 1)

2!
zn−k−2

∣∣∣∣+ |λo|
}

max
|z|=1

|P (z)|,

(3.9)
where 0 ≤ m ≤ (n − 1), λo, λ1 and λ2 are such that all the zeros of U(z)
defined by (1.8) lie in the half plane Re(z) ≤ m

4 .
Result of Bidkham and Mezerji is a special case of Theorem 3.4 when k = 1.
Also the result of Shah and Liman [14, Theorem 1.2] follows from Theorem
3.4, when we take k = 1 and α = z. Taking α1 = α2 = ... = αk = α, we have
for |z| ≥ 1

|B[Dk
αP (z)]|

≤ n(n− 1)...(n− k + 1)

2

{
|αk||B[zn−k]|+ |λo|

}
max
|z|=1

|P (z)|.
(3.10)

�

Dividing both sides of the above inequality by |αk| and letting |α| → ∞, we
get the following result.

Corollary 3.5. If P (z) is a polynomial of degree n having all its zeros in
|z| ≥ 1, then for every complex number α with |α| ≥ 1,

|B[P k(z)]| ≤ n(n− 1)...(n− k + 1)

2
|B[zn−k]| max

|z|=1
|P (z)| (3.11)

for |z| ≥ 1. In particular for k = 1, we have

|B[P ′(z)]| ≤ n

2
{|B[zn−1]|} max

|z|=1
|P (z)|, (3.12)

a result earlier proved by Shah and Liman [14]. Again if we take k = 1 and
z = α in inequality (3.9), we get for |z| ≥ 1,

|B[P (z)]| ≤ 1

2
[|B[zn]|+ |λ0|] max

|z|=1
|P (z)|. (3.13)

Lastly, we prove:
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Theorem 3.6. If P (z) is a polynomial of degree n having no zeros in |z| ≤ 1,
then for every αk with |αk| ≥ 1, k = 1, 2, ..., n,

|B[Dα1 ...DαkP (z)]|

≤ n(n− 1)...(n− k + 1)

2

[
{|α1...αk||B[zn−k]|+ |λo|} max

|z|=1
|P (z)|

− {|α1...αk||B[zn−k]| − |λo|} min
|z|=1
|P (z)|

] (3.14)

for |z| ≥ 1. The result is sharp and equality holds for polynomials whose zeros
lie on the unit disc.

Proof. If P (z) has a zero on |z| = 1, then m = min|z|=1 |P (z)| = 0 and
Theorem 3.6 reduces to Theorem 3.4. We now suppose that all the zeros of
P (z) lie in |z| > 1, so that m > 0. Also

m ≤ |P (z)| for |z| = 1. (3.15)

It follows by Rouche’s theorem that for every complex number λ with |λ| < 1,
the polynomial H(z) = P (z) − λm does not vanish in |z| < 1. We note that
H(z) has no zero on |z| = 1. Because if for some z = z0 with |z0| = 1,

H(z0) = P (z0)− λm = 0,

then |P (z0)| = m|λ| < m, which is a contradiction to (3.15).
Now, if we let

G(z) = znH(
1

z
) = znP (

1

z
)− λmzn = Q(z)− λmzn,

then all the zeros of G(z) lie in |z| < 1 and |H(z)| = |G(z)| for |z| = 1. So for
every β with |β| > 1, applying Rouche’s theorem again, it follows that all the
zeros of H(z)− βG(z) lie in |z| < 1. Using Lemma 2.3, we see that for every
αk with |αk| ≥ 1, k = 1, 2, . . . , n, the polynomial B[Dα1 ...Dαk(H(z)−βG(z))]
has all its zeros in |z| ≤ 1. This gives by the same argument as above

B[Dα1 ...DαkH(z)] ≤ B[Dα1 ...DαkG(z)],

for |z| > 1. Substituting for H(z) and G(z) we get for |z| ≥ 1,

|B[Dα1 ...DαkP (z)]−mn(n− 1)...(n− k + 1)λλ0|

≤ |B[Dα1 ...DαkQ(z)]− λ(α1...αk)mn(n− 1)...(n− k + 1)B[zn−k]|.
Choosing the argument of λ in the right hand side of the above inequality
suitability, which is possible by Theorem 3.1, and making |λ| → 1, we get for
|z| ≥ 1,

|B[Dα1 ...DαkP (z)]| −mn(n− 1)...(n− k + 1)|λ0|

≤ |B[Dα1 ...DαkQ(z)]| − |(α1...αk)|mn(n− 1)...(n− k + 1)|B[zn−k]|.
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Equivalently,

|B[Dα1 ...DαkP (z)]|
≤ |B[Dα1 ...DαkQ(z)]|

− |(α1...αk)|mn(n− 1)...(n− k + 1){|B[zn−k]| − |λ0|},
(3.16)

for |z| ≥ 1. By using Lemma 2.4 we have from inequality (3.16)

2|B[Dα1 ...DαkP (z)]| ≤ |B[Dα1 ...DαkP (z)]|+ |B[Dα1 ...DαkQ(z)]|

≤ n(n− 1)...(n− k + 1)

[
{|α1...αk||B[zn−k]|+ |λ0|} max

|z|=1
|P (z)|

− {|α1...αk||B[zn−k]| − |λ0|} min
|z|=1
|P (z)|

]
.

From this, proof of Theorem 3.6 follows completely. �

Remark 3.7. If we take k = 1 and then put α = z in Theorem 3.6, we get a
result of Shah and Liman [14, 1.3].

Next, if we put α1 = α2 = ... = αk = α in Theorem 3.6, we get the following:

Corollary 3.8. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ 1, then for every α with |α| ≥ 1,

|B[Dk
αP (z)]|

≤ n(n− 1)...(n− k + 1)

2

[
{|B[αkzn−k]|+ |λo|}max

|z|=1
|P (z)|

− {|B[αkzn−k]| − |λo|}min
|z|=1
|P (z)|

] (3.17)

for |z| ≥ 1.
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