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Abstract. This paper is concerned with the existence of random solutions for the deter-

ministic generalized vector equilibrium problems. As applications, we also discussed the

random generalized vector optimization problems, random generalized variational inequality

problems, random generalized vector best approximation problems and random fixed point

problems.

1. Introduction

The vector equilibrium problems provide a very general model for a wide
range of problems, for example, the vector optimization problems, the vec-
tor variational inequality problems, the vector complementarity problems,
vector saddle point problems and vector best approximation problems (see
[3, 4, 6, 9, 12, 13, 15, 19]). Many interesting and sophisticated problems in
applied mathematics, engineering sciences and technology, economics and de-
cision sciences can be cast into the form of vector equilibrium problems, as in
the fields of optimizations, mathematical economics, financial sciences, ecol-
ogy, genetics engineering, metrology, medical sciences, bio-technology and net-
works. However many of these applications contain some random or uncertain
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environments, such as random game theory, random mathematical economics,
random financial mathematics and related areas. To cover these problems, it
is quite natural to study equilibrium problems that includes the probabilistic
features, which will permit to save a greater generality from initial formulation
(see [1, 2, 14, 20, 21]).

In this paper, inspired and motivated by recent works [8, 10, 11, 16, 17,
18, 20, 22, 23, 24, 25, 26], we discussed the existence of random solutions for
the deterministic generalized vector equilibrium problems and as applications
to studied random generalized vector optimization problems, random gener-
alized vector variational inequality problems, random generalized vector best
approximation problems and random fixed point problems.

Let C be a nonempty subset of the Hausdorff topological vector space E and
let Y be a Hausdorff topological vector space. Assume that P is a nonempty
closed convex pointed partially ordered cone in Y with apes at the origin and
intP 6= ∅, where intP denotes the topological interior of P .

Let G : C → 2C be a set-valued mapping and f : C × C → Y be a vector-
valued mapping. Then the generalized vector equilibrium problem is to find
an element x ∈ C such that x ∈ G(x) and

f(x, y) 6∈ −intP, ∀ y ∈ G(x).

Note that if, Y = R and P = [0,+∞[, then the generalized vector equi-
librium problem reduces to generalized equilibrium problem for finding an
element x ∈ C such that x ∈ G(x) and

f(x, y) ≥ 0, ∀ y ∈ G(x).

Inspired by the deterministic case, we define a random generalized vector
equilibrium problem (RGVEP). Let (Ω,Σ) be a measurable space, where Σ is
a σ-algebra of the subsets of Ω. Let G : Ω× C → 2C be a random set-valued
mapping and f : Ω× C × C → E be a random vector-valued function.

The random generalized vector equilibrium problem (RGVEP) is to find a
function γ : Ω→ C such that

f(t, γ(t), y) 6∈ −intP, ∀ t ∈ Ω, y ∈ G(x, t). (1.1)

For each t ∈ Ω, γ(t) is called a deterministic solution of (1.1). The function γ
will be a random solution whenever it is measurable. Suppose that (1.1) has
a deterministic solution for each t ∈ Ω. Then under suitable conditions, the
multi-function S of equilibria sets of f defined by

S(t) =
⋂
x∈C
{x ∈ G(t, x), y ∈ G(t, x) : f(t, x, y) 6∈ −intP}, t ∈ Ω (1.2)
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has a measurable selection. The problem (1.1) has at least one random solu-
tion.

Remark 1.1. Every deterministic solution of (1.1) is approached by a count-
able family of random solutions.

Special cases:

(a) Random generalized vector optimization problem:

Let φ : Ω × C → E be a random vector-valued function and let
G : Ω × C → 2C be a random set-valued mapping. Then we find a
measurable function γ : Ω× C → C such that

φ(t, γ(t))− φ(t, y) 6∈ −intP, ∀ (t, x) ∈ Ω× C, y ∈ G(t, x). (1.3)

We know that if for all x ∈ G(t, x), y ∈ G(t, x),

f(t, x, y) = φ(t, y)− φ(t, x), ∀ (t, x, y) ∈ Ω× C × C,
then (1.1) and (1.2) are equivalent to each others.

(b) Random generalized vector variational inequality problem:

We get measurable function γ : Ω → C which is a solution to the
following random generalized vector variational inequality problem for
finding x ∈ C, x ∈ G(t, x) such that

〈A(t, γ(t)), y − γ(t)〉 6∈ −intP, ∀ t ∈ Ω, y ∈ G(t, x). (1.4)

Note that the random solutions to the (1.1) and (1.4) are coincident
for

f(t, x, y) = 〈A(t, x), y − x〉, ∀ t ∈ Ω, x ∈ G(t, x), y ∈ G(t, x).

(c) Random generalized vector best approximations and random
fixed point problem:

Let C be a nonempty subset of a normed vector space X and let P
be a convex cone in Rm. Then for the mappings gk : Ω× C → X, 1 ≤
k ≤ m, we find the measurable function γ : Ω → C such that for all
t ∈ Ω, y ∈ G(t, x) and

(‖y − gk(t, γ(t))‖ − ‖γ(t)− gk(t, γ(t))‖)1≤k≤m 6∈ −intP. (1.5)

Note that if for all t ∈ Ω, x ∈ G(t, x), y ∈ G(t, x),

gk(t, x) = ak(t),

where ak : Ω → X for all k ∈ {1, 2, · · · ,m}, then (1.5) is a ran-
dom version of the vector approximation problem studied in [23]. If



456 J. K. Kim and Salahuddin

m = 1, P = R+ and g = g1, then (1.5) collapses to a random version
of the standard best approximation problem (see [3]).

(d) Random generalized best approximation problem:

The random generalized best approximation problem is to find the
measurable function γ : Ω→ C such that

‖γ(t)− g(t, γ(t))‖ = inf ‖y − g(t, γ(t))‖, y ∈ G(x, t). (1.6)

For g(t, x) = a(t) ∀t ∈ Ω, x ∈ G(t, x), where a : Ω→ X is a mapping
and G : Ω × C → 2C is a random set-valued mapping, we recover a
random version of the approximation problem (see [7]).

We remark that, if g : Ω × C → C is a self-mapping in its second
argument, then problem (1.6) is collapses to a random fixed point
problems for finding measurable function γ : Ω→ C such that

γ(t) = g(t, γ(t)), ∀ t ∈ Ω. (1.7)

The general problem (1.5) is a particular case of (1.1), by letting
f : Ω× C × C → Rm as follows:

f(t, x, y) = (‖y − gk(t, x)‖ − ‖x− gk(t, x)‖)1≤k≤m,
for all t ∈ Ω, x ∈ G(t, x), y ∈ G(t, x).

2. Preliminaries

Throughout in this paper, we assume that (Ω,Σ) is a measurable space.
Let C be a nonempty subset of a topological vector space X.

A function f : Ω→ X is said to be Σ−measurable if f−1(A) ∈ Σ for every
Borel subset A in X.

A map f : Ω×X → X is said to be random continuous if it is measurable
in the first argument and continuous in the second one.

A multi-function F : Ω→ 2X is said to have a measurable selection if there
exists a measurable function f : Ω→ X such that

f(t) ∈ F (t), ∀ t ∈ Ω.

F has a casting representation, whenever there is a countable family of
measurable selections {fi}i≥1 such that {fi(t)}i≥1 is dense in F (t), for each
t ∈ Ω.

Definition 2.1. A suslin space is a topological space which is the continuous
image of a Polish space. A suslin set in a topological space is a subset which
is a suslin space.
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Remark 2.2. The Polish space is a homeomorphism of a complete metric
space.

To recall the concepts of suslin families, first we define the suslin operator as
follows. Denote by V and V ′ the respective sets of infinite and finite sequences
of positive integers. For σ = {σi}i≥1 ⊂ V, we denote {σ1, σ2, · · · , σn} by σ | n.
Let A : V ′ → S. Then ⋃

σ∈V

∞⋂
n=1

A(σ | n)

is said to be obtained from S by the suslin operation.

Definition 2.3. Let S be a family of sets. S is said to be a suslin family if it
is stable by the suslin operation.

Remark 2.4. If µ is an outer measure over Ω, then Σ is a suslin family. If
(Ω,Σ) is a complete measurable space, then Σ is a suslin family.

Definition 2.5. Let φ : C → E and f : C × C → E be two given functions
and assume that C is convex.

(i) φ is said to be P -convex if for every x, y ∈ C,

φ(tx+ (1− t)y) ∈ tφ(x) + (1− t)φ(y)− P, ∀ t ∈ (0, 1).

(ii) φ is said to be P -quasiconvex if the set

{x ∈ C : φ(x) 6∈ −intP}

is convex.
(iii) φ is said to be P -concave (resp. P -quasiconcave) if −φ is P -convex

(resp. P -quasiconvex).

Definition 2.6. f is P -diagonally quasiconvex in y if for any finite sub-
set {y1, y2, · · · , yn} in C and any y0 ∈ co{y1, y2, · · · , yn}, there exists i ∈
{1, 2, · · · , n} such that

f(y0, yi) 6∈ −intP.

Definition 2.7. φ is said to be P -lower (resp. upper) semi-continuous (P−lsc)
if for any x ∈ C and any neighborhood V of φ(x) in Y , there is a neighborhood
Ux of x in X such that

φ(u) ∈ V + P (resp. φ(u) ∈ V − P ), ∀ u ∈ Ux ∩ C.
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Definition 2.8. f is P -transfer lower (resp. upper) semi-continuous in X if
for any (x, y) ∈ C × C and for any neighborhood V of f(x, y), there exists a
point y′ ∈ C and a neighborhood Ux of x in X such that

f(u, y′) ∈ V + P (resp. f(u, y′) ∈ V − P ), ∀ u ∈ Ux ∩ C.

Remark 2.9. If f is P -transfer lower (upper) semi-continuous in x, then the
function f(·, y) is P -lower (upper) semi-continuous for each y ∈ C.

3. Existence theoems

Lemma 3.1. Assume that Σ is a suslin family, X is a suslin space and F :
Ω→ 2X is a map such that

GrF ∈ Σ⊕B(X).

Then F has a casting representation.

Let Σ be a suslin family and let C be a closed convex and separable suslin
set. For each t ∈ Ω, G : Ω × C → 2C is a random set-valued mapping, we
define a set of deterministic generalized vector equilibria of f(t, ·, ·) as

S(t) =
⋂
x∈C
{x ∈ G(t, x), y ∈ G(t, x) : f(t, x, y) 6∈ −intP}.

Theorem 3.2. Suppose that

(Q1) for each i ∈ Ω, x ∈ C, y ∈ G(t, x), f(·, ·, y) is Σ⊕B(C)-measurable;
(Q2) for each (t, x) ∈ Ω× C, x ∈ G(t, x), f(t, x, ·) is randomly P − lsc;
(Q3) G : Ω× C → 2C is continuous and measurable.

If (1.1) has at least one deterministic solution, then there exists a countable
family of measurable functions {γi}i≥1 which are solutions to (1.1) from Ω to
C such that it is dense in the equilibrium sets.

Proof. Assume that for each t ∈ Ω, S(t) is a nonempty subset of C. We show
that assumptions (Q1) and (Q2) imply that the multi-function S : Ω → 2C

which takes S(t) as values satisfies

GrS ∈ Σ⊕B(C).

First observe that for each t ∈ Ω,

S(t) =
⋂
n≥1
{x ∈ C, x ∈ G(t, x) : f(t, x, yn) 6∈ −intP}, ∀ yn ∈ G(t, xn), (3.1)
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where {yn}n≥1 is a countable sequence in C. Since {yn}n≥1 is a countable
dense sequence in C such that t ∈ Ω, x ∈ C, x ∈ G(t, x) and

f(t, x, yn) 6∈ intP, ∀ n ≥ 1, yn ∈ G(t, xn),

for any arbitrary y ∈ C, we may assume that a subsequence (if necessarily)
{yn} converges to y. Then from the random P -lower semi-continuity of f(t, x, ·)
implies that

f(t, x, y) 6∈ intP, ∀ x ∈ G(t, x), y ∈ G(t, x).

Hence x ∈ S(t) which prove (3.1). Now we can write

GrS =
⋂
n≥1
{(t, x) ∈ Ω× C, x ∈ G(t, x) : f(t, x, yn) 6∈ intP}, yn ∈ G(t, xn).

Assumption (Q1) asserts that{
(t, x) ∈ Ω×C, x ∈ G(t, x) : f(t, x, yn) 6∈ intP

}
∈ Σ⊕B(C), ∀ yn ∈ G(t, xn).

In this way, GrS ∈ Σ ⊕B(C) is a countable intersection of elements in Σ ⊕
B(C). Thus from Lemma 3.1, S has a casting representation. This leads
clearly to our assertion. �

Theorem 3.3. Let C be a closed convex subset of X. Let G : Ω×C → 2C be
a random set-valued mapping and let f, g : Ω×C ×C → E be mappings such
that for all (x, y) ∈ C × C

(i) g(t, x, y) 6∈ −intP ⇒ f(t, x, y) 6∈ −intP, ∀x ∈ G(t, x), y ∈ G(t, x);
(ii) g is randomly P -diagonally quasiconvex in y;

(iii) f is randomly P -transfer usc in x;
(iv) G is randomly continuous and convex;
(v) there is a nonempty compact subset B in C such that for each A ∈

F(C), there is a compact convex BA ⊂ C containing A such that for
every x ∈ BA \B, there exists y ∈ BA with

x ∈ int{t ∈ Ω, u ∈ X : g(t, u, y) ∈ −intP}, ∀ y ∈ G(t, x).

Then (1.1) has at least one solution in B.

Theorem 3.4. Let C be a closed convex subset of X and G : Ω×C → 2C be a
random set-valued mapping. Assume that two bifunctions f, g : Ω×C×C → E
satisfying

(S1) for each t ∈ Ω, x ∈ C, y ∈ G(t, x), f(·, ·, y) is Σ⊕B(C)-measurable;
(S2) g(t, x, y) 6∈ −intP ⇒ f(t, x, y) 6∈ −intP, ∀ t ∈ Ω, x ∈ G(t, x), y ∈

G(t, x);
(S3) g(t, ·, ·) is randomly P -diagonally quasiconvex in y;
(S4) for each t ∈ Ω, x ∈ C, x ∈ G(t, x), f(t, x, ·) is randomly P − lsc;
(S5) f(t, ·, ·) is randomly P -transfer usc in x;
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(S6) G is continuous and measurable;
(S7) there is a nonempty compact subset Bt in C such that for each A ∈

F(C), there is a compact convex set BA ⊂ C contain A such that for
every x ∈ BA \Bt, there exists y ∈ BA with

x ∈ int{u ∈ X, g(t, u, y) ∈ −intP}, ∀ t ∈ Ω, y ∈ G(t, x).

Then there exist a countable family of measurable functions {γi}i≥1 which are
solutions to (1.1) from Ω to C such that for each i ≥ 1 and each t ∈ Ω,

(i) γi(t) ∈ Bt,
(ii) {γi(t)}i≥1 is dense in S(t).

Proof. From Theorem 3.3, since S(t) is a nonempty subset of C for all t ∈ Ω,
the conclusion follows from Theorem 3.2. �

Theorem 3.5. Let C be a closed convex subset of X. Let G : Ω×C → 2C be
a random set-valued mapping and let f : Ω× C × C → E be a random vector
valued function such that

(T1) for each t ∈ Ω, x ∈ G(t, x), y ∈ G(t, x), f(·, x, y) is measurable and
continuous;

(T2) f(t, x, x) 6∈ −intP, ∀ t ∈ Ω, x ∈ C;
(T3) f(t, ·, ·) is randomly P -quasiconvex in y;
(T4) for each t ∈ Ω, y ∈ G(t, x), f(t, ·, y) is randomly continuous;
(T5) for each t ∈ Ω, x ∈ G(t, x), f(t, x, ·) is randomly P − lsc;
(T6) G is a continuous and convex valued mapping;
(T7) there is a compact subset Bt in C such that for each A ∈ F(C) there

is a compact convex set BA ⊂ C containing A such that for every
x ∈ BA\Bt, there exists y ∈ BA with

f(t, x, y) ∈ −intP, x ∈ G(t, x), y ∈ G(t, x).

Then (1.1) has a countable family of random solutions which is dense in the
set of deterministic solutions.

Proof. For each t ∈ Ω, set g = f . Since G is continuous and measurable,
f(·, ·, y) is also measurable and continuous in x, and so, it is (Σ,B(C))-
measurable (see, [16]). Next, assumptions (T2) and (T3), (T6), (T7) imply
that f is randomly P -diagonally quasiconvex in y. Therefore the conclusion
follows from Theorem 3.4. �

4. Applications

Next we will give some applications as follows:

First we will give a random generalized vector optimization problem.
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Theorem 4.1. Let C be a closed convex set and let G : Ω × C → 2C be a
random set-valued mapping. Assume that φ is a random continuous mapping
and randomly P -quasiconvex. Suppose that for each t ∈ Ω, there is a compact
subset Bt in C such that for each A ∈ F(C), there is a compact convex set
BA ⊂ C containing A such that for every x ∈ BA \Bt, there exists y ∈ BA

with

φ(t, x)− φ(t, y) ∈ intP, x ∈ G(t, x), y ∈ G(t, x).

Then (1.3) has a countable family of random solutions which is dense in the
set of deterministic weak vector optimum points.

Proof. Let for (t, x, y) ∈ Ω× C × C,

f(t, x, y) = φ(t, y)− φ(t, x), ∀x ∈ G(t, x), y ∈ G(t, x).

Then, we can get the result from Theorem 3.5. �

Corollary 4.2. Let C be a closed convex compact set and let G : Ω×C → 2C be
a random set-valued mapping. Let φ be a random continuous and randomly P -
quasiconvex mapping. Then (1.3) has a countable family of random solutions
which is dense in the set of deterministic weak vector optimum points.

Next, we will give a random generalized vector variational inequality prob-
lem.

Theorem 4.3. Let C be a closed convex compact subset of X and let G :
Ω×C → 2C be a random set-valued mapping. Suppose that the duality pairing
〈·, ·〉 is continuous on C × L(X,E). Assume that A : Ω × C → L(X,E) is a
random continuous mapping, for each t ∈ Ω there is a compact subset Bt in C
such that for each A ∈ F(C) there is a compact convex set BA ⊂ C containing
A such that for every x ∈ BA/Bt, there exists y ∈ BA with

〈A(t, x), y − x〉 ∈ −intP, x ∈ G(t, x), y ∈ G(t, x).

Then there is a countable family of measurable functions {γi}i≥1 from Ω to C
which satisfies (1.4).

Proof. For each t ∈ Ω, (t, x, y) ∈ Ω× C × C, let

f(t, x, y) = 〈A(t, x), y − x〉, ∀x ∈ G(t, x), y ∈ G(t, x).

Then conditions (T2)−(T7) are holds. It remains to check condition (T1). To
do this, for each t ∈ Ω and x, y ∈ C, let x ∈ G(t, x), y ∈ G(t, x) and K ∈ B(C).
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Then we have

f−1(K,x, y) = {t ∈ Ω, x ∈ G(t, x), y ∈ G(t, x) : f(t, x, y) ∈ K}
= {t ∈ Ω, x ∈ G(t, x), y ∈ G(t, x) : 〈A(t, x), y − x〉 ∈ K}

=

{
t ∈ Ω, x ∈ G(t, x), y ∈ G(t, x) : A(t, x) ∈

K∏
y−x

}

= A−1
( K∏
y−x

, x

)
∈ Σ.

Since
K∏
y−x

= {s ∈ L(X,E) : 〈s, y − x〉 ∈ K}, ∀x ∈ G(t, x), y ∈ G(t, x)

is clearly a Borel subset of L(X,E), we conclude that f(·, x, y) is measurable.
This completes the proof. �

Corollary 4.4. Suppose that C is a convex compact set and A is a randomly
continuous mapping. Then there is a countable family of measurable functions
satisfying (1.4).

Now, we will give a random generalized vector best approximations and
random fixed point problem:

Theorem 4.5. Suppose that gk, 1 ≤ k ≤ m are randomly continuous mappings
and for each t ∈ Ω there is a compact subset Bt in C such that for each
A ∈ F(C) there is a compact convex set BA ⊂ Ccontaining A such that for
every x ∈ BA \Bt, there exists y ∈ BA with

(‖y − gk(t, x)‖ − ‖x− gk(w, x)‖)1≤k≤m ∈ −intP, ∀x ∈ G(t, x), y ∈ G(t, x).

Then (1.5) has a countable family of solutions.

Proof. Define a random vector valued function f : Ω× C × C → Rm by

f(t, x, y) = (‖y − gk(t, x)‖ − ‖x− gk(w, x)‖)1≤k≤m
for (t, x, y) ∈ Ω × C × C, x ∈ G(t, x), y ∈ G(t, x). From the assumptions,
Theorem 3.5 is clearly fulfilled for E = Rm. This leads to the conclusions. �

Corollary 4.6. Let C be a closed convex compact set. Let G : Ω × C → 2C

be a random set-valued mapping and gk, 1 ≤ k ≤ m be randomly continuous
mappings. Then (1.5) has a countable family of solutions.
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Corollary 4.7. Let C be a closed convex compact set. Let G : Ω×C → 2C be
a random set-valued mapping and let g : Ω×C → X be a randomly continuous
mapping satisfying for each t ∈ Ω, there is a compact subset Bt in C such that
for each A ∈ F(C) there is a compact convex subset BA ⊂ C containing A
such that for every x ∈ BA\Bt, there exists y ∈ BA with

‖y − g(t, x)‖ < ‖x− g(t, x)‖, ∀x ∈ G(t, x), y ∈ G(t, x).

Then there is a countable family {γi}i≥1 of random solutions to (1.6).

Corollary 4.8. If C is a closed convex compact set and g : Ω × C → C is a
randomly continuous mapping, then g has a countable family of random fixed
points.
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