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Abstract. A new class of generalized nonlinear ordered variational inequalities and equa-

tions are studied, and by using the B-restricted-accretive method of mapping (A− ρf − w)

with constants α1, α2, an existence theorem and a perturbed algorithm for solving this kind

generalized nonlinear ordered variational inequality(equation) is established and further, the

stability and the convergence of iterative sequences generated by the algorithm is discussed

in ordered Banach space, respectively. The results in the instrument are obtained in this

field.

1. Introduction

Generalized nonlinear variational inequalities(ordered equation) have wide
applications to many fields including, for example, mathematics, optimization,
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control, nonlinear programming, and engineering sciences. In 1972, the num-
ber of solutions of nonlinear equations have been introduced and studied by
Amann [7], and in recent years, the nonlinear mapping fixed point theory
and application have been intensively studied in ordered Banach space(see [8],
[11], [12]). The variational inclusion, which was introduced and studied by
Hassouni and Moudafi [9], is a useful and important extension of the varia-
tional inequality. In recent years, monotonicity techniques were extended and
applied because of their importance in the theory of variational inequalities,
complementarity problems, and variational inclusions. From 2001 to 2006,
Ding and Luo [5], Huang and Fang [10], Fang, Huang and Thompson [6], Lan,
Cho and Verma [15] et al. introduced many concepts including, for example,
generalized m-accretive mappings, generalized monotone mappings, maximal
η-monotone mappings, (A, η)-accretive mappings, defined an associated re-
solvent operator and also studied some the algorithms for solving variational
inclusion problems(variational inequalities) by the resolvent operator associ-
ated with those mappings.

On the other hand, recently, the author [16] have introduced and studied the
approximation algorithm and the approximation solution for a class of gener-
alized nonlinear ordered variational inequality and ordered equation in ordered
Banach space. From 2006, Jin [13] studied the stability for strongly the nonlin-
ear quasi-variational inclusion involving H-accretive operators, and Li studied
some the stability problems of perturbed Ishikawa iterative algorithms for non-
linear mixed quasi-variational inclusions involving (A, η)-accretive mappings
[18], and nonlinear random multi-valued mixed variational inclusions involving
nonlinear random (A, η)-monotone mappings in Banach spaces by using the
resolvent operator technique [19]. For details, we refer the reader to [1-38] and
the references therein.

Inspired and motivated by recent research works in this field, a new class of
generalized nonlinear ordered variational inequalities and equations are stud-
ied in ordered Banach space. By using the B-restricted-accretive method of
mapping (A−ρf−w) with constants α1, α2, an existence theorem of solutions
for this kind generalized nonlinear ordered variational inequality(equation) is
established, a perturbed algorithm is suggested, the stability and the conver-
gence of iterative sequences generated by the algorithm is discussed in ordered
Banach space. In this field, the results are obtained in first.
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2. Generalized nonlinear ordered variational inequality
and preliminaries

Definition 2.1. Let X be a real Banach space with a norm ‖ · ‖, θ be a zero
element in X. A nonempty closed convex subset P of X is said to be a cone
if,

(i) for any x ∈ P and any λ > 0, λx ∈ P;
(ii) if x ∈ P and −x ∈ P, then x = θ.

Definition 2.2. Let P be a cone of X. Then P is said to be a normal cone
if there exists a constant N > 0 such that for θ ≤ x ≤ y, ‖x‖ ≤ N‖y‖, in this
case, N is called normal constant of P.

Lemma 2.3. ([16]) Let P be a cone in X. For arbitrary x, y ∈ X, x ≤ y if
and only if x−y ∈ P. Then the relation ≤ in X is a partial ordered relation in
X, where the Banach space X with an ordered relation ≤ defined by a normal
cone P is called a ordered Banach space.

Let < be a real set, X be a real ordered Banach space with a norm ‖ · ‖,
and θ be a zero in the X. Let P be a cone of X, and ≤ be a partial ordered
relation defined by the cone P. Let A, g, f : X → X be single-valued nonlinear
ordered compression mappings and range(g)

⋂
domA(·) 6= ∅. we consider the

following problem:

For any w ∈ x and any ρ ∈ <, find x ∈ X such that

A(g(x))− ρf(x) ≥ w. (2.1)

The problem (2.1) is called a new class of generalized nonlinear ordered
variational inequality(GNOV I) in X.

Remark 2.4. For a suitable choice of the mappings ρ, ω, we can obtain several
known results.

(i) If ρ = 0, and ω = θ, then problem (2.1) becomes the ordered varia-
tional inequality A(g(x)) ≥ θ, which was studied by Li [16].

(ii) If ρ = −1, and ω = θ, then problem (2.1) becomes the ordered varia-
tional inequality f(x) +A(g(x)) ≥ θ, which was studied by Li [17].

Let us recall some concepts and results.

Definition 2.5. ([35]) Let X be an ordered Banach space, P be a cone of
X and ≤ be a partial ordered relation defined by the cone P. If for x, y ∈
X, x ≤ y(or y ≤ x), then x and y is said to be comparison between each
other(denoted by x ∝ y for x ≤ y and y ≤ x).
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Lemma 2.6. ([35]) Let X be an ordered Banach space, P be a cone of X
and ≤ be a partial ordered relation defined by the cone P. Let for arbitrary
x, y ∈ X, lub{x, y} and glb{x, y} denote the least upper bound of the set {x, y}
and the greatest lower bound of the set {x, y} on the partial ordered relation ≤,
respectively, Suppose lub{x, y} and glb{x, y} exist, and we define the binary
operators as followings:

(i) x ∨ y = lub{x, y};
(ii) x ∧ y = glb{x, y};

(iii) x⊕ y = (x− y) ∨ (y − x).

∨,∧, and ⊕ is called OR,AND, and XOR operation, respectively. Then for
arbitrary x, y, w ∈ X, the following statements hold:

(1) if x ≤ y, then x ∨ y = y, x ∧ y = x;
(2) if x and y can be compared, then θ ≤ x⊕ y;
(3) (x+ w) ∨ (y + w) exists and (x+ w) ∨ (y + w) = (x ∨ y) + w;
(4) (x ∧ y) = (x+ y)− (x ∨ y);
(5) if λ ≥ 0, then λ(x ∨ y) = λx ∨ λy;
(6) if λ ≤ 0, then λ(x ∧ y) = λx ∨ λy;
(7) if x 6= y, then the converse holds for (5) and (6);
(8) if X is an ordered Banach space, and if for any x, y ∈ X, either x∨ y,

and x ∧ y exists, then X is a lattice;
(9) (x+ w) ∧ (y + w) exists and (x+ w) ∧ (y + w) = (x ∧ y) + w;

(10) (x ∧ y) = −(−x ∨ −y);
(11) (−x) ∧ (x) ≤ θ ≤ (−x) ∨ x.

Lemma 2.7. ([8]) If x ∝ y, then lub{x, y} and glb{x, y} exist, x− y ∝ y− x,
and θ ≤ (x− y) ∨ (y − x).

Lemma 2.8. ([30]) If for any natural number n, x ∝ yn, and yn → y∗(n →
∞), then x ∝ y∗.

Lemma 2.9. ([17]) Let X be an ordered Banach space, P be a cone of X and
≤ be a partial ordered relation defined by the cone P. If for x, y, z, w ∈ X,
they can be compared each other, then the following statements hold.

(1) x⊕ y = y ⊕ x;
(2) x⊕ x = θ;
(3) θ ≤ x⊕ θ;
(4) if λ is a real number, then (λx)⊕ (λy) = |λ|(x⊕ y);
(5) if x, y and w can be comparative each other, then (x⊕y) ≤ x⊕w+w⊕y;
(6) let (x+y)∨ (u+ v) exist, and if x ∝ u, v and y ∝ u, v, then (x+y)⊕

(u+ v) ≤ (x⊕ u+ y ⊕ v) ∧ (x⊕ v + y ⊕ u);
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(7) if x, y, z, w can be compared with each other, then (x ∧ y)⊕ (z ∧ w) ≤
((x⊕ z) ∨ (y ⊕ w)) ∧ ((x⊕ w) ∨ (y ⊕ z)).

Lemma 2.10. Let X be an ordered Banach space, P be a cone of X and≤
be a partial ordered relation defined by the cone P. If x ∈ P, then for real
numbers a, b, we have

(ax)⊕ (bx) = |a− b|x.

Proof. Let x ∈ P. Then θ ≤ x. For real numbers a, b, we have

ax⊕ bx = (ax− bx) ∨ (bx− ax)

= (a− b)x ∨ (b− a)x

= |a− b|x.

�

Definition 2.11. Let X be a real ordered Banach space, A,B : X → X be
two mappings.

(1) A is said to be comparison, if for each x, y ∈ X, x ∝ y, then A(x) ∝
A(y), x ∝ A(x), and y ∝ A(y).

(2) A and B is said to be comparison each other, if for each x ∈ X,
A(x) ∝ B(x) (denoted by A ∝ B).

Obviously, if A is comparison, then A ∝ I (where, I is the identity mapping
on X).

Definition 2.12. Let X be a real ordered Banach space and P be a normal
cone with normal constant N in X. A mapping A : X → X is said to be β-
order compression, if A is comparative, and there exists a constant 0 < β < 1
such that

(A(x)⊕A(y)) ≤ β(x⊕ y).

Definition 2.13. Let X be a real ordered Banach space. Then A : X → X is
said to be a restricted-accretive mapping, if A is comparative, and there exists
two constants 0 < α1, α2 ≤ 1 such that for arbitrary x, y ∈ X,

(A(x) + I(x))⊕ (A(y) + I(y)) ≤ α1(A(x)⊕A(y)) + α2(x⊕ y),

where I is the identity mapping on X.

Definition 2.14. Let X be a real ordered Banach space and B : X → X be
a mapping. Then A : X → X is said to be a B-restricted-accretive mapping,
if A, B and A ∧ B : x ∈ X → A(x) ∧ B(x) ∈ X all are comparative and they



470 H. G. Li, X. B. Pan, S. Y. Shen and M. M. Jin

are comparison each other, and there exists two constants 0 < α1, α2 ≤ 1 such
that for arbitrary x, y ∈ X,

(A(x) ∧B(x) + I(x))⊕ (A(y) ∧B(y) + I(y))

≤ α1((A(x) ∧B(x))⊕ (A(y) ∧B(y))) + α2(x⊕ y),

where I is the identity mapping on X.

Definition 2.15. Let S be a sel-fmap of X, x0 ∈ X, and let xn+1 = h(S, xn)
define an iteration procedure which yields a sequence of points {xn}∞n=0 in X.
Suppose that {x ∈ X : Sx = x} 6= ∅ and {xn}∞n=0 converges to a fixed point
x∗ of S. Let {un} ⊂ X and let εn = ‖un+1 − h(S, un)‖. If lim

n→∞
εn = 0 implies

that un → x∗, then the iteration procedure defined by xn+1 = h(S, xn) is said
to be S-stable or stable with respect to S.

Lemma 2.16. ([37]) Let {ξn}∞n=0 be a nonnegative real sequence and {ζn}∞n=0

be a real sequence in [0, 1] such that
∞∑
n=0

ζn = ∞. If there exists a positive

integer n1 such that
ξn+1 ≤ (1− ζn)ξn + ζnηn,

for all n ≥ n1, where ηn ≥ 0 for all n ≥ 0 and ηn → 0(n → ∞), then
lim
n→∞

ξn = 0.

3. Existence of solution for generalized nonlinear ordered
variational inequality

In this section, we will show the convergence of the approximation sequences
for finding solution of the problem (2.1), and discuss the relation of between
the first valued x0 and the solution of the problem (2.1).

Theorem 3.1. Let < be a real set, X be a real ordered Banach space, P be a
normal cone with the normal constant N in X, ≤ be a partial ordered relation
defined by the cone P, A, g, f : X → X be continuous, where A is β-ordered
compression, g is γ-ordered compression, and f is δ-ordered compression. If
(A − ρf + w) + I is a restricted-accretive mapping with constants α1, α2 for
w ∈ X and ρ ∈ <, and for any 1 > η > 0,

η|βγ − |ρ|δ| < 1− α2N

α1N
, (3.1)

then the equation
A(g(x))− ρf(x) = w(x ∈ X) (3.2)

has a unique solution u∗.
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Proof. This directly follows from the definition of the ∧, and the condition that
A, g,B,A∧B,A(g(x))−ρf(x)−ω : X → X are comparison, respectively, and
any two of them can compared each other. �

We can have the following theorem from Theorem 3.1 and Lemma 3.2.

Theorem 3.2. Let < be a real set, X be a real ordered Banach space, P be a
normal cone of X, ≤ be an order relation defined by the cone P, A, g, f, B,
A(g(x))−ρf(x)−ω, (A(g(x))−ρf(x)−ω)∧B : X → X be continuous, A, g, f,
B, A(g(x))−ρf(x)−ω, (A(g(x))−ρf(x)−ω)∧B : X → X all be comparative
and they are comparison each other, and A,B be βi-ordered compression(i =
1, 2), g be γ-ordered compression and f be δ-ordered compression, respectively.
If A(g(x))−ρf(x)−ω is a B-restricted-accretive mapping with constants α1, α2

for w ∈ X and ρ ∈ <, and for any 1 > η > 0,

η(|β1γ − |ρ|δ| ∨ β2) <
1− α2

Nα1
, (3.3)

then the generalized nonlinear ordered variational inequality (2.1) has a unique
solution u∗.

Proof. Define G : X → X as follows:

G(u) = η(A(g(u))− ρf(u)− w) ∧B(u) + I(u), (∀u ∈ X, ρ ∈ <). (3.4)

For u, v ∈ X and u ∝ v, by using the restricted-accretivity and the B-ordered
compression of A, Lemma 2.8(7), Lemma 2.9(6)(7) and the conditions, we
have

θ ≤ G(u)⊕G(v)

≤ (η(A(g(u))− ρf(u)− w) ∧B(u) + I(u))

⊕ (η(A(g(v))− ρf(v)− w) ∧B(v) + I(v))

≤ α1η[A(g(u))− ρf(u)− w] ∧B(u)

⊕ η[A(g(v))− ρf(v)− w] ∧B(v)) + α2(u⊕ v)

≤ α1(η[A(g(u))− ρf(u)− w] ∧B(u)

⊕ η[A(g(v))− ρf(v)− w] ∧B(v)) + α2(u⊕ v)

≤ α1η[((A(g(u))− ρf(u)− w)

⊕ (A(g(v))− ρf(v)− w)) ∨ (B(u)⊕B(v))] + α2(u⊕ v)

≤ α1η(|β1γ − |ρ|δ| ∨ β2)(u⊕ v) + α2(u⊕ v)

≤ (α1η(|β1γ − |ρ|δ| ∨ β2) + α2)(u⊕ v)

≤ (α1η|βγ − |ρ|δ| ∨ β2 + α2)N(u⊕ v).
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By (3.6) and Definition 2.2, we can obtain

‖G(u)⊕G(v)‖ ≤ h‖u− v‖, (3.5)

where h = (α1η|βγ − |ρ|δ| ∨ β2 + α2)N . It follows from (3.4) that 0 < h < 1,
thus G is a contractive mapping. So there exists a unique point u∗ ∈ X such
that

u∗ = η(A(g(u∗))− ρf(u∗)− w) ∧B(u∗) + u∗.

It follows that u∗ is a solution of equation (3.2) from Theorem 3.1 and Lemma
3.2, and hence, u∗ is a solution of the generalized nonlinear ordered variational
inequality (2.1). This completes the proof. �

4. Stability of the Ishikawa approximation algorithm

Based on Theorem 3.3, we can develop a new Ishikawa iterative sequence
for solving problem (2.1) as follows:

Algorithm 4.1. Let < be a real set, X be a real ordered Banach space, P be
a normal cone with normal constant N in X, ≤ be a partial ordered relation
defined by the cone P. Let {ωn}∞n=0 and {σn}∞n=0 be two sequences such that

ωn, σn ∈ [0, 1] and
∞∑
n=0

ωn =∞. Let {an}∞n=0 and {bn}∞n=0 be two sequences in

X introduced to take into account possible inexact computation. For any given
x0 ∈ X, the perturbed Ishikawa type iterative sequence {xn}∞n=0 is defined by

xn+1 = (1− ωn)xn + ωnan
+ωn[η(A(g(yn))− ρf(yn) + w) ∧B(yn) + I(yn)],

yn = (1− σn)xn + σnbn
+σn[η(A(g(yn))− ρf(yn) + w) ∧B(yn) + I(yn)].

(4.1)

Let {zn}∞n=0 be any sequence in X and define {εn}∞n=0 by
εn = ‖zn+1 − [(1− ωn)zn

+ωn(η(A(g(tn))− ρf(tn) + w) ∧B(tn) + I(tn)) + ωnan]‖,
tn = (1− σn)zn + ωnbn

+σn(η(A(g(zn))− ρf(zn) + w) ∧B(zn) + I(zn)),

(4.2)

where 1 > η > 0, ρ ∈ < and n = 0, 1, 2, · · · .

Remark 4.2. For a suitable choice of the mappings A, g, f,B, σn, ωn and
space X, then the Algorithm 4.1 can be degenerated to a known algorithms
which due to [16].
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Theorem 4.3. Let <, X,A, g, f, B be the same as in Theorem 3.3, {ωn}∞n=0

and {σn}∞n=0 be two sequences such that ωn, σn ∈ [0, 1] and
∞∑
n=0

ωn = ∞. Let

{an}∞n=0 and {bn}∞n=0 be two sequences in X introduced to take into account
possible inexact computation. If

η(|β1γ − |ρ|δ| ∨ β2) <
1− α2

2Nα1
, (4.3)

then we have the following statements.

(i) If lim
n→∞

‖an ∨ −an‖ = lim
n→∞

‖bn ∨ −bn‖ = 0, then the sequence {xn}
generated by (4.1) converges strongly to x∗ ∈ X, and x∗ is a unique
solution of problem (2.1).

(ii) Moreover, for 0 < ϕ ≤ ωn, lim
n→∞

zn = x∗ if and only if lim
n→∞

εn = 0,

where εn is defined by (4.2), that’s the sequence {xn} generated by (4.1)
is S-stable.

Proof. (i) Let <, X,A, g, f, B be the same as in Theorem 3.3. Let x∗ be a
unique solution of problem (2.1). Then we have

x∗ = (1− ωn)x∗ + ωn[η(A(g(x∗))− f(x∗)− w) ∧B(x∗) + x∗]

= (1− σn)x∗ + σn[η(A(g(x∗)− f(x∗)) ∧B(x∗) + x∗].
(4.4)

From (4.1), (4.4), (3.6), (3.7) and Lemma 2.9(6), it follows that

θ ≤ xn+1 ⊕ x∗

≤ (1− ωn)(xn ⊕ x∗) + ωn(G(yn)⊕G(x∗)) + ωn(an ⊕ θ).

Therefore,

xn+1 ⊕ x∗ ≤ (1− ωn)(xn ⊕ x∗) + hωn(yn ⊕ x∗) + ωn(an ⊕ θ), (4.5)

where

h = (α1η(|β1γ − |ρ|δ| ∨ β2) + α2). (4.6)

Similarly, we can prove that

θ ≤ yn ⊕ x∗

≤ (1− σn)(xn ⊕ x∗) + σn(G(xn)⊕G(x∗)).

Therefore,

yn ⊕ x∗ ≤ (1− σn)(xn ⊕ x∗) + σnh(xn ⊕ x∗) + σn(bn ⊕ θ). (4.7)
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If follows from (4.5), (4.6), (4.7) that

θ ≤ xn+1 ⊕ x∗

≤ (1− ωn)(xn ⊕ x∗) + ωn(G(yn)⊕G(x∗)) + ωn(an ⊕ θ)
≤ (1− ωn)(xn ⊕ x∗) + hωn((1− σn)(xn ⊕ x∗)

+ σnh(xn ⊕ x∗) + σn(bn ⊕ θ)) + ωn(an ⊕ θ)
≤ (1− ωn)(xn ⊕ x∗) + h((1− σn)(xn ⊕ x∗)

+ σnh(xn ⊕ x∗) + σn(bn ⊕ θ)) + ωn(an ⊕ θ).

Therefore,

xn+1 ⊕ x∗ ≤ (1− ωn(1− 2h))(xn ⊕ x∗)
+ ωn(hσn(bn ⊕ θ) + (an ⊕ θ)).

(4.8)

By the assumption (4.3), we have 0 < 1 − 2h < 1. It follows from (4.8),
Definition 2.2, and ‖an ⊕ θ‖ = ‖an ∨ −an‖ and ‖bn ⊕ θ‖ = ‖bn ∨ −bn‖ that

‖xn+1 − x∗‖ ≤ (1− ωn(1− 2h))N‖xn − x∗‖

+ ωn(1− 2h)N

(
h‖bn ∨ −bn‖+ ‖an ∨ −an‖

1− 2h

)
.

(4.9)

Letting

ξn = ‖xn − x∗‖,
ζn = ωn(1− 2h)N,

χn =
h‖bn ∨ −bn‖+ ‖an ∨ −an‖

1− 2h
,

(4.10)

then (4.10) can be written as

ξn+1 ≤ (1− ζn)ξn + ζnχn. (4.11)

It follows from Lemma 2.16 and lim
n→∞

‖an ∨−an‖ = lim
n→∞

‖bn ∨−bn‖ = 0 that

ξn → 0(n→∞), and so {xn} converges strongly to the unique solution x∗ of
problem (2.1).

Now we prove (ii). By (4.2), Lemma 2.8(5) and the proof of inequality (4.8),
we obtain
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θ ≤ zn+1 ⊕ x∗

≤ zn+1 ⊕ [(1−ωn)zn+ωn(η((A(g(tn))−ρf(tn))−w) ∧B(tn)+I(tn))+ωnan]

+ [(1−ωn)zn+ωn(η((A(g(tn))−ρf(tn))−w) ∧B(tn)+I(tn))+ωnan]⊕ x∗

≤ (zn+1 ⊕ ((1− ωn)zn + ωnG(tn) + ωnan))

+ ((1− ωn)zn + ωnG(tn) + ωnan)⊕ ((1− ωn)x∗ + ωnG(x∗))

≤ (zn+1 ⊕ ((1− ωn)zn + ωnG(tn) + ωnan))

+ (1− ωn)(zn ⊕ x∗) + ωnG(tn)⊕G(x∗) + ωn(an ⊕ θ)
≤ (zn+1 ⊕ ((1− ωn)zn + ωnG(tn) + ωnan))

+ (1− ωn)(zn ⊕ x∗) + ωnG(tn)⊕G(x∗) + ωn(an ⊕ θ)
≤ (zn+1 ⊕ ((1− ωn)zn + ωnG(tn) + ωnan))

+ (1− ωn)(zn ⊕ x∗) + ωnh(tn ⊕ x∗) + ωn(an ⊕ θ)
≤ (zn+1 ⊕ ((1− ωn)zn + ωnG(tn) + ωnan))

+ (1− ωn(1− 2h))(zn ⊕ x∗) + ωn(hσn(bn ⊕ θ) + (an ⊕ θ)).
(4.12)

As the proof of inequality (4.9), and an⊕ θ = an ∨−an and bn⊕ θ = bn ∨−bn,
we have

‖zn+1 − x∗‖ ≤ N‖zn+1 − [(1− ωn)zn + ωnG(tn) + ωnan‖
+N(1− ωn(1− 2h))‖zn − x∗‖
+Nωn(hσn‖bn ∨ −bn‖+ ‖an ∨ −an‖).

Therefore,

‖zn+1 − x∗‖ ≤ Nεn +N(1− ωn(1− 2h))‖zn − x∗‖
+Nωn(h‖bn ∨ −bn‖+ ‖an ∨ −an‖).

(4.13)

Since 0 < ϕ ≤ ωn, by (4.13) and Definition 2.2, we have

‖zn+1 − x∗‖
≤ [1− ωn(1− 2h)]N‖zn − x∗‖

+ (1− 2h)ωnN

(
h‖bn ∨ −bn‖+ ‖an ∨ −an‖

1− 2h
+

εn
ϕ(1− 2h)

)
.

(4.14)

Suppose that lim
n→∞

εn = 0, we have lim
n→∞

zn = x∗ for
∞∑
n=0

ωn =∞, Lemma 2.16

and lim
n→∞

‖an ∨ −an‖ = lim
n→∞

‖bn ∨ −bn‖ = 0.

Conversely, if lim
n→∞

zn = x∗, then by (4.4) and

lim
n→∞

‖an ∨ −an‖ = lim
n→∞

‖bn ∨ −bn‖ = 0,
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we get

θ ≤ zn+1⊕[(1−ωn)zn+ωn(η(A(g(tn))−ρf(tn)−w)∧B(tn)+I(tn))+ωnan]

≤ (zn+1 ⊕ x∗)
+ [(1−ωn)zn+ωn(η(A(g(tn))−ρf(tn)−w) ∧B(tn)+I(tn))+ωnan]⊕ x∗

≤ (zn+1 ⊕ x∗) + [(1− ωn)(zn ⊕ x∗) + ωn(G(tn)⊕G(x∗)) + ωnan]

≤ (zn+1 ⊕ x∗) + (1− ωn(1− 2h))(zn ⊕ x∗) + ωn(hσn(bn ⊕ θ) + (an ⊕ θ)).

It follows that the following result from (4.2) and Definition 2.2

‖εn‖
≤ ‖zn+1 − [(1−ωn)zn+ωn(η(A(g(tn))−ρf(tn)−w) ∧B(tn)+I(tn))+ωnan]‖
≤ N‖zn+1 ⊕ x∗‖+N(1− ωn(1− 2h))‖zn − x∗‖

+ ωn(h‖bn ⊕ θ‖+ ‖an ⊕ θ‖)
≤ N‖zn+1 ⊕ x∗‖+N(1− ωn(1− 2h))‖zn − x∗‖

+ ωn(h‖bn ∨ −bn‖+ ‖an ∨ −an‖).
Hence, we have

lim
n→∞

‖εn‖ = 0. (4.15)

The sequence {xn} generated by (4.1) is S-stable. This completes the proof.
�

Remark 4.4. For a suitable choice of the mappings A, g, f,B, we can obtain
the well-known results [16] as special cases of Theorem 3.1–3.3.
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