Nonlinear Functional Analysis and Applications Vol. 20, No. 3 (2015), pp. 479-489

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2015 Kyungnam University Press

GROWTH OF A POLYNOMIAL NOT VANISHING INSIDE A DISK

N. A. Rather 1 , Suhail Gulzar 2 and K. A. Thakur 3

¹P. G. Department of Mathematics University of Kashmir, Hazratbal, Srinagar, India e-mail: dr.narather@gmail.com

²Department of Computer Science and Enginering Islamic University of Science and Technology Awantipora, Kashmir, India e-mail: sgmattoo@gmail.com

> ³Department of Mathematics S. P. College, Srinagar, India e-mail: thakurkhursheed@gmail.com

Abstract. Recently, Aziz and Aliya [2] proved that if polynomial $P(z)$ of degree n does not vanish in the disk $|z| < k$ where $k > 0$, then for every $\beta \in \mathbb{C}$ and $0 \le r \le R \le k$,

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)| \le \left[(|\beta| + |1 - \beta|) \left(\frac{R^{\mu} + k^{\mu}}{r^{\mu} + k^{\mu}} \right)^{\frac{n}{\mu}} - |\beta| \right] \max_{|z|=r} |P(z)| - \left[\left(\frac{R^{\mu} + k^{\mu}}{r^{\mu} + k^{\mu}} \right)^{\frac{n}{\mu}} - 1 \right] \min_{|z|=k} |P(z)|.
$$

In this paper, a refinement of above inequality and other related results are obtained.

1. INTRODUCTION

Let $P(z)$ be a polynomial of degree n and $P'(z)$ be its derivative. Then concerning the estimate of the maximum of $|P'(z)|$ on the unit circle $|z|=1$, Serge Bernstien [4] proved that

$$
\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|.
$$
\n(1.1)

The result is best possible and equality (1.1) holds for $P(z) = \rho z^n, \rho \neq 0$.

 0 Received January 26, 2015. Revised May 21, 2015.

⁰ 2010 Mathematics Subject Classification: 30A10, 30C10, 30E10.

 0 Keywords: Growth, polynomials, inequalities, complex domain.

Where as, for the estimate of $|P(z)|$ on a smaller circle $|z| = r$, where $0 <$ $r \leq 1$, of a polynomial $P(z)$ in terms of its degree n and the maximum modulus on the unit circle, we have the following inequality due to Zarantonello and Varga [12].

$$
\max_{|z|=r} |P(z)| \ge r^n \max_{|z|=1} |P(z)|.
$$
\n(1.2)

The result is sharp and the extremal polynomial for (1.2) is $P(z) = \rho z^n, \rho \neq 0$.

If we restrict ourselves to the class of polynomials having no zero in $|z| < 1$, then both the inequalities (1.1) and (1.2) can be sharpened and can be replaced by

$$
\max_{|z|=1} |P'(z)| \le \frac{n}{2} \max_{|z|=1} |P(z)| \tag{1.3}
$$

and

$$
\max_{|z|=r} |P(z)| \ge \left(\frac{r+1}{2}\right)^n \max_{|z|=1} |P(z)|\,,\tag{1.4}
$$

respectively. Inequality (1.3) was conjectured by Erdös and later verified by Lax $[6]$. Where as, inequality (1.3) is due to Rivilin $[11]$.

As an extension of (1.3) , Malik [7] proved that if $P(z)$ is a polynomial of degree *n* such that $P(z) \neq 0$ in $|z| < k$ where $k \geq 1$, then

$$
\max_{|z|=1} |P'(z)| \le \frac{n}{1+k} \max_{|z|=1} |P(z)|. \tag{1.5}
$$

As a generalization of (1.5), Qazi [8] proved if $P(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu}z^{\nu}$, $1 \leq$ $\mu \leq n$, is a polynomial of degree n which does not vanish in the disk $|z| < k$, $k \geq 1$ then

$$
\max_{|z|=1} |P'(z)| \le \frac{n}{1 + k^n \phi(\mu, k)} \max_{|z|=1} |P(z)|,
$$
\n(1.6)

where

$$
\phi(\mu, k) = \frac{k + \frac{\mu}{n} \left| \frac{a_{\mu}}{a_0} \right| k^{\mu}}{1 + \frac{\mu}{n} \left| \frac{a_{\mu}}{a_0} \right| k^{\mu+1}} \tag{1.7}
$$

and

$$
\frac{\mu}{n} \left| \frac{a_{\mu}}{a_0} \right| k^n \le 1, \quad 1 \le \mu \le n. \tag{1.8}
$$

By using inequality (1.6), Qazi [8] also proved that if $P(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$, $1 \leq \mu \leq n$, is a polynomial of degree *n* which does not vanish in the disk $|z|$ < 1, then for $0 \le r \le 1$

$$
\max_{|z|=R\geq 1} |P(z)| \leq n \left(\frac{1+R^{\mu}}{1+r^{\mu}}\right)^{n/\mu} \max_{|z|=r} |P(z)|.
$$
 (1.9)

In litrature, there exists several extensions of these inequalities (e.g, see $[1, 9]$, 10]).

Recently Aziz and Aliya [2] considered for a fixed μ , the class of polynomials

$$
\mathcal{P}_{n,\mu} := \left\{ P(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}, \quad 1 \le \mu \le n \right\}
$$

of degree at most n not vanishing in the disk $|z| < k$ where $k > 0$ and proved the following Theorem which provides an improvement as well as a generalization of the inequality (1.9).

Theorem 1.1. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| < k$ where $k > 0$, then for every $\beta \in \mathbb{C}$ and $0 \le r \le R \le k$,

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)| \le \left[(|\beta| + |1 - \beta|) \left(\frac{R^{\mu} + k^{\mu}}{r^{\mu} + k^{\mu}} \right)^{\frac{n}{\mu}} - |\beta| \right] \max_{|z|=r} |P(z)| - \left[\left(\frac{R^{\mu} + k^{\mu}}{r^{\mu} + k^{\mu}} \right)^{\frac{n}{\mu}} - 1 \right] \min_{|z|=k} |P(z)|. \tag{1.10}
$$

If we take $\beta = 0$ in (1.10), we obtain

$$
\max_{|z|=R}\bigl|P(z)\bigr|\leq \left[\frac{R^\mu+k^\mu}{r^\mu+k^\mu}\right]^{\frac{n}{\mu}}\!\!\max_{|z|=r}\!\!|P(z)|-\left[\left(\frac{R^\mu+k^\mu}{r^\mu+k^\mu}\right)^{\frac{n}{\mu}}-1\right]\!\min_{|z|=k}\!\!|P(z)|.
$$

Which clearly is an improvement as well as generalization of (1.9).

They [2] also obtained the following result which not only extends and refines a result proved by Dewan and Bidkham [5] but, in particular, also includes a result due to Aziz and Shah [3] as a special case.

Theorem 1.2. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| < k$ where $k > 0$, then for $\rho \geq 1$ and $0 \leq r \leq R \leq k$

$$
\max_{|z|=R} |P(\rho z) - P(z)| \le \frac{R^{\mu}(\rho^{n} - 1)}{r^{\mu} + k^{\mu}} \left[\frac{R^{\mu} + k^{\mu}}{r^{\mu} + k^{\mu}} \right]^{\frac{n}{\mu}} \left\{ \max_{|z|=r} |P(z)| - m \right\}, \quad (1.11)
$$

where $m = \min_{|z|=k} |P(z)|$.

2. Lemmas

For the proofs of our main theorems we need the following lemmas.

Lemma 2.1. If $P(z)$ is a polynomial of degree n which does not vanish in $|z| < k, k > 0$, then

$$
|P(z)| \ge \min_{|z|=k} |P(z)| \quad for \quad |z| \le k. \tag{2.1}
$$

This Lemma is a simple consequence of Minimum modulus theorem and next lemma is implicit in [2].

Lemma 2.2. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in $|z| < k, k \ge 1$ and $0 \leq t \leq 1$, then

$$
\frac{|a_{\mu}|k^{\mu}}{|a_0| - tm} \le \frac{n}{\mu},\tag{2.2}
$$

where $m = \min_{|z|=k} |P(z)|$.

Lemma 2.3. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| \leq k$ where $k \geq 1$, then for $0 \leq t \leq 1$ and $|z| = 1$,

$$
|P'(z)| \le \frac{n}{1 + k^{\mu+1} \left\{ \frac{1 + \frac{\mu}{n} \frac{|a_{\mu}| k^{\mu-1}}{|a_0| - t m}}{1 + \frac{\mu}{n} \frac{|a_{\mu}| k^{\mu+1}}{|a_0| - t m}} \right\}} \left\{ \max_{|z| = 1} |P(z)| - t \min_{|z| = k} |P(z)| \right\}, \tag{2.3}
$$

where $m = \min_{|z|=k} |P(z)|$.

The above Lemma is due to Aziz and Aliya [2].

Lemma 2.4. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| \leq k$ where $k > 0$, then for $0 < r \le R \le k$ and $0 \le t \le 1$,

$$
\exp\left\{n\int_{r}^{R} \frac{\frac{\mu}{n}\frac{|a_{\mu}|}{|a_{0}| - tm}k^{\mu+1} + \rho^{\mu}}{\rho^{\mu+1} + k^{\mu+1} + \frac{\mu}{n}\frac{|a_{\mu}|}{|a_{0}| - tm}\left(k^{\mu+1}\rho^{\mu} + k^{2\mu}\rho\right)} d\rho\right\} \leq \left(\frac{k^{\mu} + R^{\mu}}{k^{\mu} + r^{\mu}}\right)^{\frac{n}{\mu}},\tag{2.4}
$$

where $m = \min_{|z|=k} |P(z)|$.

Proof. Since $P(z) \neq 0$ in $|z| < k, k > 0$, the polynomial $F(z) = P(\rho z) \neq 0$ in $|z| < k/\rho$, $k/\rho \ge 1$, where $0 < \rho \le k$. Hence applying Lemma 2.2 to $F(z)$, we get

$$
\frac{|a_{\mu}|\rho^{\mu}}{|a_{0}|-tm'}\left(\frac{k}{\rho}\right)^{\mu}\leq\frac{n}{\mu},\qquad(2.5)
$$

where $m' = \min_{|z|=k/\rho} |F(z)| = \min_{|z|=k/\rho} |P(\rho z)| = m$. Therefore, (2.5) becomes

$$
\frac{\mu}{n} \frac{|a_{\mu}| \rho^{\mu}}{|a_0| - tm} k^{\mu} \le 1,
$$

which is equivalent to

$$
\frac{\frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^{\mu+1} \rho^{\mu-1} + \rho^{\mu}}{\rho^{\mu+1} + k^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} \left(k^{\mu+1} \rho^{\mu} + k^{2\mu} \rho \right)} \leq \frac{\rho^{\mu-1}}{\rho^{\mu} + k^{\mu}}.
$$
\n(2.6)

Integrating both sides of (2.6) with respect to ρ from r to R where $0 < r \leq$ $R \leq k$, we get

$$
\int_{r}^{R} \frac{\frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} \rho^{\mu-1} + \rho^{\mu}}{\rho^{\mu+1} + k^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} (k^{\mu+1} \rho^{\mu} + k^{2\mu} \rho)} d\rho \leq \int_{r}^{R} \frac{\rho^{\mu-1}}{\rho^{\mu} + k^{\mu}} d\rho
$$

or

$$
n\int_{r}^{R} \frac{\frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} \rho^{\mu-1} + \rho^{\mu}}{\rho^{\mu+1} + k^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} (k^{\mu+1} \rho^{\mu} + k^{2\mu} \rho)} d\rho \leq n \int_{r}^{R} \frac{\rho^{\mu-1}}{\rho^{\mu} + k^{\mu}} d\rho,
$$

which implies

$$
\exp\left\{n\int_{r}^{R} \frac{\frac{\mu}{n}\frac{|a_{\mu}|}{|a_{0}| - tm}k^{\mu+1}\rho^{\mu-1} + \rho^{\mu}}{\rho^{\mu+1} + k^{\mu+1} + \frac{\mu}{n}\frac{|a_{\mu}|}{|a_{0}| - tm}\left(k^{\mu+1}\rho^{\mu} + k^{2\mu}\rho\right)} d\rho\right\}
$$

$$
\leq \exp\left\{\frac{n}{\mu}\int_{r}^{R} \frac{\mu\rho^{\mu-1}}{\rho^{\mu} + k^{\mu}} d\rho\right\} = \left(\frac{k^{\mu} + R^{\mu}}{k^{\mu} + r^{\mu}}\right)^{\frac{n}{\mu}}.
$$

This completes the proof of the Lemma 2.4. \Box

The next lemma is also implicit in [2, Theorem 1].

Lemma 2.5. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| < k$ where $k \geq 1$, then for every $R > r \geq 1$, $0 \leq t \leq 1$ and $|z| = 1$,

$$
|P(Rz) - P(rz)| \le \left(\frac{R^n - 1}{1 + k^{\mu}}\right) \left(\max_{|z| = 1} |P(z)| - t \min_{|z| = k} |P(z)|\right). \tag{2.7}
$$

3. Main results

In this paper, we first establish an improvement of Theorem 1.1 by involving some of the coefficients of a polynomial. More precisely, we prove:

Theorem 3.1. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| < k$ where $k > 0$, then for every $\beta \in \mathbb{C}$, $0 \le r \le R \le k$ and $0 \le t \le 1$,

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)| \le \left[\left(|\beta| + |1 - \beta| \right) \Lambda(R, r, k, \mu) - |\beta| \right] \max_{|z|=r} |P(z)| - \left[\Lambda(R, r, k, \mu) - 1 \right] t m,
$$
\n(3.1)

where

$$
\Lambda(R, r, k, \mu) = \exp\left\{n \int_{r}^{R} \frac{\rho^{\mu} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} \rho^{\mu-1}}{k^{\mu+1} + \rho^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} (k^{2\mu} \rho + k^{\mu+1} \rho^{\mu})} d\rho\right\}
$$
(3.2)
and $m = \min |P(z)|$.

and $m = \min_{|z|=k} |P(z)|$.

Proof. Since $P(z)$ has no zero in $|z| < k, k > 0$, then for $0 < \rho \le k, F(z) =$ $P(\rho z)$ has no zero in $|z| < k/\rho, k \ge \rho$. thus by applying Lemma 2.3 to $F(z)$, we obtain for $0 \le t \le 1$,

$$
\max_{|z|=1} |F'(z)| \leq \frac{n}{1 + \left(\frac{k}{\rho}\right)^{\mu+1} \left\{\frac{1 + \frac{\mu}{n} \frac{|a_{\mu}| \rho^{\mu}}{|a_0| - tm} \left(\frac{k}{\rho}\right)^{\mu-1}}{1 + \frac{\mu}{n} \frac{|a_{\mu}| \rho^{\mu}}{|a_0| - tm} \left(\frac{k}{\rho}\right)^{\mu+1}}\right\}} \left\{\max_{|z|=1} |F(z)| - t \min_{|z|=k/\rho} |F(z)|\right\}.
$$

This implies

$$
\max_{|z|=1} |\rho P'(\rho z)| \le n \frac{\max_{|z|=1} |P(\rho z)| - t \min_{|z|=k/\rho} |P(\rho z)|}{1 + \left(\frac{k}{\rho}\right)^{\mu+1} \left\{\frac{1 + \frac{\mu}{n} \frac{|a_{\mu}| \rho^{\mu}}{|a_0| - tm\left(\frac{k}{\rho}\right)^{\mu-1}}}{1 + \frac{\mu}{n} \frac{|a_{\mu}| \rho^{\mu}}{|a_0| - tm\left(\frac{k}{\rho}\right)^{\mu+1}}}\right\}},
$$

which is clearly equivalent to

$$
\max_{|z|=\rho} |P'(z)| \le n \left\{ \frac{\rho^{\mu} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^{\mu+1} \rho^{\mu-1}}{k^{\mu+1} + \rho^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^2 \rho + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^{\mu+1} \rho^{\mu}} \right\}
$$

$$
\times \left\{ \max_{|z|=\rho} |P(z)| - t \min_{|z|=k} |P(z)| \right\}. \tag{3.3}
$$

Now, for $0 < r \le R \le k$ and $0 \le \theta < 2\pi$, we have

$$
P\left(Re^{i\theta}\right) - P\left(re^{i\theta}\right) = \int\limits_{r}^{R} e^{i\theta} P'\left(\rho e^{i\theta}\right) d\rho,
$$

which gives

$$
P\left(Re^{i\theta}\right) - \beta P\left(re^{i\theta}\right) = (1 - \beta)P\left(re^{i\theta}\right)\int\limits_{r}^{R} e^{i\theta}P'\left(\rho e^{i\theta}\right)d\rho,
$$

where $\beta\in\mathbb{C}.$ Hence for every $0\leq\theta<2\pi$ and $0\leq r\leq R\leq k,$

$$
\left| P\left(Re^{i\theta} \right) - \beta P\left(re^{i\theta} \right) \right| \leq \left| 1 - \beta \right| \left| P\left(re^{i\theta} \right) \right| + \int\limits_{r}^{R} \left| P'\left(\rho e^{i\theta} \right) \right| d\rho,
$$

from which it follows that

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)| \le |1 - \beta| \max_{|z|=1} |P(rz)| + \int_{r}^{R} \max_{|z|=1} |P'(\rho z)| d\rho. \tag{3.4}
$$

Using (3.3) in (3.4) , we get

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)|
$$
\n
$$
\leq |1 - \beta| \max_{|z|=1} |P(rz)|
$$
\n
$$
+ n \int_{r}^{R} \frac{\rho^{\mu} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} \rho^{\mu-1}}{\frac{|\mu + 1|}{n} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{2\mu} \rho + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} \rho^{\mu}}
$$
\n
$$
\times \left\{ \max_{|z| = \rho} |P(z)| - t \min_{|z| = k} |P(z)| \right\} d\rho.
$$
\n(3.5)

Now,

$$
\max_{|z|=\rho} |P(z)| = \max_{|z|=1} |P(\rho z) - \beta P(rz) + \beta P(rz)|
$$

\n
$$
\leq \max_{|z|=1} |P(\rho z) - \beta P(rz)| + |\beta| \max_{|z|=1} |P(rz)|. \tag{3.6}
$$

Also, the inequality (3.5) gives with the help of (3.6) that

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)|
$$
\n
$$
\leq |1 - \beta| \max_{|z|=1} |P(rz)|
$$
\n
$$
+ n \int_{r}^{R} \frac{\rho^{\mu} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} \rho^{\mu-1}}{k^{\mu+1} + \rho^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{2\mu} \rho + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} \rho^{\mu}}
$$
\n
$$
\times \left\{ \max_{|z|=1} |P(\rho z) - \beta P(rz)| + |\beta| \max_{|z|=1} |P(rz)| - t \min_{|z|=k} |P(z)| \right\} d\rho. \quad (3.7)
$$

If we denote right hand side of (3.7) by $\phi(R)$, then we have

$$
\phi'(R) = n \left(\frac{R^{\mu} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} R^{\mu-1}}{k^{\mu+1} + R^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{2\mu} R + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} R^{\mu}} \right) \times \left\{ \max_{|z| = 1} |P(Rz) - \beta P(rz)| + |\beta| \max_{|z| = 1} |P(rz)| - t \min_{|z| = k} |P(z)| \right\}.
$$
 (3.8)

Also, (3.7) can be written as

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)| \le \phi(R). \tag{3.9}
$$

With the help of (3.9), the inequality (3.8) implies for $0 < r \le R \le k$ that

$$
\phi'(R) - n \left(\frac{R^{\mu} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^{\mu+1} R^{\mu-1}}{k^{\mu+1} + R^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^{2\mu} R + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^{\mu+1} R^{\mu}} \right) \times \left\{ \phi(R) + |\beta| \max_{|z| = 1} |P(rz)| - t \min_{|z| = k} |P(z)| \right\} \le 0.
$$
 (3.10)

Multiplying the two sides of (3.10) by

$$
\exp\Bigg\{-n\int \frac{\frac{\mu}{n}\frac{|a_{\mu}|}{|a_{0}| -tm}k^{\mu+1}R^{\mu-1} +R^{\mu}}{R^{\mu+1} + k^{\mu+1} + \frac{\mu}{n}\frac{|a_{\mu}|}{|a_{0}| -tm} (k^{\mu+1}R^{\mu} + k^{2\mu}R)}dR\Bigg\},\,
$$

we get

$$
\frac{d}{dR} \left[\left\{ \phi(R) + |\beta| \max_{|z|=1} |P(rz)| - t \min_{|z|=k} |P(z)| \right\} \times \exp \left\{ -n \int \frac{\frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^{\mu+1} R^{\mu-1} + R^{\mu}}{R^{|\mu+1} + R^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} (k^{\mu+1} R^{\mu} + k^{2\mu} R)} dR \right\} \right] \leq 0,
$$
\n(3.11)

for $0 < r \leq R \leq k.$ Inequality (3.11) implies that the function

$$
\psi(R) = \left\{ \phi(R) + |\beta| \max_{|z|=1} |P(rz)| - t \min_{|z|=k} |P(z)| \right\}
$$

$$
\times \exp \left\{ -n \int \frac{\frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} k^{\mu+1} R^{\mu-1} + R^{\mu}}{R^{\mu+1} + k^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_0| - tm} (k^{\mu+1} R^{\mu} + k^{2\mu} R)} dR \right\}
$$

is a non-increasing function of R in $(0,k].$ Hence for $0 < r \leq R \leq k,$ we have $\psi(R) \leq \psi(r)$,

that is,

$$
\left\{\phi(R) + |\beta|\max_{|z|=1} |P(rz)| - t \min_{|z|=k} |P(z)|\right\}
$$
\n
$$
\times \exp\left\{-n \int \frac{\frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} R^{\mu-1} + R^{\mu}}{R^{\mu+1} + k^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} (k^{\mu+1} R^{\mu} + k^{2\mu} R)} dR\right\}
$$
\n
$$
\leq \left\{\phi(r) + |\beta|\max_{|z|=1} |P(rz)| - t \min_{|z|=k} |P(z)|\right\}
$$
\n
$$
\times \exp\left\{-n \int \frac{\frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} r^{\mu-1} + r^{\mu}}{r^{\mu+1} + k^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} (k^{\mu+1} r^{\mu} + k^{2\mu} r)} dr\right\}.
$$
\n(3.12)

Since $\phi(R) \ge \max_{|z|=1} |P(Rz) - \beta P(rz)|$ and $\phi(r) = |1-\beta| \max_{|z|=1} |P(rz)|$, therefore, we have

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)| \le \left[\left(|\beta| + |1 - \beta| \right) \Lambda(R, r, k, \mu) - |\beta| \right] \max_{|z|=r} |P(z)| - \left[\Lambda(R, r, k, \mu) - 1 \right] tm, \tag{3.13}
$$

where

$$
\Lambda(R,r,k,\mu) = \exp\left\{n\int_{r}^{R} \frac{\rho^{\mu} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} k^{\mu+1} \rho^{\mu-1}}{k^{\mu+1} + \rho^{\mu+1} + \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - tm} (k^{2\mu} \rho + k^{\mu+1} \rho^{\mu})} d\rho\right\}.
$$

This completes the proof of Theorem 3.1.

It is easy to verify that Theorem 3.1 provides a refinement of Theorem 1.1. To see this, we note that for every $r \leq k$, by Lemma 2.1, $\max_{|z|=r} |P(z)| \geq$ $\min_{|z|=k} |P(z)|$ and $|\beta| + |1-\beta| \geq 1$, hence the function

$$
S(x) = [(|\beta| + |1 - \beta|) x - |\beta|] \max_{|z| = r} |P(z)| - [x - 1] \, tm
$$

is a non-decreasing function of x for every $\beta \in \mathbb{C}$ and $0 \leq t \leq 1$. If we combine this fact with Lemma 2.4, it is easy to conclude that Theorem 3.1 is an improvement of Theorem 1.1.

If we take $\beta = 1$ in (3.1), we obtain the following result.

Corollary 3.2. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| < k$ where $k > 0$, then for $0 \le r \le R \le k$ and $0 \le t \le 1$,

$$
\max_{|z|=1} |P(Rz) - P(rz)| \le (\Lambda(R, r, k, \mu) - 1) \left\{ \max_{|z|=r} |P(z)| - tm \right\},\qquad(3.14)
$$

where $\Lambda(R, r, k, \mu)$ is given by (3.2) and $m = \min_{|z|=k} |P(z)|$.

By using triangle inequality, the following result follows immediately from Corollary 3.2.

Corollary 3.3. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| < k$ where $k > 0$, then for $0 \le r \le R \le k$ and $0 \le t \le 1$,

$$
\max_{|z|=1} |P(Rz)| \le \Lambda(R, r, k, \mu) \max_{|z|=r} |P(z)| - (\Lambda(R, r, k, \mu) - 1) \, \text{tm}, \tag{3.15}
$$

where $\Lambda(R, r, k, \mu)$ is given by (3.2) and $m = \min_{|z|=k} |P(z)|$.

Next, as an improvement of Theorem 1.2, we present the following theorem.

Theorem 3.4. If $P \in \mathcal{P}_{n,\mu}$ and $P(z)$ does not vanish in the disk $|z| < k$ where $k > 0$, then for $\rho > 1$, $0 \le r \le R \le k$ and $0 \le t \le 1$,

$$
\max_{|z|=R} |P(\rho z) - P(z)| \le \frac{R^{\mu}(\rho^{n} - 1)}{r^{\mu} + k^{\mu}} \Lambda(R, r, k, \mu) \left\{ \max_{|z|=r} |P(z)| - tm \right\}, \quad (3.16)
$$

where $\Lambda(R, r, k, \mu)$ is given by (3.2) and $m = \min_{|z|=k} |P(z)|$.

Proof. By hypothesis $P \in \mathcal{P}_{n,\mu}$ and $P(z) \neq 0$ for $|z| < k$, where $k > 0$, therefore the polynomial $F(z) = P(Rz)$ does not vanish in $|z| < \frac{k}{R}$ $\frac{k}{R}$, $R > 0$ and $F \in \mathcal{P}_{n,\mu}$. Hence for $0 < R \leq k$ and $0 \leq t \leq 1$, it follows by using Lemma 2.5 (with k replaced by $\frac{k}{R} \ge 1$) that for every $\rho \ge 1$,

$$
\max_{|z|=1} |F(\rho z) - F(z)| \le \frac{(\rho^n - 1)}{1 + \left(\frac{k}{R}\right)^{\mu}} \left\{ \max_{|z|=1} |F(z)| - t \min_{|z| = \frac{k}{R}} |F(z)| \right\}.
$$
 (3.17)

Replacing $F(z)$ by $P(Rz)$ and noting that

$$
\max_{|z|=1} |F(z)| = \max_{|z|=1} |P(Rz)| = \max_{|z|=R} |P(z)|
$$

and

$$
\min_{|z|=\frac{k}{R}} |F(z)| = \min_{|z|=\frac{k}{R}} |P(Rz)| = \min_{|z|=k} |P(z)|,
$$

from (3.17) it follows that

$$
\max_{|z|=1} |P(R\rho z) - P(Rz)| \le \frac{R^{\mu}(\rho^{n} - 1)}{R^{\mu} + k^{\mu}} \left\{ \max_{|z|=R} |P(z)| - t \min_{|z|=k} |P(z)| \right\}, \quad (3.18)
$$

for $\rho \geq 1$ and $0 < R \leq k$. Now if $0 \leq r \leq R \leq k$, then by inequality (3.15), we have

$$
\max_{|z|=1} |P(Rz)| \le \Lambda(R, r, k, \mu) \left\{ \max_{|z|=r} |P(z)| - tm \right\} + tm,
$$
 (3.19)

where $\Lambda(R, r, k, \mu)$ is given by (3.2) and $m = \min|z| = k|P(z)|$. Using (3.19) in (3.18), we obtain

$$
\max_{|z|=R}\left|P(\rho z)-P(z)\right|\leq \frac{R^{\mu}(\rho^n-1)}{r^{\mu}+k^{\mu}}\Lambda(R,r,k,\mu)\left\{\max_{|z|=r}|P(z)|-tm\right\},
$$

for $0 \le r \le R \le k$, $0 \le t \le 1$ and $\rho \ge 1$, which is (3.16) and this completes the proof of Theorem 3.4.

Again, by using Lemma 2.4, it can be easily verified that Theorem 3.4 is an improvement of Theorem 1.2.

REFERENCES

- [1] R.N. Ahmad and S. Gulzar, An L^p inequality for polynomials not vanishing inside a disk, Int. J Appl. Math., **26** (2013), 221–231.
- [2] A. Aziz and Q. Aliya, Growth of polynomials not vanishing in a disk of prescribed radius, Int. J. Pure Appl. Math., 41 (2007), 713–734.
- [3] A. Aziz and W.M. Shah, *Inequalities for polynomials and its derivative*, Math. Ineq. Appl., 7 (2004), 379–391.
- [4] S. Bernstein, Lecons Sur les proprieles extremales et la meilleure approximation des fonctions analytiques d'une fonctions reele, Paris, 1926.
- [5] K.K. Dewan and M. Bidkham, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319–324.
- [6] P.D. Lax, *Proof of a conjecture of P. Erdös on the derivative of a polynomial*, Bull. Amer. Math. Soc., **50** (1944), 509-513.
- [7] M. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57–60.
- [8] M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337–343.
- [9] N.A. Rather and S. Gulzar, Certain compact generalizations of well-known polynomial inequalities, Aust. J. Math. Anal. Appl., 10 (2013), Article 6, 1–16.
- [10] N.A. Rather and S. Gulzar, Rate of growth of polynomials not vanishing inside a disk, Nonlinear Funct. Anal. Appl., 20 (2015), 97–107.
- [11] T.J. Rivlin, On the maximum modulus of polynomials, Amer. Math. Monthly, 67 (1960), 251–253.
- [12] R.S. Varga, A comparison of the successive over relaxation method and semi-iterative methods using Chebyshev polynomials, J. Soc. Indust. Appl. Math., 5 (1957), 39–46.