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Abstract. Recently, Aziz and Aliya [2] proved that if polynomial P (z) of degree n does not
vanish in the disk |z| < k where k > 0, then for every β ∈ C and 0 ≤ r ≤ R ≤ k,

max
|z|=1

∣∣P (Rz)− βP (rz)
∣∣ ≤ [(

|β|+ |1− β|
)(Rµ + kµ

rµ + kµ

)n
µ

− |β|
]
max
|z|=r
|P (z)|

−
[(

Rµ + kµ

rµ + kµ

)n
µ

− 1

]
min
|z|=k
|P (z)|.

In this paper, a refinement of above inequality and other related results are obtained.

1. Introduction

Let P (z) be a polynomial of degree n and P ′(z) be its derivative. Then
concerning the estimate of the maximum of |P ′(z)| on the unit circle |z| = 1,
Serge Bernstien [4] proved that

max
|z|=1

∣∣P ′(z)∣∣ ≤ nmax
|z|=1

|P (z)| . (1.1)

The result is best possible and equality (1.1) holds for P (z) = ρzn, ρ 6= 0.
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Where as, for the estimate of |P (z)| on a smaller circle |z| = r, where 0 <
r ≤ 1, of a polynomial P (z) in terms of its degree n and the maximum modulus
on the unit circle, we have the following inequality due to Zarantonello and
Varga [12].

max
|z|=r
|P (z)| ≥ rn max

|z|=1
|P (z)| . (1.2)

The result is sharp and the extremal polynomial for (1.2) is P (z) = ρzn, ρ 6= 0.
If we restrict ourselves to the class of polynomials having no zero in |z| < 1,

then both the inequalities (1.1) and (1.2) can be sharpened and can be replaced
by

max
|z|=1

∣∣P ′(z)∣∣ ≤ n

2
max
|z|=1

|P (z)| (1.3)

and

max
|z|=r
|P (z)| ≥

(
r + 1

2

)n
max
|z|=1

|P (z)| , (1.4)

respectively. Inequality (1.3) was conjectured by Erdös and later verified by
Lax [6]. Where as, inequality (1.3) is due to Rivilin [11].

As an extension of (1.3), Malik [7] proved that if P (z) is a polynomial of
degree n such that P (z) 6= 0 in |z| < k where k ≥ 1, then

max
|z|=1

∣∣P ′(z)∣∣ ≤ n

1 + k
max
|z|=1

|P (z)| . (1.5)

As a generalization of (1.5), Qazi [8] proved if P (z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤

µ ≤ n, is a polynomial of degree n which does not vanish in the disk |z| < k,
k ≥ 1 then

max
|z|=1

∣∣P ′(z)∣∣ ≤ n

1 + knφ(µ, k)
max
|z|=1

|P (z)| , (1.6)

where

φ(µ, k) =
k + µ

n

∣∣∣aµa0 ∣∣∣ kµ
1 + µ

n

∣∣∣aµa0 ∣∣∣ kµ+1
(1.7)

and

µ

n

∣∣∣∣aµa0
∣∣∣∣ kn ≤ 1, 1 ≤ µ ≤ n. (1.8)

By using inequality (1.6), Qazi [8] also proved that if P (z) = a0 +
∑n

ν=µ aνz
ν ,

1 ≤ µ ≤ n, is a polynomial of degree n which does not vanish in the disk
|z| < 1, then for 0 ≤ r ≤ 1

max
|z|=R≥1

|P (z)| ≤ n
(

1 +Rµ

1 + rµ

)n/µ
max
|z|=r
|P (z)| . (1.9)
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In litrature, there exists several extensions of these inequalities (e.g, see [1, 9,
10]).

Recently Aziz and Aliya [2] considered for a fixed µ, the class of polynomials

Pn,µ :=

{
P (z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n

}

of degree at most n not vanishing in the disk |z| < k where k > 0 and
proved the following Theorem which provides an improvement as well as a
generalization of the inequality (1.9).

Theorem 1.1. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| < k where
k > 0, then for every β ∈ C and 0 ≤ r ≤ R ≤ k,

max
|z|=1

∣∣P (Rz)− βP (rz)
∣∣ ≤ [(|β|+ |1− β|)(Rµ + kµ

rµ + kµ

)n
µ

− |β|
]
max
|z|=r
|P (z)|

−
[(

Rµ + kµ

rµ + kµ

)n
µ

− 1

]
min
|z|=k
|P (z)|. (1.10)

If we take β = 0 in (1.10), we obtain

max
|z|=R

∣∣P (z)
∣∣ ≤ [Rµ + kµ

rµ + kµ

]n
µ

max
|z|=r
|P (z)| −

[(
Rµ + kµ

rµ + kµ

)n
µ

− 1

]
min
|z|=k
|P (z)|.

Which clearly is an improvement as well as generalization of (1.9).

They [2] also obtained the following result which not only extends and
refines a result proved by Dewan and Bidkham [5] but, in particular, also
includes a result due to Aziz and Shah [3] as a special case.

Theorem 1.2. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| < k where
k > 0, then for ρ ≥ 1 and 0 ≤ r ≤ R ≤ k

max
|z|=R

∣∣P (ρz)− P (z)
∣∣ ≤ Rµ(ρn − 1)

rµ + kµ

[
Rµ + kµ

rµ + kµ

]n
µ
{

max
|z|=r
|P (z)| −m

}
, (1.11)

where m = min|z|=k|P (z)|.

2. Lemmas

For the proofs of our main theorems we need the following lemmas.
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Lemma 2.1. If P (z) is a polynomial of degree n which does not vanish in
|z| < k, k > 0, then

|P (z)| ≥ min
|z|=k
|P (z)| for |z| ≤ k. (2.1)

This Lemma is a simple consequence of Minimum modulus theorem and
next lemma is implicit in [2].

Lemma 2.2. If P ∈ Pn,µ and P (z) does not vanish in |z| < k, k ≥ 1 and
0 ≤ t ≤ 1, then

|aµ|kµ

|a0| − tm
≤ n

µ
, (2.2)

where m = min|z|=k|P (z)|.

Lemma 2.3. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| ≤ k where
k ≥ 1, then for 0 ≤ t ≤ 1 and |z| = 1,∣∣P ′(z)∣∣ ≤ n

1 + kµ+1

{
1+µ

n

|aµ|kµ−1

|a0|−tm

1+µ
n

|aµ|kµ+1

|a0|−tm

} {max
|z|=1
|P (z)| − tmin

|z|=k
|P (z)|

}
, (2.3)

where m = min|z|=k|P (z)|.

The above Lemma is due to Aziz and Aliya [2].

Lemma 2.4. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| ≤ k where
k > 0, then for 0 < r ≤ R ≤ k and 0 ≤ t ≤ 1,

exp

{
n

R∫
r

µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1 + ρµ

ρµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1ρµ + k2µρ)

dρ

}
≤
(
kµ +Rµ

kµ + rµ

)n
µ

,

(2.4)

where m = min|z|=k|P (z)|.

Proof. Since P (z) 6= 0 in |z| < k, k > 0, the polynomial F (z) = P (ρz) 6= 0 in
|z| < k/ρ, k/ρ ≥ 1, where 0 < ρ ≤ k. Hence applying Lemma 2.2 to F (z), we
get

|aµ|ρµ

|a0| − tm′

(
k

ρ

)µ
≤ n

µ
, (2.5)

where m′ = min|z|=k/ρ|F (z)| = min|z|=k/ρ|P (ρz)| = m. Therefore, (2.5) be-
comes

µ

n

|aµ|ρµ

|a0| − tm
kµ ≤ 1,
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which is equivalent to

µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1 + ρµ

ρµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1ρµ + k2µρ)

≤ ρµ−1

ρµ + kµ
. (2.6)

Integrating both sides of (2.6) with respect to ρ from r to R where 0 < r ≤
R ≤ k, we get

R∫
r

µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1 + ρµ

ρµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1ρµ + k2µρ)

dρ ≤
R∫
r

ρµ−1

ρµ + kµ
dρ

or

n

R∫
r

µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1 + ρµ

ρµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1ρµ + k2µρ)

dρ ≤ n
R∫
r

ρµ−1

ρµ + kµ
dρ,

which implies

exp

{
n

R∫
r

µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1 + ρµ

ρµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1ρµ + k2µρ)

dρ

}

≤ exp

{
n

µ

R∫
r

µρµ−1

ρµ + kµ
dρ

}
=

(
kµ +Rµ

kµ + rµ

)n
µ

.

This completes the proof of the Lemma 2.4. �

The next lemma is also implicit in [2, Theorem 1].

Lemma 2.5. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| < k where
k ≥ 1, then for every R > r ≥ 1, 0 ≤ t ≤ 1 and |z| = 1,

∣∣P (Rz)− P (rz)
∣∣ ≤ (Rn − 1

1 + kµ

)(
max
|z|=1
|P (z)| − tmin

|z|=k
|P (z)|

)
. (2.7)

3. Main results

In this paper, we first establish an improvement of Theorem 1.1 by involving
some of the coefficients of a polynomial. More precisely, we prove:
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Theorem 3.1. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| < k where
k > 0, then for every β ∈ C, 0 ≤ r ≤ R ≤ k and 0 ≤ t ≤ 1,

max
|z|=1

|P (Rz)− βP (rz)| ≤
[(
|β|+ |1− β|

)
Λ(R, r, k, µ)− |β|

]
max
|z|=r
|P (z)|

− [Λ(R, r, k, µ)− 1] tm, (3.1)

where

Λ(R, r, k, µ) = exp

{
n

R∫
r

ρµ + µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1

kµ+1 + ρµ+1 + µ
n
|aµ|
|a0|−tm (k2µρ+ kµ+1ρµ)

dρ

}
(3.2)

and m = min
|z|=k
|P (z)|.

Proof. Since P (z) has no zero in |z| < k, k > 0, then for 0 < ρ ≤ k, F (z) =
P (ρz) has no zero in |z| < k/ρ, k ≥ ρ. thus by applying Lemma 2.3 to F (z),
we obtain for 0 ≤ t ≤ 1,

max
|z|=1

∣∣F ′(z)∣∣ ≤ n

1+
(
k
ρ

)µ+1
{

1+µ
n

|aµ|ρµ
|a0|−tm

(
k
ρ

)µ−1

1+µ
n

|aµ|ρµ
|a0|−tm

(
k
ρ

)µ+1

} {max
|z|=1
|F (z)|−t min

|z|=k/ρ
|F (z)|

}
.

This implies

max
|z|=1

∣∣ρP ′(ρz)∣∣ ≤ n max
|z|=1
|P (ρz)| − t min

|z|=k/ρ
|P (ρz)|

1 +
(
k
ρ

)µ+1
{

1+µ
n

|aµ|ρµ
|a0|−tm

(
k
ρ

)µ−1

1+µ
n

|aµ|ρµ
|a0|−tm

(
k
ρ

)µ+1

} ,
which is clearly equivalent to

max
|z|=ρ
|P ′(z)| ≤ n

 ρµ + µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1

kµ+1 + ρµ+1 + µ
n
|aµ|
|a0|−tmk

2µρ+ µ
n
|aµ|
|a0|−tmk

µ+1ρµ


×
{

max
|z|=ρ
|P (z)| − tmin

|z|=k
|P (z)|

}
. (3.3)

Now, for 0 < r ≤ R ≤ k and 0 ≤ θ < 2π, we have

P
(
Reiθ

)
− P

(
reiθ

)
=

R∫
r

eiθP ′
(
ρeiθ

)
dρ,

which gives

P
(
Reiθ

)
− βP

(
reiθ

)
= (1− β)P

(
reiθ

) R∫
r

eiθP ′
(
ρeiθ

)
dρ,



Growth of a polynomial not vanishing inside a disk 485

where β ∈ C. Hence for every 0 ≤ θ < 2π and 0 ≤ r ≤ R ≤ k,

∣∣∣P (Reiθ)− βP (reiθ)∣∣∣ ≤ |1− β| ∣∣∣P (reiθ)∣∣∣+

R∫
r

∣∣∣P ′ (ρeiθ)∣∣∣ dρ,
from which it follows that

max
|z|=1

|P (Rz)− βP (rz)| ≤ |1− β|max
|z|=1

|P (rz)|+
R∫
r

max
|z|=1

∣∣P ′ (ρz)∣∣ dρ. (3.4)

Using (3.3) in (3.4), we get

max
|z|=1

|P (Rz)− βP (rz)|

≤ |1− β|max
|z|=1

|P (rz)|

+ n

R∫
r

ρµ + µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1

kµ+1 + ρµ+1 + µ
n
|aµ|
|a0|−tmk

2µρ+ µ
n
|aµ|
|a0|−tmk

µ+1ρµ

×
{

max
|z|=ρ
|P (z)| − tmin

|z|=k
|P (z)|

}
dρ. (3.5)

Now,

max
|z|=ρ

|P (z)| = max
|z|=1

|P (ρz)− βP (rz) + βP (rz)|

≤ max
|z|=1

|P (ρz)− βP (rz)|+ |β|max
|z|=1

|P (rz)| . (3.6)

Also, the inequality (3.5) gives with the help of (3.6) that

max
|z|=1

|P (Rz)− βP (rz)|

≤ |1− β|max
|z|=1

|P (rz)|

+ n

R∫
r

ρµ + µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1

kµ+1 + ρµ+1 + µ
n
|aµ|
|a0|−tmk

2µρ+ µ
n
|aµ|
|a0|−tmk

µ+1ρµ

×
{

max
|z|=1

|P (ρz)− βP (rz)|+ |β|max
|z|=1

|P (rz)| − tmin
|z|=k

|P (z)|
}
dρ. (3.7)

If we denote right hand side of (3.7) by φ(R), then we have



486 N. A. Rather, S. Gulzar and K. A. Thakur

φ′(R) = n

 Rµ + µ
n
|aµ|
|a0|−tmk

µ+1Rµ−1

kµ+1 +Rµ+1 + µ
n
|aµ|
|a0|−tmk

2µR+ µ
n
|aµ|
|a0|−tmk

µ+1Rµ


×
{

max
|z|=1

|P (Rz)− βP (rz)|+ |β|max
|z|=1

|P (rz)| − tmin
|z|=k

|P (z)|
}
. (3.8)

Also, (3.7) can be written as

max
|z|=1

|P (Rz)− βP (rz)| ≤ φ(R). (3.9)

With the help of (3.9), the inequality (3.8) implies for 0 < r ≤ R ≤ k that

φ′(R)− n

 Rµ + µ
n
|aµ|
|a0|−tmk

µ+1Rµ−1

kµ+1 +Rµ+1 + µ
n
|aµ|
|a0|−tmk

2µR+ µ
n
|aµ|
|a0|−tmk

µ+1Rµ


×
{
φ(R) + |β|max

|z|=1
|P (rz)| − tmin

|z|=k
|P (z)|

}
≤ 0. (3.10)

Multiplying the two sides of (3.10) by

exp

{
− n

∫ µ
n
|aµ|
|a0|−tmk

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1Rµ + k2µR)

dR

}
,

we get

d

dR

[{
φ(R) + |β|max

|z|=1
|P (rz)| − tmin

|z|=k
|P (z)|

}

× exp

{
− n

∫ µ
n
|aµ|
|a0|−tmk

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1Rµ + k2µR)

dR

}]
≤ 0, (3.11)

for 0 < r ≤ R ≤ k. Inequality (3.11) implies that the function

ψ(R) =

{
φ(R) + |β|max

|z|=1
|P (rz)| − tmin

|z|=k
|P (z)|

}

× exp

−n
∫ µ

n
|aµ|
|a0|−tmk

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1Rµ + k2µR)

dR


is a non-increasing function of R in (0, k]. Hence for 0 < r ≤ R ≤ k, we have

ψ(R) ≤ ψ(r),
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that is,{
φ(R) + |β|max

|z|=1
|P (rz)| − tmin

|z|=k
|P (z)|

}

× exp

−n
∫ µ

n
|aµ|
|a0|−tmk

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1Rµ + k2µR)

dR


≤
{
φ(r) + |β|max

|z|=1
|P (rz)| − tmin

|z|=k
|P (z)|

}

× exp

−n
∫ µ

n
|aµ|
|a0|−tmk

µ+1rµ−1 + rµ

rµ+1 + kµ+1 + µ
n
|aµ|
|a0|−tm (kµ+1rµ + k2µr)

dr

 . (3.12)

Since φ(R) ≥ max
|z|=1

|P (Rz)− βP (rz)| and φ(r) = |1−β|max
|z|=1

|P (rz)| , therefore,

we have

max
|z|=1

|P (Rz)− βP (rz)| ≤
[(
|β|+ |1− β|

)
Λ(R, r, k, µ)− |β|

]
max
|z|=r
|P (z)|

− [Λ(R, r, k, µ)− 1] tm, (3.13)

where

Λ(R, r, k, µ) = exp

{
n

R∫
r

ρµ + µ
n
|aµ|
|a0|−tmk

µ+1ρµ−1

kµ+1 + ρµ+1 + µ
n
|aµ|
|a0|−tm (k2µρ+ kµ+1ρµ)

dρ

}
.

This completes the proof of Theorem 3.1. �

It is easy to verify that Theorem 3.1 provides a refinement of Theorem 1.1.
To see this, we note that for every r ≤ k, by Lemma 2.1, max|z|=r|P (z)| ≥
min|z|=k|P (z)| and |β|+ |1− β| ≥ 1, hence the function

S(x) =
[(
|β|+ |1− β|

)
x− |β|

]
max
|z|=r
|P (z)| − [x− 1] tm

is a non-decreasing function of x for every β ∈ C and 0 ≤ t ≤ 1. If we
combine this fact with Lemma 2.4, it is easy to conclude that Theorem 3.1 is
an improvement of Theorem 1.1.

If we take β = 1 in (3.1), we obtain the following result.

Corollary 3.2. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| < k
where k > 0, then for 0 ≤ r ≤ R ≤ k and 0 ≤ t ≤ 1,

max
|z|=1

|P (Rz)− P (rz)| ≤ (Λ(R, r, k, µ)− 1)

{
max
|z|=r
|P (z)| − tm

}
, (3.14)

where Λ(R, r, k, µ) is given by (3.2) and m = min|z|=k|P (z)|.
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By using triangle inequality, the following result follows immediately from
Corollary 3.2.

Corollary 3.3. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| < k
where k > 0, then for 0 ≤ r ≤ R ≤ k and 0 ≤ t ≤ 1,

max
|z|=1

|P (Rz)| ≤ Λ(R, r, k, µ)max
|z|=r
|P (z)| − (Λ(R, r, k, µ)− 1) tm, (3.15)

where Λ(R, r, k, µ) is given by (3.2) and m = min|z|=k|P (z)|.

Next, as an improvement of Theorem 1.2, we present the following theorem.

Theorem 3.4. If P ∈ Pn,µ and P (z) does not vanish in the disk |z| < k where
k > 0, then for ρ > 1, 0 ≤ r ≤ R ≤ k and 0 ≤ t ≤ 1,

max
|z|=R

∣∣P (ρz)− P (z)
∣∣ ≤ Rµ(ρn − 1)

rµ + kµ
Λ(R, r, k, µ)

{
max
|z|=r
|P (z)| − tm

}
, (3.16)

where Λ(R, r, k, µ) is given by (3.2) and m = min|z|=k|P (z)|.

Proof. By hypothesis P ∈ Pn,µ and P (z) 6= 0 for |z| < k, where k > 0,

therefore the polynomial F (z) = P (Rz) does not vanish in |z| < k
R , R > 0 and

F ∈ Pn,µ. Hence for 0 < R ≤ k and 0 ≤ t ≤ 1, it follows by using Lemma 2.5

(with k replaced by k
R ≥ 1) that for every ρ ≥ 1,

max
|z|=1

∣∣F (ρz)− F (z)
∣∣ ≤ (ρn − 1)

1 +
(
k
R

)µ{max
|z|=1

∣∣F (z)
∣∣− t min

|z|= k
R

∣∣F (z)
∣∣}. (3.17)

Replacing F (z) by P (Rz) and noting that

max
|z|=1

∣∣F (z)
∣∣ = max

|z|=1

∣∣P (Rz)
∣∣ = max

|z|=R

∣∣P (z)
∣∣

and

min
|z|= k

R

∣∣F (z)
∣∣ = min

|z|= k
R

∣∣P (Rz)
∣∣ = min

|z|=k

∣∣P (z)
∣∣,

from (3.17) it follows that

max
|z|=1

∣∣P (Rρz)− P (Rz)
∣∣ ≤ Rµ(ρn − 1)

Rµ + kµ

{
max
|z|=R

∣∣P (z)
∣∣− tmin

|z|=k

∣∣P (z)
∣∣}, (3.18)

for ρ ≥ 1 and 0 < R ≤ k. Now if 0 ≤ r ≤ R ≤ k, then by inequality (3.15),
we have

max
|z|=1

|P (Rz)| ≤ Λ(R, r, k, µ)

{
max
|z|=r
|P (z)| − tm

}
+ tm, (3.19)
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where Λ(R, r, k, µ) is given by (3.2) and m = min|z| = k|P (z)|. Using (3.19)
in (3.18), we obtain

max
|z|=R

∣∣P (ρz)− P (z)
∣∣ ≤ Rµ(ρn − 1)

rµ + kµ
Λ(R, r, k, µ)

{
max
|z|=r
|P (z)| − tm

}
,

for 0 ≤ r ≤ R ≤ k, 0 ≤ t ≤ 1 and ρ ≥ 1, which is (3.16) and this completes
the proof of Theorem 3.4. �

Again, by using Lemma 2.4, it can be easily verified that Theorem 3.4 is an
improvement of Theorem 1.2.
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