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Abstract. Recently, Aziz and Aliya [2] proved that if polynomial P(z) of degree n does not
vanish in the disk |z| < k where k > 0, then for every § € Cand 0 <r < R <k,

RF 4+ k*\
max| P(R) — 3P(2)] < 81+ 1= 8 (B2E) " = 151 maxi (o)
R* 4 k*\ i .
-|(5=) " - e

In this paper, a refinement of above inequality and other related results are obtained.

1. INTRODUCTION

Let P(z) be a polynomial of degree n and P’(z) be its derivative. Then
concerning the estimate of the maximum of |P’(z)| on the unit circle |z| = 1,
Serge Bernstien [4] proved that

max | P'(z)| < nmax|P(2)]. (1.1)
|z|=1 |z]=1

The result is best possible and equality (1.1) holds for P(z) = pz™, p # 0.
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Where as, for the estimate of |P(z)| on a smaller circle |z| = r, where 0 <
r < 1, of a polynomial P(z) in terms of its degree n and the maximum modulus
on the unit circle, we have the following inequality due to Zarantonello and
Varga [12].
max |P(z)| > r" max|P(z)]. (1.2)
|z|=r |z|=1
The result is sharp and the extremal polynomial for (1.2) is P(z) = pz", p # 0.
If we restrict ourselves to the class of polynomials having no zero in |z| < 1,
then both the inequalities (1.1) and (1.2) can be sharpened and can be replaced
by

max | P'(2)| < = max|P(2)] (1.3)
|z|=1 2 |z|=1
and
1 n
x| P()| > (75 max P, (1.4

respectively. Inequality (1.3) was conjectured by Erdés and later verified by
Lax [6]. Where as, inequality (1.3) is due to Rivilin [11].

As an extension of (1.3), Malik [7] proved that if P(z) is a polynomial of
degree n such that P(z) # 0 in |z| < k where k > 1, then

n

P < — P(z)|. 1.5

max |P/(z)| < g7 max|P(2)] (15)

As a generalization of (1.5), Qazi [8] proved if P(z) = ag+ 3 )_, avz", 1 <

p < mn, is a polynomial of degree n which does not vanish in the disk |z| < k,
k > 1 then

n
max |P'(2)| € ———— max|P(z)], 1.6
|z\=1‘ ()= 1+ k"p(p, k) |z|=1’ )1 (1.6)
where
k4 &S| gr
n | ag
o(p, k) = (1.7)
L B2l futl
and
Blolgn <1, 1<pu<n. (1.8)
n|ag

By using inequality (1.6), Qazi [8] also proved that if P(2) = ag+>_)_, avz",
1 < p < n, is a polynomial of degree n which does not vanish in the disk
|z| <1, then for 0 <r <1

1+ R\
P < P . 1.9
max PO <a () maxlpe) (19)
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In litrature, there exists several extensions of these inequalities (e.g, see [1, 9,
10]).

Recently Aziz and Aliya [2] considered for a fixed p, the class of polynomials
n
Pry = {P(z) =aqag+ Z a,z’, 1<pu< n}
v=p

of degree at most m not vanishing in the disk |z| < k where £ > 0 and
proved the following Theorem which provides an improvement as well as a
generalization of the inequality (1.9).

Theorem 1.1. If P € P, , and P(z) does not vanish in the disk |z| < k where
k > 0, then for every € C and 0 <r < R <k,

wax| P(R2) ~ 5P(r2)] < | (131 + 11 - 3) (M) - 1ol max )

l21=1 i+ ke |2l =r

. [(My _ 1] win|P(2)]. (1.10)

rH + kH |z|=k

If we take § =0 in (1.10), we obtain

RE 4+ kM RM 4+ kM u _
(0 < [ ol = [(Br ) = i

Which clearly is an improvement as well as generalization of (1.9).

They [2] also obtained the following result which not only extends and
refines a result proved by Dewan and Bidkham [5] but, in particular, also
includes a result due to Aziz and Shah [3] as a special case.

Theorem 1.2. If P € P, , and P(z) does not vanish in the disk |z| < k where
k>0, then forp>1and 0<r < R<k

RA(p™ — 1) [R¥ + kM) w
g\lil)é‘P<pz)_P<z)‘§ T [T“—i—k“] {

where m = min|, | P(2)].

2. LEMMAS

For the proofs of our main theorems we need the following lemmas.
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Lemma 2.1. If P(z) is a polynomial of degree n which does not vanish in
|z| < k,k >0, then

|P(z)| > min|P(2)| for |z|<k. (2.1)

|z|=k
This Lemma is a simple consequence of Minimum modulus theorem and
next lemma is implicit in [2].

Lemma 2.2. If P € P,, and P(z) does not vanish in |z| < k,k > 1 and
0<t<1, then
|y |k

— <
lag| —tm —

n
I
where m = min || P(2)].

Lemma 2.3. If P € P, and P(z) does not vanish in the disk |z| < k where

k>1, then for 0 <t <1 and |z| =1,

|P'(2)] < n max|P(z)| — tn|1irllJP(z)]}, (2.3)
zl=

- lay k=1
1a e {l 1

+1 n lag[—tm

1+ k+ { e Lo [T

where m = min|,|—| P(2)].

The above Lemma is due to Aziz and Aliya [2].

Lemma 2.4. If P € P, and P(z) does not vanish in the disk |z| < k where
k>0, then forO<r<R<kand0<t <1,
R

exp / R ) e <k“ + R“)Z
pu+1 + fert1 + H _lau] (k.,u—i-lp,u + k,2,up) - kH + e ’

e (2.4)

where m = min || P(2)].

Proof. Since P(z) # 0 in |z| < k,k > 0, the polynomial F'(z) = P(pz) # 0 in
|z| < k/p, k/p > 1, where 0 < p < k. Hence applying Lemma 2.2 to F(z), we

get

H E\*

% LA (2.5)
|ao| —tm/ \ p It

where m' = min|,—y/,|F(2)| = min,|—/,|P(pz)| = m. Therefore, (2.5) be-
comes

B laulp” W< 1,
n|ag| —tm
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which is equivalent to

Eﬂkxwlpu—l 4 oh

-1
n lao|—tm

ot
< .
Pl 4 ol u laul (kntlpm 4 k2mp) — PP+ kH

n Jag|—tm

(2.6)

Integrating both sides of (2.6) with respect to p from r to R where 0 < r <
R <k, we get

R P |au‘

/ n |ag|—tm tmkM—Hpu ! +pH d </ p#*l p
prtt kel 4 B b (k10 + k20p) ’ o+ on P
’

or

R

lay| +1 -1 R
n/ " |a0|ﬁtm KHTEpH = 4 pht dp < n/ P ! dp
Pt ol B b |le| (ki tlpn + k2np) pH+ kr

which implies

R

lay] 1 1
kT T
xp o] dp
le-l 4+ kptl 4 B (k-,u-l—lp,u + k2up)

n |ao|—t
< n/ puptt (Kt RE i
<expy — dpp=——
W) pt+kH kt + re

This completes the proof of the Lemma 2.4. O

The next lemma is also implicit in [2, Theorem 1].

Lemma 2.5. If P € P, , and P(z) does not vanish in the disk |z| < k where
k> 1, then for every R>r >1,0<t <1 and |z| =1,

R -1 .
P(re) — P(ea)| < () (manlp(a) - minl ) ). 1)
3. MAIN RESULTS

In this paper, we first establish an improvement of Theorem 1.1 by involving
some of the coefficients of a polynomial. More precisely, we prove:
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Theorem 3.1. If P € P, , and P(z) does not vanish in the disk |z| < k where
k>0, then for every BeC,0<r< R<kand0<t <1,

max |P(Rz) — BP(rz)| < {(!ﬁl + 1= 6!)A(R, vk, p) — IBI} max [P(2)]

- [A(Ra T ka M) - 1} tm, (31)
where
R lay| +1 1
A(R, 7k, 1) = exp / o dp} (32)
k1 p,LH-l iyl \ao[\l#tm (k2,up + k:,u-i-lp,u,)

and m = |H‘III]1€‘P( 2)|.

Proof. Since P(z) has no zero in |z| < k,k > 0, then for 0 < p < k, F(z) =
P(pz) has no zero in |z| < k/p,k > p. thus by applying Lemma 2.3 to F(z),
we obtain for 0 <t <1,

n
max|F'(z)] < — {maxF( —t min |F( }
el (e ) EE O
P x
p

|au|pl‘ )H+1

4 e (
max\P(pz)\ —t mln |P(,oz)|
max|pP’(pz)| < l=I=1 ==

Ty
1 1 w laplpt (E\HT
|2[= 1+ (E)“—i_ {1+ o tm(p) 1
p p _laplpt nt
1+ e (5)

lagl—tm

This implies

which is clearly equivalent to

pu_,_ﬂ _lanl ot o1

max|P'(2)] <n ||Zolitm lay]
|z|=p kptl 4 pu+1 iy & |a0|”tmk2“p 4+ B s lutmku+1pu
X {maX|P( )| = tmin]P(z)|} . (3.3)
|2z|= |z|=k
Now, for 0 < r < R<k and 0 < 0 < 27, we have

R

P (Rew> - P <7“ei9) = /ewP/ (pei(’) dp,

T

which gives

R
P <Rew) — B8P (rei9> =(1-p)P (rew) /eiePl (pei9> dp,
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where 8 € C. Hence for every 0 < 0 <27 and 0 <r < R <k,

R

() () <13 1| () ()

T

from which it follows that

x| P(R2) = AP(r2)] < [1 - Bmax  Pr)] + [ max| P ()| d.

Using (3.3) in (3.4), we get

max | P(R2) — 5P(r7)|

< 1 - Blmax |P(r2)
|z|=1
R

0 13 lay] pu+1 p—1
P+ n |ao|— tmk p

+”/ oz o]
J ku+1+pu+1+“| L—kp + B kuﬂpu

o|—tm lao|—¢

x {|max\P( )|~ tmin | P2 )y}dp.

Now,

‘m|a>/§|P( z)| = ‘mﬁXIP(pZ) BP(rz) + BP(rz)|
< max |P(pz) — BP(rz)| + lﬁllmﬁx |P(rz)].

Also, the inequality (3.5) gives with the help of (3.6) that

1|m|ax |P(Rz) — BP(rz)|
<[1- 5|ﬁaX|P(7“Z)|
R pu + p_laul kﬂ+1pﬂ—1

n Jag|—tm

+”/ oz oz
k,u+1_|_p,u+l+u _fGul k2“p—|—“‘ A ku—&-lpu

n |ag|—tm o|—tm

>< {fnax Pp=) = 8P| + |Blmax |Pr2)] - i [P(:)] | d.

z|=1

If we denote right hand side of (3.7) by ¢(R), then we have

485
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R“—l—“ el ku—i—lRu—l

lao]—tm
k“+1+RM+1 + n| |‘|1H| k2,u,R+ u| |“7‘ ul k.'u,—l-lR'u,

X {lr?'a)l( |P(Rz) — BP(rz)| + ‘5‘g1|i>1< |P(rz)| — t‘rﬁiri ]P(z)\} . (3.8)

¢'(R)=n

Also, (3.7) can be written as

ImaXIP(RZ) BP(rz)| < ¢(R). (3.9)

With the help of (3.9), the inequality (3.8) implies for 0 < » < R < k that

R# 4 L _laul gp+1 pu—1

a tm
¢'(R) —n ST o]
kptl 4 Rutl 4 B T |”tmk2 R+ E bof knt1Ru
X {gé( )+ \6|max |P(rz)| — t‘n|1in |P(z )|} <0. (3.10)

Multiplying the two sides of (3.10) by

p_laul k./H—lRu 1_|_Ru
exp{ —n/ n Jaol—tm )dR},

Rp,—l—l+kp,+1+ M| |‘|1u\ (k“'HR“—i-kQ“R

we get

d

Ji | {900 + o (o) - i (o) |

H _lau| ku+1R,u 1 4+ RH
X exp —n/ n Jaol —tm dR}
Rl 4 il 4 £ 'f ul (i Re 4 k20R)
<0, (3.11)

for 0 < r < R < k. Inequality (3.11) implies that the function

o(8) = {6() + Bl P(r2)| - iy 1P
lay| +1 1
n Jaolotm BT R+ R
X exp{ —n dR
Rl 4t el (ont L Ry 20 R)

is a non-increasing function of R in (0, k]. Hence for 0 < r < R < k, we have

Y(R) < (r),
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that is,

{or) + 61 |P(r2)] - tmin ()]
14 |au‘ k”—HRM I—I—R“
/ n Jag|—tm
X exp{ —n
R

Pl et 4 el (ot R k20 R)

dR

< {60 + 1l P(r2)] — tmin |2

ool ppt1pp-1 4 p

X exp —n/ n lao|~tm ol dr p . (3.12)
il ot B (ke ek 4 k2

Since ¢(R) > lm‘aix\P(Rz) BP(rz)| and ¢(r) = [1— ﬁ\‘m|ax|P( z)|, therefore,
we have

max |P(R2) = BP(r2)] < [ (18] + 11 = 1) AR . k) = |81 masx |P(2)|

|2l=1

— [MR, 7, k, 1) = 1] tm, (3.13)
where
;i P4k aul Joh+1 g1
A(Ra r, k, M) = exp n/ n Jag|—tm |atn|1 oL
kAL pitl ﬁm = (k20 p + kpt1pm)
This completes the proof of Theorem 3.1. B

It is easy to verify that Theorem 3.1 provides a refinement of Theorem 1.1.
To see this, we note that for every r < k, by Lemma 2.1, max,|—,|P(z)| >
min,,—,|P(z)| and 8] + |1 — 3| > 1, hence the function

S@) = [(181+ 1= 81)= - 18] max | P(2)| ~ [z~ 1] im

is a non-decreasing function of x for every f € C and 0 < ¢t < 1. If we
combine this fact with Lemma 2.4, it is easy to conclude that Theorem 3.1 is
an improvement of Theorem 1.1.

If we take § =1 in (3.1), we obtain the following result.

Corollary 3.2. If P € P, , and P(z) does not vanish in the disk |z| < k
where k> 0, then for 0 <r < R<k and 0 <t <1,

lr?'a)i: |P(Rz) — P(rz)| < (A(R,7, k,p) — 1) {Tn|ax |P(2)] — tm} , (3.14)

where A(R,7,k, ) is given by (3.2) and m = min|,;_,|P(z)].
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By using triangle inequality, the following result follows immediately from
Corollary 3.2.

Corollary 3.3. If P € P, , and P(z) does not vanish in the disk |z| < k
where k> 0, then for 0 <r < R<k and 0 <t <1,

max [P(R2)] < AR, 7, k, pymax | P(2)] = (A(R, 7k, p) = Dtm, - (3.19)

||

where A(R,7,k, ) is given by (3.2) and m = min|,;_|P(z)].

Next, as an improvement of Theorem 1.2, we present the following theorem.

Theorem 3.4. If P € P, , and P(z) does not vanish in the disk |z| < k where
k>0, then forp>1,0<r<R<kand0<t <1,

maX‘P(pz) - P(z)} < Bp" — 1)

max S AR, 7k, 1) {max |P(2)| — tm} , (3.16)

|z|=r
where A(R, 7, k, p) is given by (3.2) and m = min|, || P(2)|.

Proof. By hypothesis P € P, , and P(z) # 0 for |z| < k, where k > 0,
therefore the polynomial F'(z) = P(Rz) does not vanish in |z| < %, R > 0 and
F € Py, Hence for 0 < R <k and 0 <t <1, it follows by using Lemma, 2.5
(with k replaced by % > 1) that for every p > 1,

— F(z w max|F(z)| — ¢t min z
x| F(p2) — F(2)| < 12 (E)M{MllF( ) =t i | I e

R
Replacing F(z) by P(Rz) and noting that

lril‘a:lc‘F(z)} = ‘r?léi}f’P(Rz)’ = ﬁi}}%‘P(z)‘

and
min |F(z)| = min |P(Rz)| = ‘min‘P(Z)L

jol=% jol=% 2l=k

from (3.17) it follows that

RE(p" — 1 .
fﬁi)f‘P(R,OZ) — P(Rz)| < M{lrznz_u};‘P(z)‘ — tlrzrlu_%|P(z)|}, (3.18)

for p>1and 0 < R < k. Now if 0 < r < R < k, then by inequality (3.15),
we have

max |P(Rz)| < A(R,r, k, 1) {max |P(2)| — tm} +tm, (3.19)

|2=1 |z|=r
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where A(R, 7, k, ) is given by (3.2) and m = min|z| = k|P(z)|. Using (3.19)
in (3.18), we obtain
RA(p — 1)
‘;;j;j;r*A(fﬁ73k,M) Tﬁifkp(zﬂ'—tﬂl ;

for0 <r < R<k,0<t<1andp>1, whichis (3.16) and this completes
the proof of Theorem 3.4. O

g‘lgﬁ\P(pZ) —P(z)] <

Again, by using Lemma 2.4, it can be easily verified that Theorem 3.4 is an
improvement of Theorem 1.2.
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