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Abstract. Recently, n-tupled fixed point theorems have been intensively studied by some
authors in the framework of partially ordered G-metric spaces. In the present paper, some
n-tupled coincidence as well as n-tupled fixed point results for a pair of symmetric (¢,1
)-contractive mappings having mixed g-monotone property are established in the context of
partially ordered complete G- metric spaces. Furthermore uniqueness of n-tupled common
fixed points is presented. Our results improve the results of Karpinar et al. [8], Jain and
Tas [7] and Mustafa [16]. In light of the comment given in Jain and Tas [7], our results also
generalize the results of Choudhary and Maity [5], Nashine [18] and Mohiuddin et al. [15].

To substantiate the validity of our hypothesis, some examples are also presented herein.

1. INTRODUCTION

Bhaskar and Lakshmikantham [3] introduced the notion of a coupled fixed
point and proved some coupled fixed point theorems in partially ordered com-
plete metric spaces. Afterwards, Lakshmikantham and Ciric [13] extended
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these results by introducing mixed g-monotone property and coupled coinci-
dence point and proved some coupled coincidence point and common coupled
fixed point theorems in partially ordered complete metric spaces.

Recently, the notion of coupled fixed point is extended to higher dimensions
by many authors(see [2],[4],[6],[9],[10],[11],[20]). In [2], Berinde and Borcut
introduced the concept of tripled fixed point and obtained some related the-
orems. Afterwards, Karpinar [11] introduced the concept of quadruple fixed
point and mixed monotone property of mapping F': X* — X and proved some
related theorems. Most recently, Imdad et al. [6] introduced the concepts of
n-tupled coincidence as well as n-tupled fixed point (for even n) and utilized to
obtain n-tupled coincidence as well as n-tupled common fixed point theorems
for nonlinear mappings satisfying ¢-contractive condition in partially ordered
complete metric spaces.

On the other hand, Mustafa and Sims [17] introduced a new structure of
generalized metric space, called G-metric space. In which, a non-negative
real number was assigned to every triplet of elements. Sadati et al. [19]
proved some fixed point results for contractive mappings in generalized metric
spaces endowed with the partial ordering, known as partially ordered G-metric
spaces. Chaudhary and Maity [5] studied necessary conditions for the existence
of a coupled fixed point in this space. Luong and Thuan [14] presented some
coupled fixed point theorems for a mixed monotone mapping in a partially
ordered G-metric space which are generalizations of the results of Bhaskar and
Lakshmikantham [3] and provided an existence and uniqueness for a solution of
a nonlinear integral equation. Afterwards, Karpinar et al. in [8] and Nashine
[18] extended the results of [5] for a pair of commutative maps. Mustafa [16]
established some quadruple coincidence and quadruple common fixed theorems
in partially ordered G-metric spaces. Recently, Jain and Tas [7], generalized
and enriched the result of Choudhary et al. [5], Nashine [18] and Mohiuddin
et al. [15]. Most recently Abbas, Kim and Nazir in [1], proved some common
fixed point theorems of mappings satisfying almost contractive condition in
complete partially ordered G-metric space.

In this paper, we aim to establish the existence and uniqueness of n-tupled
coincidence and n-tupled fixed point theorems for a pair of symmetric (¢,)-
contractive mappings having mixed g-monotone property in the perspective
of partially ordered G-metric spaces equipped with a partial ordering in a
virtually different and more natural way. Our result generalize and extend the
results of Karpinar et al. [8], Jain and Tas [7] and Mustafa [16]. Some examples
to show the validity of hypothesis of our main results are also presented.
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2. PRELIMINARIES

Here, we present some basic definitions and fundamental results, which will
be useful to our article.

In 1984, Khan et al. [12] utilized the idea of altering distance function in
metric fixed point theory which is indeed a control function that alters the
distance between two points.

Definition 2.1. ([12]) Let ® denote the class of all functions ¢ : [0, +0o0) —
[0, 4+00) with the following properties:

(i) ¢ is continuous and non-decreasing;
(ii) ¢(t) >0 for all ¢t > 0;
(iii) ¢(a +b) < ¢(a) + ¢(b) for all a,b € [0, +00).

From (i) and (ii) it is clear that ¢(¢) = 0 if and only if ¢ = 0. Let ¥ denote the
class of all functions 9 : [0, +00) — [0, 4+00) with the following properties:

(1) 1%imw(t) >0 for all r>0;
—T
T _o.
(i) Jim 3(t) =0
We borrow the definition of n-tupled fixed point and n-tupled coincidence
point from Imdad et al. [6].
Throughout the paper, we consider n to be an even integer.

Definition 2.2. ([6]) An element (z!,22,...,2") € X" is called an n-tupled
fixed point of the mapping F': X" — X if

F(zt, 2% 23, .. 2") = 2!,
F(z? 23,... 2" at) = 22,
F(z3,... 2" 2t 2?) = 3,
F(z™ 2t 22, .. 2" ) = 2,

In the following example we establish n-tupled fixed point.

Example 2.3. Let X = R. Then (X, <) is a partially ordered set with usual
ordering. Let F: X™ — X be a mapping defined by F(z!,22,23,...,2") =
sinz! + sinz? + sina® 4 ... + sinz”, for all (2!,22,2%,...,2") € X. Then
(0,0,0,...,0) is a unique n-tupled fixed point of F.
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Definition 2.4. ([6]) An element (z!,22,...,2") € X™ is called an n-tupled
coincidence point of the mapping F': X" — X and g : X — X if

F(z', 2?,...,2") = ga!,
F(2?,23,... 2" 2!) = gz?,
F(a3,... 2" 2t 2?) = ga3,

F(z™, xt 22 .. 2"l = ga™.

In following example establishes n-tupled coincidence point.

Example 2.5. Let X = R. Then (X,<) is a partially ordered set with
usual ordering. Let F': X™ — X and g : X — X be two mappings defined

12,22, 32 n2
by F(z!,z2,23,...,2") = 12 Tyttt for all (x',22,23,...,2") € X,

and gr = x2. Then (0,0,0,...,0) is a unique n-tupled coincidence point of F.

Definition 2.6. Let (X,G) be a G-metric space and let F' : X" — X and
g : X — X be two mappings. We say that, F' and g are symmetric (¢, )-
contractive mappings on X if there exist ¢ € ® and ¢ € ¥ such that

¢((G(F(x1’ x27 A 7xn)’ F(y17y27 A 7yn)’ F(Zl7 227 ] Zn))
—|—G(F(:):Z,...,x”,xl),F(yQ,...,y”,yl),F(zz,...,zn,zl)) + ...
+ G(F(x",nl, .. ,m”_l),F(y",yl, .. ,y”_l),F(z”,zl, ... ,z"_l))) . n_l)

< qb(G(g:ﬂl, gyt 92') + G(g2?, gy?, 92°) + ... + G(gz", gy™, gZ”)>
- n
B ¢<G(9x1, 9y',92") + G(g2%, 9v*,92°) + ... + G(ga", gy", 92”))
n )

for all (z',22,...,2"), (v}, 9%, ..., 9"), (24, 2%,...,2") € X.

Definition 2.7. Mappings F': X™ — X and g : X — X are commutative if

g(F(xl,x2,x3, cox)) = F(gxl,gx2,gx3, ce, gz,

for all (z', 22, 23,...,2") € X.

Definition 2.8. Let (X, <) be a partially ordered set and (X,G) be a G-
metric space. Then (X, G, <) is called regular if the following conditions hold:
(i) If a non-decreasing sequence {x,} C X such that x,, — x then x,, <
x, Yn eN.
(ii) If a non-increasing sequence {y,} C X such that y, — y then y =<
Yn, Vn €N.
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For the rest of the definitions and other notions utilized in our paper one can
refer to Imdad [6] and Mustafa et al. [17].

3. MAIN RESULTS
Our main result runs as follows:
Theorem 3.1. Let (X, <) be a partially ordered set and (X, G) be a G-metric

space such that (X, G) is G-complete. Let F': X™ — Xand g : X — X be two
symmetric (¢,)-contractive mappings on X, that is,

S((G(F (2t 2%, 2", F(yh 92, ... y"), F(2 2%, ..., 2")
+ G(F(22, ...,z 2Y), F(2, ..y b)), F(2%, ..., 2" 2h) + ...
+G(F(2z™ 2. e Y, Fy™ .y, F(2 2 2 ) T

- ¢(G(9x179y1,921) + G(gz?, gy*, 92°) + -~+G(9w”,gy”,gzn)>
- n
_ Q/)<G(91‘1,gyl,gzl) +Glg2®,9y% 92%) + .. + G(gﬂf”,gy”,gzn))
n b)
(3.1)
with gz' = gy' = gz', gr? < gy® < g2%, g2® = gy = g2%, ..., ga™ <

gy =X gz", such that F has the mized g-monotone property. Assume that
F(X™) C g(X) and both the mappings Fand g commutes and continuous. If

there exist z{, m%,x%, ...,z € X such that
1 1,2 .3
995025 1;?(330:350:3707 . ~i$8), )
F(x§, zg,....x0, ..., x5) < 92§,
1 2 n—1
F(ag,xg, .25, .-, 2y ) 2 gxg.

Then F and g have an n-tupled coincidence point in X.

Proof. Let xé,x%,x& ...,xy € X such that
1 1,2 .3
ngZj f(xo,xo,wo, o xy) )
F(zg,xg,...,x5,...,25) = gz,

1 2 n—1
F(ag,xg, .. 25, .-, 2y ) 2 gxg.
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Since it is given that, F(X") C g(X), we can choose z1,2%,...,27 € X such
that
gﬂ:i = F(mé,mé,x%, e ,x{)l‘),
gxy = F(xg, x5, ..., 20, 7p),
. (3.3)
gzt = F(xf, 8,23, ... ,ngl).

Again, since F(X") C g(X), we can choose z3,73,...,2% € X such that

1 _ 1.2 .3
gy:% = F(m%,m%,xl, e ,y:’ll‘),
grs = F(x%,23,...,27,21),
n—1
gry = F(af, xp, 27,277 ).
Continuing this process, we can construct n sequences {x} x2 Y {an
g p ) q mJr m S > WWm
(m > 0) in X such that
1 _ 1 .2 .3
g:L"S,L_|r1 = F(Cﬂgm x?, o, ,l‘?m),
9% 41 :F(‘/Bm?xmv"'v‘%%al‘m)a (3 4)
n _ n 1 2 n—1
grp = F(xp,, xp, w0, a7 ).

Now, by the mathematical induction method, we shall show that for all m > 0,
Gy 2 9Tty GTair 3 9T, Ty 2900, ., grpy 2 gy (3.5)
From (3.2) and (3.3), we obtain, gz§ < g1, g2? < gz, g3 < g3, ..., ga} <

gxg, that is (3.5) holds for m = 0. Suppose that, (3.4) holds for some m > 0.
From mixed g-monotone property of F' and (3.4), we have

1 1 .2 .3 n 1 2 .3 n
9%y = F (2, Ty T o ) = F (@415 Ty Ty -+ Ty

1 2 3 n

S F (X1 T 1> Ty - -5 Ty
1 2 3 n

= F (%15 Ty 1> T 1 -+ > Ty
1 2 3 n

j F($m+17 xm+1’ xm+17 tee 7xm+1)

_ 1
- gxm+27
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2 _ 2 3 n 1 2 3 n 1
g$m+2 - F($m+1a xm-‘,—lv s vl'm—i—l’ mm—i—l) j F(:Em+1’ xm—‘rl’ cee a$m+17 xm)

2 3 n 1

j F(xm+1>xm+17 e ,."L'm,l'm)
2 3 n 1

= F(:‘Cm—l-l’xm? te ’$m7xm)
2 3 n 1

S E(zg,, Ty e ey Ty Ty

_ 1

= 9Tm+1-

Continuing the above process, yields

n _ n 1 2 n—1 n 1 2 n—1
gl‘m+2 - F(l'm—f—la :Em—i-l?wm—i—l? RN ZL‘m+1) j F(:L‘m,l‘m,xm, s Ty )

_ n
= 9Tm+1-

Therefore, from induction method one can easily show that, inequality (3.5)
holds, for all m > 0. Hence

N}
8
o
A
<
8
==
(N
<
8
D=
(DN
(N
Q
8

A

Na

8

3
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LA

Q

S
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o
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Q
8
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Q
8
[\JOV)
PN
IA
Q
8
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=

From (3.5), we obtain

¢ (G(gxinﬂ, 9, 90+ G922 1, 90, g + -

GG 1, 977 970)) 1
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< ¢<% (G(gw}m 91, 9T—1) + G920, 9T 1, 97, _1)
+ GG, 91, 9T 1) + - F G(gx%,gx%q,gx?nfl)))
— ¢ (% (G(gwin, 91, 9T —1) + G920, 9T, 1, 9T 1)
+ Ggzy,, 9T, 1, 9T 1) + . + G(gxﬁwgwﬁq_l,gw%_l)))

Let

1
Ry = — (G(gximgwi@_l, gz, 1) + Ggzl,, 9721, g2, _1) .

G923, 91, G 1) + o+ G, g1 901 ).
From the above inequality, we arrive at
O(Bm) < ¢(Rin—1) — Y(Rm—1)- (3.8)
Using the fact that, ¢ is non negative function, this follows
d(Rm) < ¢(Rm—1) = Rm < Rp_1.

Hence {R,,} is a positive non increasing sequence. Hence there exists r > 0
such that R, — r as m — co. Letting the limit as m — oo in (3.8). Then by
the properties of ¢ and i, we get
¢(r) = lim ¢(Rp) < lim ¢(Rpm-1) — ¢p(Rm-1)
m—r0o0 m—o0

= 6(r) — lm_ Y(Rm1) < 9(0).
m—1—T
Leads to a contradiction, thus we find r = 0. Hence

Ry, — 0 as m — oo. (3.9)

Next, to show that {gzl }, {gz2,}, {g923,},. .., {gz"} are G-cauchy sequences.
Assume that, at least one of {gzl }, {gx2,}, {g23,}, ..., {gz™} is not a Cauchy
sequence. Then, there exists an € > 0 for which we can find sequences of
positive integer {m(k)} and {m(k)} such that for all positive integer k,[(k) >
m(k) > k. Let

1
Ay =~ <G(g$}n(k)’gx71n(k)’ 91(t)) + G (9%m1)> 9ty 9%1(ay) +

(3.10)
+ G(g:EZz(k)’gx?n(k)?gx?(k))) > €.
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Further, corresponding to m(k) we can choose I(k) in such a way that it is the
smallest integer with [(k) > m(k) and satisfying (3.10). Then

1
n (G(g‘rrln(k)’gx}n(k)?gxll(k)—l) + G(gf'f?n(k)agmiz(k)»gl"?(k)—ﬂ +o

(3.11)
+G (gxr’?z(k)vg%(k)?gm?(k)—l)) <&

Now, using the rectangular inequality of G-metric space and (3.11), we get

G(gx,lﬂ(k) 7.9%&,1(;@) ,ga:ll(k)) G (gmfn(k) ’gmfn(k) ag-TZQ(k)) G (QIZ(k) ’ng(k) ,gxln(k))
n

ESAk:

<

S|

(G(gxin(k)’gw}n(k)’gmll(k)—l) + G(gfﬂgn(k)a9907271(19),95”12(19)—1) +
n n n 1
+ G(gxm(k)’gzm(k)’gxl(k)—1)> + n (G(gl‘zl(k)—pgﬂfll(k)_pgfle(k))

+ G(9$12(k)—1v Q%Q(k)_p gﬂff(k)) + o+ G915 977y -1 9fC7(k))> :

Therefore from (3.7) and (3.11), we obtain

1
e< A= o <G(gxin(k)a9$}n(k),gﬂle(k)) + G(gxgm(kygl‘?n(k)’g‘r?(k)) +-
+ G927y 9Ty 91’?@)))
<e+ Rl(k)fl'
Letting the limit as k — oo in the above inequality and using (3.9), we have
lim A
k—o0

k—oon

. 1
= lim — <G(933in(k)793371n(k)79$11(k)) + G(gx?n(k)’gxzn(k)’gxf(k)) L
(3.12)

+ G (9% 9Ty 93”7(1@))

=e.
Again,

Ay, = (G(gz'}n(k)’gzrln(k)’gxll(k))+G(gm12n(k)’gxa2n(k)’g$l2(k))+"'+G(g$gm(k)’gxgm(k)ymln(k)))
n
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1 G(gl‘rln(lk)’ gmin(k)’lgx}n(k)Jrlz_‘_‘ : '+G(9$nm(k)vi$?n(k)’ 95”%(@“) §
< +G(9$rln(k)+17 g‘fm(k)—l—l’ glmlgk)—i-l) +o G920 10 9Ty 110 9Ty 1)
+G(gxl(k)+1’ 9Ty k)10 9%yky) T+ - '+G(9x?(k)+1’ 9Ty 410 gw?(k))

G(gle(k)ﬂvg‘”zl(mﬂ795’311(@) +.4G (gxln(k)+1’gx?(k)+l’gx?(k)) )

< Bongr) +

n

_l’_

G(ngln(k)-‘-l’gz'}n(k)+1’gml1(k)+1) +.. 4G (9’521(@4-1799%(1@)4-1’9751%)-;-1) )
- .

Using that, G(z,z,y) < 2G(x,y,y) for any z,y € X, we obtain

Ap < Ry + 2Ry + %(G (9% (k) 410 9T (k) 110 90y 41)
+G (922 )41 9T ()10 ITiy 1) + 0 (3.13)

+G(9$nm(k)+1v 9% (k) +17 gx?(k)Jrl))‘
Next, we shall show that

1
¢ (E (G(95U71n(k)+1’ (k410 9% +1) TG (9T 115 9T m(ry 410 9100y 1)
e GO 1 I+ 9y 41) ) ) S B(AK) = (A,
(3.14)
As (k) > m(k) and ga:in(k) < ga:ll(k), gx?(k) < gxfn(k),..., gx?(k) =< g:c”m(k).
Hence from inequality (3.1) and (3.4), we obtain

1
¢ (n (G(gx}n(k)—i-b I (i1 91 +1) T G (9800410 9Ty 115 9% k) 1)

4+ .+ G(gx?n(k)-kl’ g$nm(k)+1> gx?(k)—%—l)))
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<¢ <:L (G(gﬂs,ln(k),gxll(k)gxll(k)) + G’(gxfn(k), gx%(k)gg;%(k)) 4o
+ G (927,15 95“21(19)95“?(19))))
- (i (G(gl‘}n(k), 9191 k)) + G(gazfn(k), 9$12(k)9$12(1g)) +-..
+ G(gxfn(k),gm?(k)gx?(k)))> )

This gives

¢ (i (G(gl‘in(kz)w gm}n(k)-&-l’ gmll(k:)—i-l) + G(W?n(k)ﬂ’ gx%n(k)—&-l’ g$l2(k:)+1)

4ot G(ggg"m(k)ﬂ,g:vfn(k)Jrl,gx?(k)H))) < ¢(Ag) — (Ag).

(3.15)
Hence, (3.14) holds, for each n and for all m. Therefore by the property of ¢,
(3.13) and (3.15) yields

?(Ak) < d(Rpry) + 26(Ryry) + ¢(Ax) — ¥(Ag).

Taking The limit as k& — oo in the above inequality, using (3.9), (3.12) and
continuity of ¢, we obtain

B() = lim 9(Ay) < 6(e) — lim $(Ax) = ¢(e) — lim $(A4r) < 9(c).

k7€

Which is a contradiction. Then we conclude that {gz} }, {gz2}, {gz3.},...,
{gz}} are G-Cauchy sequences in the G-metric space (X,G) which is G-

complete. Then there exist ', 22,...,2" € X such that
lim G(gzl, gzl x') = lim G(gz},x' ') =0,
m—00 m—0o0
lim G(ga,, g23,,2%) = lim G(ga7, 2% 2%) =0,

lim G(gxl, gz}, z™) = lim G(gzl, 2", ") =0.
m—00 m—00
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Since, the mapping g is continuous, so from (3.16) we obtain

hm G(g(gxy,), 9(gy,), gx') = hm G(g(gak), gz, gzl) =0,
7Ag20(?( 9(g922,), g(gx2,), gz*) = lun Glglga?), gz2, gz?) = 0,

(3.17)
lim G(g(gz7y,), 9(g927,),92") = lim G(g(gzy,), gz", gz") = 0.
m—0o0 m—00
Hence, g(gxl)) is convergent to gz', g(gz2,) is convergent to gz2,..., g(gz™)
is convergent to gz". Since,
glén—i—l = F(x;n7x§wx§na . ax?n)
9$§n+1 = F(:Egml‘m, .. :E;;n,mén)
9Ty, = F(xp,, ..., 20, 2, 25,
gxnm—i—l - F(l'?ru x}m w?na s 7x2171)'
Thus, by the commutativity of F' and g, we get
( 1 1,2 3
g(g'rerl) = g(‘F(xm? Ly Tomy + -+ s JI%))
= F(gal  g2? g22.,..., gz™),
2 2 .3 1
g(gmerl) = g<F(xm7 Ly« - 73777;1’ xm))
= F(ga2, 925, ..., g2, 92),), (3.18)
n _ F n 1 2 n—1
g(gmm-i—l) - g( ($m?xma$m7 ey Ly ))
= F(gx?rm g$71n,g£l?$n, o agx?n_l)'

Since the mapping F' is continuous. Therefore taking the limit as m — oo in
(3.18) and from (3.16)-(3.17), we obtain

1 . 1 . 1 2 3
ge: = lim g(ga, 1) = lm F(gay,, g0, 9T, - - §2m)
= gzt = F(zh 22, 23, ... 2").

Continuing in this way, we get

gr? = F(z%,23,.. . 2", xt),
gz = F(z", z', 22, ..., 2" ).
Hence the element (2!, 2% 23,...,2") € X™ is an n-tupled coincidence point

ofthemappmgF.X”—)Xandg:X—>X. g
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Next, the assumption the continuity of function F', along with the commu-
tativity of mappings F' and g are dropped and result is proved for (X, G, <)
being regular.

Theorem 3.2. Let (X, =) be a partially ordered set and there exists a G-
metric space G on X. Let F' : X" — X and g : X — X be two symmetric
(¢, ¥)-contractive mappings on X, that is

((G(F(a', 2%, ... )F(y yo, oy, (22 2)
G(F(x , ),F(y ,...,y",yl),F(zz,...,zn,zl))+...
G(F(x",m , x”_l),F(y",yl,...,yn_l),F(z",zl,...,z"_l)) -n~h)

<¢

¥ (G(gxl,gyl,gzl) + G(g2?, gy*,92°) + ... + G(ga", gy", gz”))

(G(gwl, gyt, gz ) + G(gz?, gy*, 92%) + ... + G(gw",gy”,gzn)>
n

)

n
with gz* = gy' = gz', ga® < gy* < g2%, ga® = gy’ = g2%,..., ga" < gy <
gz" such that F has the mized g-monotone property. Suppose that (X, G, =)

is regular. Assume that F(X"™) C g(X) and (9(X), G) is G-complete. If there
exist zd, 23,23, ... 2l € X such that

2 3
gz} 2-< Zz;'(mo,:no,:no, . ,x{)‘g,
F(ag, x5, ..., af, 25) < g3,
1,2 n—1
F(ag, xg, x5, ..., x5 ) = gag.

Then F and g have an n-tupled coincidence point in X.

Proof. Proceeding exactly as in Theorem 3.1 we have that {gz} }, {922}, ...,
{gz} } are Cauchy sequences in the complete G-metric space. Then there exist
xl 2% ... 2™ € X such that (gxl)) is convergent to gx!, (gz2,) is convergent
to gz?,...,(ga) is convergent to ga™. That is,

m—0o0 m—0o0
lim G(g:c%l,gxfn,ng) = lim G(gxfn,ng,ng) =0,

lim G(gzy,, g7y, 92") = lim G(gzy,, gz, gz") = 0.

m—00 m—r0o0

Since, {gzl}, {gx3},...,{gz™ '} are non decreasing and {gxz2,}, {gzt},...,
{gz}} are non increasing. Using the regularity of (X, G, <), we obtain that
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(3.20)

gt g™l galh = gam

Now, using the rectangular inequality of G-metric space and (3.1), we get

¢ ( (G(F(I‘l,l'Q, $37 cee 7xn)7gx;n+l7gmin+l)

+ G(F(mQVrS’ s 7xn7x1)>g$72n+17gm72n+1) +...

+ G(F(z", ol 2?, .. ,x"l),gmﬁlﬂ,gx;‘l“)) . n1>

= ¢<<G(F(xl,x2, 2 a"), Fah, a2 a,, . ah), Fal, a2, al o ah)

+G(F (2?23, . 2", F(a? 23 .. 2 ol ) F(a? 23 ... 2", zl)

1.2 -1 1,2 -1
+ o+ GF (2" x, T F (2, Ty Ty e oo T )

1
< ¢(ﬁ (G(gﬁ«“l, gz}, gzh,) + Gga?, g2, gx2,) + G(ga®, gal,, gz2)

ot G(gfv"’gfv%agx"m)»
1
- w(g <G(9$1,gw#,g$h) + G(ga?, gxyy, gs,) + Glg2®, gy, gy,

+ G(gx",gx%gm%)))-

Taking the limit as m — oo, in above inequality and by the definition of ¢
and 1 and from (3.19) we obtain

(ﬁ(w}gnoo ((G(F(I’l, 1.27 $37 cee xn)7gw71n+l7gx71n+l)
+ G(F(x‘g, 113'3, s ’:L,n, ml)a gx$n+17 gmgn—&—l)

+. .+ GF @™ 2t 2% 2", gl gt ) - n_1>)

< ¢< i (G(gwl,gw%@,gfﬂ}n)JrG(gxz,gw%,gw%)+--~+G(gm”,gm%,gwk)))
- m—oo n
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This gives,
. 1.2 .3 1 1
mlgnoo ((G(F(w cat L, x"), 9T 1 9T )

2 .3 1 2 2

+G(F(x*,2°,...,2", 2 ), 9%, 1, 9T 1)

1.2 -1 -1
+- -+ GF (2" z 2%, 2" ),gx%+1,gx%+1)) ‘n > =0.

Hence, one can easily acquire

mli_1>nOO G(F(z!, 2%, 23, ... ,x”),g:v,lnﬂ,ga:,lnﬂ) =0,
: 2 .3 n .1 2 2 _
mlgnooG(F(x , TP, .., T ,x )s 9T 415 9T 4q) = 0, (3.21)
Aiinm G(F(z"™, 2t 22, ..., x”_l),gx"mﬂ,ga:"mﬂ) =0.

On the other hand, from triangle inequality, we get
G(F(zt 2%, ..., 2"), gz, gab) + G(F (2?23, ... x1), g2?, ga®) + - -
+ G(F (2™, zt, ... 2" 1), g™, ga™)
< G(F(ah, 2., a™), gy, 9 1) + G(F(?, 2%, ah), g2d 1, 920 4)
+. o+ GF@E™ 2t 2" gal o, gat ) + Ggal, g, g2t gat)
+ G927, 11, 97%, 92%) + ...+ G(gay, 1, 92", g2").
Taking the limit as m — oo and on using (3.18)-(3.20), we arrive at
G(F(zt, 22, 23,...,2"), gz*, gxt) + G(F(2%, 23, ... 2", x'), g2, g2?)
+ . 4 GF(z 2?23, "), g2, g2™) = 0.

That is,
G(F(zt, 2%, 23,...,2"), g2, gz') = 0,
G(F($27x ) 7xn’x )7g$2’gx ):O’
G(F(z', 2%, 23,... 2" 1), ga", gz™) = 0
That gives,
F(a', 2% 23,... 2") = g,
F(2?,23,... 2", zt) = ga?,
F(z®,... 2", zt 2?) = g2*
F(zt 2?23, 2" 1) = ga™.
Hence the element(z!, 2%, 23,...,2") € X™ is an n-tupled coincidence point

of the mappings F' : X" — X and ¢ : X — X and this makes end to the
proof. O
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Remark 3.3. Restricting ‘n’ to 2, Theorem 3.1 and Theorem 3.2 reduce to
Theorem 18 and Theorem 20 of Jain and Tas [7]. Thus our theorem is a proper
generalization of results [7]. Again in light of Examples 21 and 23 given in
[7], we assert that for n = 2, Theorem 3.1 is a generalizes the main results
of Choudhary and Maity [5], Mohiuddin et al. [15] and Nassine [18] as our
contractive condition is more general than that of [5], [15] and [18].

Remark 3.4. Again restricting ‘n’ to 2, and choosing ¢, : [0, 00) — [0, 00),

such that ¢ = % and ¥(t) = (lgk)t, 0 <k <1, (3.1) reduces to Corollary 2.5

of Karpinar et al. [8].

Next, in view of concept given in Examples 2.1 and 2.3 of [8] and Examples
21, 23 of [7], we present an example which illustrates the weakness of Theorem
2.1 of Mustafa [16] and shows that Theorem 3.1 is more general than Theorem
2.1 [16] since the contractive condition (3.1) is more general than the Condition
(2.1) of Mustafa [16].

Example 3.5. Let X = R with usual ordering. Define G : X3 — X by
G(z,y,2) =z —yl+ |y — 2| + [z — zl.
Letg:X—)XandF:X4—>Xbedeﬁnedby,gx:%foralleXandfor

all (zh,22,...,2") € X
bt — 222 4 23 — 224

Fal 22 23 24 —
(x*,z%, 27, x%) 16

)
) F and g have the mixed g-monotone property,
(c) (F,g) is commutative,

) F(XY) C g(X).

Now, all the conditions of Theorem 2.1 of [16] are satisfied except the con-
tractive condition (2.1). Suppose, to the contrary that there exist functions ¢
and 1) (define as in [16]) such that contractive condition of Theorem 2.1 of [16]
holds. Then, we must have

¢(G(x1—2x2+x3—2x4 yt— 2% + 2 — 2yt 2l — 222 4 23 — 224 >
16 ’ 16 ’ 16
1 1,1 .1 2 2 2 3 .3 .3 4 .4 4
§,¢<G £7&’i>+g<£’7’i)+g<£’l7i G<m77y77z ))
4 22 22 272 272
2 4
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Now, by the definition of G(z,y, z), we get
d)(‘ (! — 222 + 23 — 22%) — (y' — 292 + o3 — 2y%) ‘

16
+}(3/1—2212+y3—22/4)—(21—222+z3—2z4)‘
16
n (21—222+z3—224)—(x1—2x2+x3—2x4)‘)
16
1 oy y! x! 2 g2
< z_Z g _ 2 z 2
<7515 -5+ 53+ -5
2 2 2 2 3 .3 3 .3
y* oz 2 >y Yoz
+‘2 2+2 2+2 2+2 2
+‘z3w3)+‘w4¢+y‘*z4+z4fv4‘)
2 2 2 2 2 2 2 2
1 1 1 1 1 1 2,2
_ AN BT O T A QL_C‘L‘
w<<2 ’+’ 2+2 2+2 2
% o 2B
g1 - Slel -5 -
3 4 4 4
z 2tz
oz 7 g = 22 0).4!
e e R et

Taking gl =yt =21, 23 = ¢? = 2% and 2* = y* = 2%, we get

2
r? — — 22 22—z
(] yMy M )
<

(132 y2

2 2

ol

2 2 2 2
= _ Y Yy _z
{ 2 ’+‘ 2 2

z2 x2
Taking 7 777’ = k, we acquire ¢(k) < %¢(4kz)—w(k‘) Since,
function ¢ satisfies the sub additive property than we have i¢(4k) < ¢(k).
Thus, we obtain (k) < 0, for all k£ > 0; i.e., ¥(k) = 0, which contradicts the
definition of ¥. This provides that, function F does not satisfy the contractive

condition (2.1) of Mustafa [16].
Let us reconsider the same example, we show that the contractive condition
(3.1) of Theorem 3.1 is satisfied for the above functions i.e., the following
segment demonstrates that Theorem 3.1 is an extension of Theorem 2.1 [16].

Taking first four terms i.e., set n = 4 in the contractive condition (3.1) of
Theorem 3.1.
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3 4, (21 22 23,z ) € X with go! = gy! = g2!,

For (z, x2 ), (vt vty
g2? < gy? < gzz’ gz’ = gyt = g23, gt < gy* < gz%, we get the following
inequality

S((G(F(a' 2% 2% "), F(y' o2,y ) F (21, 2%, 2%, 7))
+ G(F (22,23, 2%, 2Y), F(2, v,y y ) F (22, 23, 24, 21))
+G(F(® 2t o' 2%), F(° yt gt ) F (25, 2, 21, 2)
+G(F(t o', 2%, 2%), F(y' y' o2 0P F (24, 21, 22, 2%))) - 47

G(gz', gy', 92%) + G(g2?, gy?, g2%) + G(g2°, gy, g2°) (3.22)

< ¢<
= 4
G(9x4,gy4,gz4)> B w<G(9$1,gy17921) + G(gz*, gy*, 92°)
1 4
G(g2% gy® 92°) + Glga*, gy, gz4))
y .

Next, we shall show that (3.22) holds for the above example. Then, for gz >
gyt > g2', ga* < gy < g%, gat > gyt > g2%, gat < gy' < g2*, we have

+

_.I_

G(F(z, 2%, 2%, 2%), F(y', v, v,y F (21, 2%, 23, 2%))

< Sl =y g = 2 1 e ) b 2 1))
S(2% =1 I = 22 12 = 22t = gyt = 2 1 - ),
(3.23)
Similarly,
G(F(z?, 2%, 2%, 2Y), F(y2, o2, 'ty F (22, 23, 24, 21))
< St =g+l = 2 | = 1 = g - 2P 12— )
1

TG A R A R et R e R R T B Ea )]
(3.24)

Inductively, one can easily show that
G, 2 a2), F(y® ity ) P (5, 24, 21, 22))

< —(lz' =yl + Iyt =2+ [ =2l + [2® — P+ |y - 20| + 2% — 2f))

S\H

(|22 = 2|+ [y* = 22|+ |22 = 2®[ + 2" — | + |y* = 2 + |2* = 2?)).
(3.25)

O | =
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G(F(at,a' 2%, 2%), F(y',y' o y°) F (24, 21, 2, 2%))

(la! =gl + 1yt =2+ |2t =2+ 2 =y + |y = 20+ [2° - 2))

(2% = 9?4y = 2%+ 12" =2+ 2 =y + " = 2%+ [ = 2
(3.26)

On using the inequalities (3 23)—(3 26), we get

G(F(:v1 2223 Y, Pyt o2, o2,y )F(z1 22,23 z4)

G(F (2, a5, 2"), Py, P,y g P (22, 25, 24, 1))
<F(x 7‘7: 71. 71‘2) (y 7y 7y 7y F(Z37Z 7z 722))
(F(x 7x 7‘%. 71.3) (y47y1’y27y)F(z47z72 723))

3
< E(G(gafl,gyl,gz1)+G(9x2,gyz,gz2)+G(9=’v3,gyg,gz3)+G(gﬂc4,gy4,gz4))-

Clearly, inequality (3.1) holds with ¢(t) = % t and ¢( ) = %t. Hence, all the
conditions of Theorem 3.1 are satisfied and (0,0,0,...,0) is an n-tupled coin-
cidence point of F' and g.

Next result involves existence and uniqueness of n-tupled common fixed
point.

Theorem 3.6. In addition to the hypotheses of Theorem 3.1, suppose that

for every (x, 2% 23,... "), (y 2 y3, . . y") € X there exists (21, 22,23,
..,z”)EX” such that( (21, z2 L TR 2 Lo 2 L 1))€X” '
comparable with (F (acl,xQ,...,a:"),...,F(x”,a:l,...,mnfl)) and(F(yl,yQ,...,

Yy, ..., Fly™yt,...,y" ). Then F and g have a unique n-tupled common
fixed point.

Proof. From Theorem 3.1 the set of n-tupled coincidence points of F and
g is non empty. Suppose that (z!,22,23,... 2"), (v}, v%, y3,...,y") are two
n-tupled coincidence points, that is

F(w1’x27x37""$n):g$1; F(y ’y27y37"‘7yn):

1
g
F(a?, 23, ..., 2" 2" = gz% Fys, .. .,y"y')=g

F(a™ zt, 22, .. 2" ) = g™ F(y™,y' v?, ..,y ) = gy™

Now, we shall show that ga: = gy',g2° = gy?,..., 92" = gy". By assump-

tion, there exists (z!,22,23,...,2") € X™ such that (F(z!,22%,23,...,2"),
2

F(22,23,...,2" 2, .. ,F(z ,21,22 ..., 2" 1)) is comparable with (F(x!, 22,

x3,...,m"),F(a:2,x3 cetal), o F(am et 2?2 ) and (F(yt o2, 3,
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2 1 1,2 -1 1 1 .2
”’yn)’ F(y7y3a--~ayn’y )a"'aF(ynvy’yw"ayn )) Set7 Z(]:ZaZOZ
22, ..., 2y = 2" and take 21 22,23, ..., 2" € X such that
gzi_F(zévz?)aZOa 7zq))
gzle(ZOVZOa 72872 )’
' —1
gzt = F(2, 28,28, ..., 207 ).

Then similarly, as in the proof of Theorem 3.1 one can inductively define
sequences {gz}}, {922}, {923.},...,{g2"} in X such that

_ 1,2 .3
9yl = F(zgn, zgn, Zo .. ,z;lfl),
9Zm+1 = F(Zmaznw azngm)’
_ 1,2 -1
9217711—&-1 - F(Z;szmazm7 . -721?1 )
Further, set x(l) = xl,xg =2, ... ,xg = x" and gl/é = yléyg = y327 LYY
and on the same way define the sequences {gz,,}, {g9x5,}, {922, }, - {gfL’”}

and {gyt}, {9y}, {9v2.}, ..., {gy™}. Then we can easily show that

1 1 2 . 1 _ 1 2
gx12n+1 = F(‘rgnvxén7x§n7 N 7$;1Ln) gyqurl - F(ygnvygnvy?n7 LR y%)?
9Tim+1 = F(xmvxrm s x%?‘xm); 9Ym+1 = F(ymvyﬂw s 7y;Ln7 ym)?
g = Flap, @, @0, )y gu = F(Ynhs Y Uns -+ Ui L)

Since, it is given that

(F(zt, 2%, 23, .. 2"), F(2®,23,..., 2" zb),... , F(z", 2t 2%,..., 2" 1Y)

= (gx%7gx%? R 791"?) = (gxlﬁgx2? R 79'/1"”)

and
1.2 .3 2 .3 1 1.2 -1
(F(z7,2%,2%,...,2"), F(2%,2°,...,2" 27), ..., F(2", z7,2%,..., 2" 7))
1.2
:(92179’213"'792?)
1 1,2 2 .3 3 n n
are comparable, then gz* =< gz;, gz7 = gz°, gx° 2 g27{,..., g2 = ga™.

In a similar way, we can show that for all m > 1,
g:c <gzm,gz <gx ga: <gz ey 92y, D gT.

Therefore, the inequality (3.1) yields
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& ( G(ga' gt gz}, 1) +G(ga? g2 922, 1) +G(ga® 92,923 )+ +C(ga™ gz" gz 1 1) )

= d)(rll <G(F(:U1,:L‘2,...,x”),F(ml,xQ, ce @) F(2h 22 20)

+G(F(z" 2t .. 2, Fa™, 2t e ), P, 2t Z?n_l))>>

<¢ (G(gcﬂ1 97" ,92,)+G (92?922 927, )+ G(ga® 92° 925 )+ + G(ga™ 92" g231) >
—_ n

—) (G(grl791"1792#)+G(gz2791"27923”)+G(gr379fr3792%)+--~+G(gw"79w",gZZ%)>
- :

(3.27)
Set,
am = Ggat, gat, gz 1) + Gl92®, ga?, gz, 1)
+ G(gm?)vgl‘ga gz?n—&-l) +o.t G(ngn, gmn’ gz;rvlz—‘,—l)‘
Then, from (3.27), we get

$lam) < ¢lam—1) — ¥(am-1). (3.28)

Since, 1 is non negative, therefore we obtain ¢(am) < ¢(@m—1). From above
inequalities and monotone property of ¢, we have «;, < a,;;—1. Therefore
{am} is a monotonically decreasing sequence of nonnegative real numbers.
So, there exists a > 0 such that o, — « as m — oo. Letting the limit as
m — oo in (3.28), one can get

Bla) < B(a) — lim plan) = dla) ~ lim_p(am) < 9(0).

am—at
This gives, ay, — 0 as m — co. Then
. 11 1 : 2 2 2
Jim Glgz™, g2, g2 41) = 0, lim G(g27, 927, g251) = 0,
) W%E)noo G(gl’nagl‘nangz—i—l) =0.
Similarly, one can show that
. 1 1 1 . 2 2 2
lim G(gy .9y, 97n11) =0, lim G(gy”, 9y", 92541) = 0,
- lim Glgy", gy" 92p41) = 0.
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Now, by the property(G5), we have
G(gw;gaz; gy;) < G(gw;, gw; gzém) + G(gZém,gzgm,gy;) — 0,
G(gx , gL, gy ) S G(gx » gx 7gzm+1) + G(gszrl)gszrl)gy ) — 07

G(gz", gx", gy") < G(gx", 92", 925 1) + G(92, 11, 921, 9Y") — 0,

as m — oo. From the above inequality, we get

grt =gy', g* =gy’ ..., g =gy". (3.29)
Since,
F(zt 2% 23, 2") = go',
F($27x ) 7&'/‘”"’171) :gx b
F(z™, 2t 22, ... 2" 1) = ga™.

And, the pair (F, g) is commutative then

F(gw;, gwi,g:v?’, . ,g:v’;) = ggx;,
F(gx®,gz°, ..., g2", gx') = ggx°,

F(ga", gzt  gz?, ..., gz" 1) = gga™.

Now, put gz' = u', gz? = u?,..., g™ = u”, we arrive at
Fu',u?,u?,. .. u") = gul,
Fu?,u,.. ., u™ u') = gu?,
’ o (3.30)
Fu™ul,u?, ... u" ) = gu™.
Hence, (u!,u?,u3,...,u™) is an n-tupled coincidence point of F and g. Now,
put y' =l y? =u?,... y" =u" in (3.29), we get
grl = gut, gzt=gu® ... , gz" = gu™
This gives,
1_ .1 2 __ .2 n__,n
gu =u, gu=u", ... , gut=u". (3.31)
From (3.30) and (3.31), we get
Ful,u?u?, ... u") = gut = ut,
Fu?u?,.. . u™ul) = gu? = u?,
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Thus, (u',u?,u?,...,u") is n-tupled common fixed point of F' and g. To

prove the uniqueness, suppose that (v',v2 v3,...,v") is an another n-tupled

common fixed point of F' and g. From (3.29), we obtain that

And this makes end to the proof. O

Now following example illustrates the usability of Theorem 3.1.

Example 3.7. Let X = R with usual ordering. Define G : X3 — X by
G(x,y,z) =max{|lz—y|+|ly—z|+|z—x|}. Let g: X - X and F: X" —» X
be defined by, gz = 7 for all x € X and for all (xt, 2%, ., 2" e X

ol =22 423 — .. -2
16n
Taking ¢ = 3! for all ¢ € [0,00) and ¢ = % for all t € [0, 00). Then

(a) (X, @) is complete ordered G-metric space.

F(zl,2?%,...,2") =

(b) F and g have the mixed g-monotone property.
(¢) (F,g) is commutative.
(d) F(X") C g(X).
(e) For the verification of contractive condition let (z!,22,...,2"), (y', %2,
.oy and (21, 22,...,2") are in X with go! = gy! = gzl gz® <
9y* % g2°, g2 = gy’ = g2°,..., gz" < gy < g2", then
G(F(zt, 22, ..., 2™), Fy' 92, ..., y"), F(24 22,...,2")
_G($1—m2+...—x” Yyl =2+ =" z1—22—|—...—z”)
B 16n ’ 16n ’ 16n
1 L. y (3.32)
< E(ﬂ —z |+t =2+ 2" = 2"))
1
< - (Glox' gy’ 92") + G(g2%, 95", 92%) + ... + Gl9a", gy, 927)).
Again,
G(F(xz, R N 2 T TR T W 2N L zl))
_G<x2—...+x”—:p1 y2—...—|—y"—y1 22—...+z"—zl>
- 16n ’ 16n ’ 16n (3.33)
1

< 1. (Gl9a%, 9y%,92%) + ... + Glg2", gy", 92") + Glga", gy", 927)).
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In a similar way, one can easily show that

G(F(z™,z, ... z" ), F(y™, vt ... ,y" ), F(z", 2L, ..., 2" )

1
< 1. (Glox" 9y", 92 M +G(gzt, gyt gzt)+ - (3.34)

+G(g2" " gy "),

Now, on using (3.32)-(3.34), we have

(G(F(z',22,...,2"), Fy' 92, ... ,y"), F(4 22%,...,2")

+G(F(2?,... 2™ aY), F(2, ..., y"yh), F(2%..., 2" 2Y)

+ ..+G( (:U sl Fyt oyt Ly R 2 2 )

< - (Gloa' gy, 92") + Glga® gy”. 92) + ... + Glga" gy, 92"))
implies that

(G(F(z',22,...,2"), F(y', o2, ... y"), F(z4 22, ..., 2")

+G(F(2?,... 2" 2, F(2, ..y g, F(2%,. .., 2" 2h) + - -

+G(F (2™, 2, 2", F(y™,yt, .y Y, F (2™ 2L 2 ) et

1

4

Clearly, inequality (3.4) hold with ¢(t) = 3t and (t) = xt. Hence, all

the conditions of Theorem 3.1 are satisfied and (0,0,0,...,0) is an n-tupled
coincidence point of F' and g.

—(G(gz*, gy*, g2") + G(g2?, gy*, g2°) + ... + G(gz™, gy™, gz")).

Setting g = I, in Theorem 3.1 and Theorem 3.2, resulting the following
corollary.

Corollary 3.8. Let (X, <) be a partially ordered set and (X, G) be a G-metric
space such that (X,G) is G-complete. Let F' : X™ — X a (¢,v)-contractive
mappings on X, such that

S((G(F(zt, 2%, ... ™), F(yh o2, .. y"), F(2h 2%, ..., 2")

+G(F(2?,..., 2™ aY), F(2, ... ,.y"yh), F(22,. .., zl))—i—---
—I—G(F(m",xl,...,x" D, F@™ gt .y, P2 2 2 ) e
§¢(G(x1,y1,zl)+G(x 2 22+ G ",y z ))

_ ¢<G($1,y1, )+ Gy )+ Gy, Z”)>
n
(3.35)
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with &t = y1 =2l 22 < y2 =< 22, 3 = y3 -z, 2 = y" =< 2", such that
F has the mixed monotone property. Also assume that, either

(a) F is continuous, or
(b) (X, G, =) is regular.
If there exist x(l], x%, :L‘g, ...,z € X such that

1 1,2 .3

x szg:z:O,:co,xO,.l..,a:gg
F(ah. ..o ) =
xy 2 F(xg, ..., zq, x5, 2§),

1.2 1
F(xf, zg, x5, ...,n" ") 2 xp.

Then F has an n-tupled fized point in X.

Remark 3.9. If we choose n = 2 in Corollary 3.8, we obtain Corollary 22 in
[7].
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