Nonlinear Functional Analysis and Applications Vol. 20, No. 4 (2015), pp. 517-522

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2015 Kyungnam University Press

ON INEQUALITIES CONCERNING COMPOSITE POLYNOMIALS

Abdul Liman¹ and Irfan Ahmed Faiq²

¹Department of Mathematics National Institute of Technology, Srinagar, 190006, India e-mail: abliman22@yahoo.com

²Department of Mathematics National Institute of Technology, Srinagar, 190006, India e-mail: faiqirfan85@gmail.com

Abstract. In this paper we consider a more general class of polynomials P(R(z)) of degree mr, where R(z) is a polynomial of degree at most r and prove compact generalizations of some well-know polynomial inequalities.

1. INTRODUCTION

Let P_n be the class of polynomials $P(z) := \sum_{j=0}^n a_j z^j$ of degree at most n and P'(z) be its derivative, then

$$\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|.$$
(1.1)

The result is sharp and equality holds for the polynomials having all zeros at origin.

Inequality (1.1) is a famous result due to Bernstein [1], who proved it in 1912. Later, in 1930 he proved the following result from which inequality (1.1) can also be deduced.

Theorem 1.1. Let P(z) and Q(z) be two polynomials with degree of P(z) not exceeding that of Q(z). If Q(z) has all its zeros in $|z| \leq 1$ and

$$|P(z)| \le |Q(z)|, \text{ for } |z| = 1,$$

⁰Received February 17, 2015. Revised May 18, 2015.

⁰2010 Mathematics Subject Classification: 49J40, 47H10, 47H17.

⁰Keywords: Composite polynomials, complex domain, zeros, inequalities.

A. Liman and I. A. Faiq

then

$$|P'(z)| \le |Q'(z)|, \quad for \ |z| = 1.$$
 (1.2)

Malik and Vong [4] improved Theorem 1.1 and replaced inequality (1.2) by

$$\left|\frac{zP'(z)}{n} + \beta\frac{P(z)}{2}\right| \le \left|\frac{zQ'(z)}{n} + \beta\frac{Q(z)}{2}\right|,\tag{1.3}$$

for every β satisfying $|\beta| \leq 1$, *n* being the degree of Q(z).

If we restrict ourselves to a class of polynomials having no zero in |z| < 1, then inequality (1.1), can be sharpened and we have for such class of polynomials

$$\max_{|z|=1} |P'(z)| \le \frac{n}{2} \max_{|z|=1} |P(z)|.$$
(1.4)

Inequalitie (1.4) is sharp and equality holds for the polynomials having all their zeros on |z| = 1. Inequality (1.4) was conjectured by Erdös and later verified by Lax [3].

If P(z) is a self-inverse polynomial, that is, if P(z) = uQ(z), |u| = 1, where $Q(z) = z^n \overline{(P\frac{1}{z})}$, then it was proven by O'Hara and Rodrigues [5] that

$$\max_{|z|=1} |P'(z)| = \frac{n}{2} \max_{|z|=1} |P(z)|.$$
(1.5)

In this paper we consider the more generalized class of polynomials P(R(z)), introduced by Shah and Liman [6], where R(z) is a polynomial of degree at most r defined by (PoR)(z) = P(R(z)), so that $PoR \in P_{nr}$ and prove the following results, which in turn generalize the above inequalities.

First we prove the following result which includes inequality (1.2) as a special case.

Theorem 1.2. Let $PoR \in P_{nr}$ and $QoS \in P_{ms}$ be two composite polynomials with degree of P(R(z)) not exceeding that of Q(S(z)). If $Q(S(z)) \neq 0$ for |z| > 1, and

$$|P(R(z))| \le |Q(S(z))|, \text{ for } |z| = 1,$$

then

$$P'(R(z))| \le \frac{sM'}{rm'} |z|^{s-r} |Q'(S(z))|, \quad for \ |z| \ge 1,$$
(1.6)

where $m' = Min_{|z|=1}|R(z)|$ and $M' = Max_{|z|=1}|S(z)|$.

If we choose R(z) = S(z) in inequality (1.6), we get the following:

518

Corollary 1.3. Let $PoR \in P_{nr}$ and $QoR \in P_{mr}$, such that $|P(R(z))| \le |Q(R(z))|$ for |z| = 1. If $|Q(R(z))| \ne 0$ for |z| > 1, then

$$|P'(R(z))| \le \frac{M'}{m'} |Q'(R(z))|, \quad for \ |z| \ge 1.$$
(1.7)

Remark 1.4. If in inequality (1.7) we take R(z) = z, so that m' = M' = 1, we get inequality (1.2).

Next we prove the following result which is of course improvement to the inequality (1.6).

Theorem 1.5. Let Q(S(z)) be a polynomial of degree ns having all its zeros in $|z| \leq 1$ and P(R(z)) be a polynomial of degree not exceeding that of Q(S(z)). If $|P(R(z))| \leq |Q(S(z))|$ for |z| = 1, then for any $|\beta| < 1$,

$$\left|\frac{zP'(R(z))R'(z)}{ns} + \frac{\beta}{2}P(R(z))\right| \le \left|\frac{zQ'(S(z))S'(z)}{ns} + \frac{\beta}{2}Q(S(z))\right|.$$
 (1.8)

For an appropriate choice of argument of β in inequality (1.8), and making $|\beta| \rightarrow 1$, we get the following:

Corollary 1.6. Let Q(S(z)) be a polynomials of degree ns having all its zeros in $|z| \leq 1$ and P(R(z)) be a polynomial of degree not exceeding that of Q(S(z)). If $|P(R(z))| \leq |Q(S(z))|$ for |z| = 1, then

$$\left|\frac{P'(R(z))R'(z)}{ns}\right| + \left|\frac{Q(S(z))}{2}\right| \le \left|\frac{Q'(S(z))S'(z)}{ns}\right| + \left|\frac{P(R(z))}{2}\right|.$$
 (1.9)

If we choose R(z) = S(z) in inequality (1.9), we get the following corollary:

Corollary 1.7. Let Q(R(z)) be a polynomials of degree ns having all its zeros in $|z| \leq 1$ and P(R(z)) be a polynomial of degree not exceeding that of Q(R(z)). If $|P(R(z))| \leq |Q(R(z))|$ for |z| = 1, then

$$\left|\frac{P'(R(z))R'(z)}{ns}\right| + \left|\frac{Q(R(z))}{2}\right| \le \left|\frac{Q'(R(z))R'(z)}{ns}\right| + \left|\frac{P(R(z))}{2}\right|.$$
 (1.10)

If we take R(z) = z in inequality (1.10), we immediately have under the hypothesis of Theorem 1.1,

$$\left|\frac{P'(z)}{n}\right| + \left|\frac{Q(z)}{2}\right| \le \left|\frac{Q'(z)}{n}\right| + \left|\frac{P(z)}{2}\right|, \quad \text{for } |z| = 1.$$
(1.11)

Inequality (1.11), is of course better than inequality (1.2) and has also been independently proved by Jain [2].

The following result that we prove will include inequality (1.4), as a particular case.

Theorem 1.8. If $PoR \in P_{nr}$ and $P(R(z)) \neq 0$ for |z| < 1 and $R(z) \neq 0$ for $|z| \ge 1$, then for $|z| \ge 1$, we have

$$|P'(R(z))| \le \frac{M'n}{m'(m'+M')} |z|^{nr-r} |P(R(z))|, \qquad (1.12)$$

where $m' = Min_{|z|=1}|R(z)|$ and $M' = Max_{|z|=1}|R(z)|$.

Remark 1.9. If we choose R(z) = z in inequality (1.12), we get

$$|P'(z)| \le \frac{n}{2} |z|^{n-1} Max_{|z|=1} |P(z)|, \quad \text{for } |z| \ge 1.$$
(1.13)

Which in particual gives Erdös-Lax Theorem.

2. Lemmas

For the proof of above theorems we need the following lemma.

Lemma 2.1. If P(R(z)) is a polynomial of degree nr having all its zeros in $|z| \leq 1$, then for |z| = 1,

$$|z[P(R(z))]'| \ge \frac{ns}{2}|P(R(z))|.$$

Proof. Let z_i (i = 1, 2, ..., ns) be the zeros of P(R(z)), then it is obvious

$$\left| e^{i\theta} \frac{[P(R(z))]'}{P(R(z))} \right| = \left| \sum_{i=1}^{ns} \frac{e^{i\theta}}{e^{i\theta} - z_i} \right| \ge \sum_{i=1}^{ns} \frac{1}{2} = \frac{ns}{2}.$$
 (2.1)

Which concludes the proof of Lemma 2.1.

3. Proof of theorems

Proof of Theorem 1.2. Since $Q(S(z)) \neq 0$ for |z| > 1, is a polynomial of degree ms and $|P(R(z))| \leq |Q(S(z))|$, for |z| = 1 where |P(R(z))| is a polynomial of degree nr. Therefore, if β is any complex number with $|\beta| > 1$, then by Rouche's theorem all the zeros of $P(R(z)) - \beta Q(S(z))$ lie in $|z| \leq 1$. Hence, by Gauss-Lucas theorem all the zeros of $P'(R(z))R'(z) - \beta Q'(S(z))S'(z)$ lie in $|z| \leq 1$, for every complex number β with $|\beta| > 1$. This gives

$$|P'(R(z))||R'(z)| \le |Q'(S(z)||S'(z)|, \quad \text{for } |z| \ge 1.$$
(3.1)

For if this is not true, then there is a point z_o with $|z_o| \ge 1$, such that

$$|P'(R(z_o))||R'(z_o)| > |Q'(S(z_o))|S'(z_o)|,$$

520

we take

$$\beta = \frac{P'(R(z_o))R'(z_o)}{Q'(S(z_o)S'(z_o))},$$

then $|\beta| > 1$ and with this choice of β , we have

$$P'(R(z_o))R'(z_o) - \beta Q'(S(z_o))S'(z_o) = 0, \text{ for } |z_o| \ge 1.$$

This is a contraduction and therefore

$$P'(R(z))||R'(z)| \le |Q'(S(z))||S'(z)|.$$

Let $R(z) \neq 0$ for $|z| \ge 1$. If $m' = Min_{|z|=1}|R(z)|$, then we can easly prove

$$|R'(z)| \ge rm'|z|^{r-1}, \text{ for } |z| \ge 1.$$
 (3.2)

Similarly if $S(z) \neq 0$, for $|z| \ge 1$ and $Max_{|z|=1}|S(z)| = M'$, then

$$|S'(z)| \le sM'|z|^{s-1}$$
, for $|z| \ge 1$. (3.3)

Using inequalities (3.2) and (3.3) in inequality (3.1), we have

$$|P'(R(z))| \le \frac{sM'}{rm'} |z|^{s-r} |Q'(S(z))|.$$

Which proves the result.

Proof of Theorem 1.5. Let P(R(z)) and Q(S(z)) satisfies the hypothesis of the theorem. Therefore for any complex number α with $|\alpha| > 1$, we have by Rouche's Theorem all the zeros of $P(R(z)) + \alpha Q(S(z))$ lie in |z| < 1. Now by lemma 1 for |z| = 1, we have

$$\left| zP'(R(z))R'(z) + z\alpha Q'(S(z))S'(z) \right| \ge \frac{ns}{2} \left| P(R(z)) + \alpha Q(S(z)) \right|.$$
(3.4)

From inequality (3.4), we note for any β with $|\beta| < 1$,

$$zP'(R(z))R'(z) + z\alpha Q'(S(z))S'(z)| + \beta \frac{ns}{2}(P(R(z)) + \alpha Q(S(z)) \neq 0.$$
(3.5)

From inequality (3.5), we conclude that

$$\frac{zP'(R(z))R'(z)}{ns} + \frac{\beta}{2}P(R(z)) \neq -\alpha \left(\frac{zQ'(S(z))S'(z)}{ns} + \frac{\beta}{2}Q(S(z))\right).$$
 (3.6)

For an appropriate choice of the argument of α in the right hand side of the inequality (3.6), we get

$$\left|\frac{zP'(R(z))R'(z)}{ns} + \frac{\beta}{2}P(R(z))\right| \neq |\alpha| \left|\frac{zQ'(S(z))S'(z)}{ns} + \frac{\beta}{2}Q(S(z))\right|.$$
 (3.7)

From Inequality (3.7), we observe that

$$\left|\frac{zP'(R(z))R'(z)}{ns} + \frac{\beta}{2}P(R(z))\right| < |\alpha| \left|\frac{zQ'(S(z))S'(z)}{ns} + \frac{\beta}{2}Q(S(z))\right|.$$
 (3.8)

Making $|\alpha| \to 1$, inequality (3.8) implies

$$\left|\frac{zP'(R(z))R'(z)}{ns} + \frac{\beta}{2}P(R(z))\right| \le \left|\frac{zQ'(S(z))S'(z)}{ns} + \frac{\beta}{2}Q(S(z))\right|.$$
 completes the proof of Theorem 1.5.

Which completes the proof of Theorem 1.5.

Proof of Theorem 1.8. Let p(z) = P(R(z)) and q(z) = Q(R(z)) such that $q(z) = z^{nr} p\left(\frac{1}{\overline{z}}\right).$ Now, we know

$$|p'(z)| + |q'(z)| \le nr|z|^{nr-1} Max_{|z|=1}|p(z)|, \text{ for } |z| \ge 1$$

Equivalently

$$|P'(R(z))||R'(z)| + |Q'(R(z))||R'(z)| \le nr|z|^{nr-1}Max_{|z|=1}|P(R(z))|.$$
 (3.9)

Inequality
$$(3.9)$$
, implies

$$|P'(R(z))| + |Q'(R(z))| \le \frac{nr}{|R'(z)|} |z|^{nr-1} Max_{|z|=1} |P(R(z))|, \quad \text{for } |z| \ge 1.$$
(3.10)

Now, from inequality (1.7),

$$|P'(R(z))| + \frac{M'}{m'}|P'(R(z))| \le \frac{M'}{m'}(|P'(R(z))| + |Q'(R(z))|).$$
(3.11)

Using inequality (3.10) in inequality (3.11), we get

$$|P'(R(z))| \le \frac{M'nr}{|R'(z)|(m'+M')} |z|^{nr-1} |P(R(z))|, \quad \text{for } |z| \ge 1.$$
$$|P'(R(z))| \le \frac{M'n}{m'(m'+M')} |z|^{(n-1)r} |P(R(z))|, \quad \text{for } |z| \ge 1.$$

This completes the proof of Theorem 1.8.

References

- [1] S.N. Bernstein, Sur la limitation des derivées des polnômes, C. R. Acad. Sci. Paris, 190 (1930), 338-340.
- [2] V.K. Jain, On maximum modulus of polynomials, Indian J. Pure Appl. Math., 23(11) (1992), 815-819.
- [3] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc.(N.S), **50** (1944), 509–513.
- [4] M.A. Malik and M.C. Vong, Inequalities concerning the derivative of polynomials, Rendiconts Del Circolo Matematico Di Palermo Serie II 34 (1985), 422-426.
- [5] P.J. O'Hara and R.S. Rodriguez, Some properties of self-inversive polynomials, Proc. Amer. Math. Soc., 44 (1974), 331–335.
- [6] W.M. Shah and A. Liman, On Some Bernstein Type Inequalities for Polynomials, Nonli. Func. Anal. Appl., 2(9) (2004), 223–232.

522