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Abstract. In this paper we consider a more general class of polynomials P(R(z)) of degree
mr, where R(z) is a polynomial of degree atmost r and prove compact generalizations of
some well-know polynomial inequalities.

1. INTRODUCTION
n

Let P, be the class of polynomials P(z) := a;z’ of degree at most n and

7=0
P'(z) be its derivative, then
max | P'(z)| < nmax|P(z)|. (1.1)
|z|=1 |z|=1

The result is sharp and equality holds for the polynomials having all zeros at
origin.

Inequality (1.1) is a famous result due to Bernstein [1], who proved it in
1912. Later, in 1930 he proved the following result from which inequality (1.1)
can also be deduced.

Theorem 1.1. Let P(z) and Q(z) be two polynomials with degree of P(z) not
exceeding that of Q(z). If Q(z) has all its zeros in |z| < 1 and

[P(2)| <1Q(2)],  for |2] =1,
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then
[P'(2)] < [Q(2)],  for [2] =1. (1.2)
Malik and Vong [4] improved Theorem 1.1 and replaced inequality (1.2) by

zP'(z) +5P( z) ZQ( ) Q( )
n 2

<

+8 (1.3)

for every [ satisfying || < 1, n being the degree of Q(z).

If we restrict ourselves to a class of polynomials having no zero in |z| < 1,
then inequality (1.1), can be sharpened and we have for such class of polyno-
mials

max | P'(2)] < = max |P(2)]- (1.4)
|z|=1 2 |z|=1
Inequalitie (1.4) is sharp and equality holds for the polynomails having all
their zeros on |z| = 1. Inequality (1.4) was conjectured by Erdés and later
verified by Lax [3].

If P(z) is a self-inverse polynomial, that is, if P(z) = uQ(z), |u| = 1, where

Q(z) = z"(P1), then it was proven by O’Hara and Rodrigues [5] that

|m|a>1<|P’( =3 Tg'mflP( z)]- (1.5)

In this paper we consider the more generalized class of polynomials P(R(z)),
introduced by Shah and Liman [6], where R(z) is a polynomial of degree at
most r defined by (PoR)(z) = P(R(z)), so that PoR € P,, and prove the
following results, which in turn generalize the above inequalities.

First we prove the following result which includes inequality (1.2) as a spe-
cial case.

Theorem 1.2. Let PoR € Py, and QoS € Pp,s be two composite polynomials

with degree of P(R(z)) not exceeding that of Q(S(z)). If Q(S(z)) # 0 for
|z| > 1, and

[P(R(2)| <1Q(S(2))l,  for [z =1,

then
|P'(R(2))] < Ml QI (S(2)],  for |2 > 1, (1.6)

where m' = Min -1 |R(2)| and M' = Mazx|.j—1|S(z)|.

If we choose R(z) = S(z) in inequality (1.6), we get the follwoing:
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Corollary 1.3. Let PoR € P, and QoR € P, such that |P(R(2))| <
[Q(R(2))| for |2| = 1. If[Q(R(2))| # 0 for 2| > 1, then

PEE) < L@, for 21 (1)

Remark 1.4. If in inequality (1.7) we take R(z) = z, so that m' = M’ =1,
we get inequality (1.2).

Next we prove the following result which is of course improvement to the
inequality (1.6).

Theorem 1.5. Let Q(S(z)) be a polynomial of degree ns having all its zeros in
|z| <1 and P(R(z)) be a polynomial of degree not exceeding that of Q(S(z)).
If[P(R(2))| < 1Q(S(2))| for |2| = 1, then for any |B] <1,

2P (R(2))R/(2) n BP(R(z))‘ < ZQ/<55;))S/(Z) _|_§

Q(5(2))|-  (1.8)

\)

ns

For an approprate choice of argument of § in inequality (1.8), and making
|B| — 1, we get the following:

Corollary 1.6. Let Q(S(z)) be a polynomials of degree ns having all its zeros
in |z| <1 and P(R(z)) be a polynomial of degree not exceeding that of Q(S(z)).
If |[P(R(2))| < |Q(S(2))| for |z[ =1, then

‘P’(R(Z))R’(Z) N ’Q(SQ(Z))‘ < ‘Q’(S(Z))S’(Z)

= (1.9)

If we choose R(z) = S(z) in inequality (1.9), we get the following corollary:

Corollary 1.7. Let Q(R(z)) be a polynomials of degree ns having all its zeros
in|z| <1 and P(R(z)) be a polynomial of degree not exceeding that of Q(R(z)).
If [IP(R(2))| < |Q(R(2))| for |2] =1, then

‘P’(R(Z))R’(Z) N ’Q(RQ(Z))’ < 'Q’(R(Z))R’(Z)

5 (1.10)

ns

Nuta

If we take R(z) = z in inequality (1.10), we immediately have under the

hypothesis of Theorem 1.1,
P'(z)| Q) P(z)
+
n 2 2

+ , for |z|=1. (1.11)

< ’Q’(Z)

Inequality (1.11), is of course better than inequality (1.2) and has also been
independently proved by Jain [2].
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The following result that we prove will include inequality (1.4), as a partic-
ular case.

Theorem 1.8. If PoR € P,, and P(R(z)) # 0 for |z| <1 and R(z) # 0 for
|z| > 1, then for |z| > 1, we have

, M'n
PRE)| < A

where m' = Min -1 |R(2)| and M' = Mazx|,j—1|R(2)|.

2" P(R(2))], (1.12)

Remark 1.9. If we choose R(z) = z in inequality (1.12), we get
n _
|P'(2)] < 5]2!” 1Max‘z|:1\P(z))], for |z| > 1. (1.13)

Which in particualr gives Erdos-Lax Theroem.

2. LEMMAS

For the proof of above theorems we need the following lemma.

Lemma 2.1. If P(R(z)) is a polynomial of degree nr having all its zeros in
|z| <1, then for |z] =1,

2[P(R(2)))| = 2| P(R(2))|.

- 2
Proof. Let z; (i =1,2,...,ns) be the zeros of P(R(z)), then it is obvious
WPREN| & 6 |31 _ns
“ "P(R(2)) ;e“’—zi —;2 2 (21)
Which concludes the proof of Lemma 2.1. O

3. PROOF OF THEOREMS

Proof of Theorem 1.2. Since Q(S(z)) # 0 for |z| > 1, is a polynomial of
degree ms and |P(R(2))| < |Q(S(2))|, for |z| = 1 where |P(R(z))] is a polyno-
mial of degree nr. Therefore, if 8 is any complex number with |3]| > 1, then
by Rouche’s theorem all the zeros of P(R(z)) —Q(S(2)) lie in |z| < 1. Hence,
by Gauss-Lucas theorem all the zeros of P'(R(z))R'(z) — pQ'(S(z))S'(z) lie
in |z| < 1, for every complex number 3 with |3| > 1. This gives

[P'(R(2)[|R(2)] < |Q'(S(2)IS"(2)],  for [z = 1. (3.1)
For if this is not true, then there is a point z, with |z,| > 1, such that

| P(R ()[R (20)] > [Q(S(20)IIS" (20)]
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we take . .
5 PR )
Q'(5(20)5"(20) ’
then |B| > 1 and with this choice of 3, we have
P'(R(20))R (20) — BQ'(5(20))S'(25) = 0, for |zo| > 1.
This is a contraduction and therefore
[P'(R(2))[IR'(2)] < |Q'(S(2)]|'(2)].
Let R(z) # 0 for |z| > 1. If m" = Min,—1|R(2)|, then we can easly prove
IR (2)| > rm/|2|"7,  for |z| > 1. (3.2)
Similarly if S(z) # 0, for [2] > 1 and Max|.|—|S(z)| = M’, then
1S7(2)| < sM'|2|*7Y,  for |z| > 1. (3.3)
Using inequalities (3.2) and (3.3) in inequality (3.1), we have
M/ S—r
[P(R()) < =T 1QUS(2)-
Which proves the result. ]

Proof of Theorem 1.5. Let P(R(z)) and Q(S(z)) satisifies the hypothesis
of the theorem. Therefore for any complex number « with |a] > 1, we have
by Rouche’s Theorem all the zeros of P(R(2)) + aQ(S(2)) lie in |z| < 1. Now
by lemma 1 for |z| = 1, we have

2P'(R(2))R/(2) + zaQ'(5(2))S'(2)

> n;’P(R(z)) + aQ(S(z))‘. (3.4)
From inequality (3.4), we note for any 8 with |5] < 1,
2P'(R(2))R'(2) + 20Q'(5(2))S'(2)] +5%(P(R(z)) +aQ(5(z)) # 0.

From inequality (3.5), we conclude that

PUEDEE | Cp(ree)) # —af

ns 2

(3.5)

ns 2

For an approprate choice of the argument of « in the right hand side of the
inequality (3.6), we get

2P'(R(z))R'(2) 2Q'(8(2))S'(z) | B
— + 5 P(R(2))| # lof| ===+ 5Q(S(2))|.  (37)
From Inequality (3.7), we observe that
ZP/(RE;ZQ)R’(Z) i gP(R(Z)) < oy W gQ(S(z)) (3.8)
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Making |a| — 1, inequality (3.8) implies

P'(R(z))R’ "(S(2))8’
LRG| 8 p(r(ay)| < |PLEEDTE | B 0ay)
Which completes the proof of Theorem 1.5. O

Proof of Theorem 1.8. Let p(z) = P(R(z)) and ¢(z) = Q(R(z)) such that

q(z) = znrp<;>.

Now, we know
' ()| + ¢ (2)] < nrfz[" " Mz |p(2)], - for [z > L.
Equivalently
|P'(R(2))[|R ()| + Q' (R(2) IR (2)] < nrl2|" ™  Maz. =1 |[P(R(2))].  (3.9)
Inequality (3.9), implies

IP’( ( ))!+!Q’( (=)

nr— 3.10
< i T Masal PRE)L for >0 G0
Now, from inequality (1.7),
/ M/ / M / /
[PR()| + 7 PR(2))] < 7 (1P(R(2)] + Q' (B(=))])- (3.11)
Using inequality (3.10) in inequality (3.11), we get
M'nr
P'(R =l p f > 1.
[P(R(2))] < R0 —{—M')|Z| |P(R(2))|, for |z >
M'n
P’ <—— " __|z|»Drp f > 1.
[P'(R(2))| < m,(m,+M,)|Z| |P(R(2))|, for |z| =
This completes the proof of Theorem 1.8. O
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