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Abstract. In this paper we consider a more general class of polynomials P (R(z)) of degree

mr, where R(z) is a polynomial of degree atmost r and prove compact generalizations of

some well-know polynomial inequalities.

1. Introduction

Let Pn be the class of polynomials P (z) :=
n∑
j=0

ajz
j of degree at most n and

P ′(z) be its derivative, then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

The result is sharp and equality holds for the polynomials having all zeros at
origin.

Inequality (1.1) is a famous result due to Bernstein [1], who proved it in
1912. Later, in 1930 he proved the following result from which inequality (1.1)
can also be deduced.

Theorem 1.1. Let P (z) and Q(z) be two polynomials with degree of P (z) not
exceeding that of Q(z). If Q(z) has all its zeros in |z| ≤ 1 and

|P (z)| ≤ |Q(z)|, for |z| = 1,
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then

|P ′(z)| ≤ |Q′(z)|, for |z| = 1. (1.2)

Malik and Vong [4] improved Theorem 1.1 and replaced inequality (1.2) by∣∣∣∣zP ′(z)n
+ β

P (z)

2

∣∣∣∣ ≤ ∣∣∣∣zQ′(z)n
+ β

Q(z)

2

∣∣∣∣, (1.3)

for every β satisfying |β| ≤ 1, n being the degree of Q(z).
If we restrict ourselves to a class of polynomials having no zero in |z| < 1,

then inequality (1.1), can be sharpened and we have for such class of polyno-
mials

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|. (1.4)

Inequalitie (1.4) is sharp and equality holds for the polynomails having all
their zeros on |z| = 1. Inequality (1.4) was conjectured by Erdös and later
verified by Lax [3].

If P (z) is a self-inverse polynomial, that is, if P (z) = uQ(z), |u| = 1, where

Q(z) = zn(P 1
z ), then it was proven by O’Hara and Rodrigues [5] that

max
|z|=1

|P ′(z)| = n

2
max
|z|=1

|P (z)|. (1.5)

In this paper we consider the more generalized class of polynomials P (R(z)),
introduced by Shah and Liman [6], where R(z) is a polynomial of degree at
most r defined by (PoR)(z) = P (R(z)), so that PoR ∈ Pnr and prove the
following results, which in turn generalize the above inequalities.

First we prove the following result which includes inequality (1.2) as a spe-
cial case.

Theorem 1.2. Let PoR ∈ Pnr and QoS ∈ Pms be two composite polynomials
with degree of P(R(z)) not exceeding that of Q(S(z)). If Q(S(z)) 6= 0 for
|z| > 1, and

|P (R(z))| ≤ |Q(S(z))|, for |z| = 1,

then

|P ′(R(z))| ≤ sM ′

rm′
|z|s−r|Q′(S(z)|, for |z| ≥ 1, (1.6)

where m′ = Min|z|=1|R(z)| and M ′ = Max|z|=1|S(z)|.

If we choose R(z) = S(z) in inequality (1.6), we get the follwoing:
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Corollary 1.3. Let PoR ∈ Pnr and QoR ∈ Pmr, such that |P (R(z))| ≤
|Q(R(z))| for |z| = 1. If |Q(R(z))| 6= 0 for |z| > 1, then

|P ′(R(z))| ≤ M ′

m′
|Q′(R(z)|, for |z| ≥ 1. (1.7)

Remark 1.4. If in inequality (1.7) we take R(z) = z, so that m′ = M ′ = 1,
we get inequality (1.2).

Next we prove the following result which is of course improvement to the
inequality (1.6).

Theorem 1.5. Let Q(S(z)) be a polynomial of degree ns having all its zeros in
|z| ≤ 1 and P (R(z)) be a polynomial of degree not exceeding that of Q(S(z)).
If |P (R(z))| ≤ |Q(S(z))| for |z| = 1, then for any |β| < 1,∣∣∣∣zP ′(R(z))R′(z)

ns
+
β

2
P (R(z))

∣∣∣∣ ≤ ∣∣∣∣zQ′(S(z))S′(z)

ns
+
β

2
Q(S(z))

∣∣∣∣. (1.8)

For an approprate choice of argument of β in inequality (1.8), and making
|β| → 1, we get the following:

Corollary 1.6. Let Q(S(z)) be a polynomials of degree ns having all its zeros
in |z| ≤ 1 and P (R(z)) be a polynomial of degree not exceeding that of Q(S(z)).
If |P (R(z))| ≤ |Q(S(z))| for |z| = 1, then∣∣∣∣P ′(R(z))R′(z)

ns

∣∣∣∣+

∣∣∣∣Q(S(z))

2

∣∣∣∣ ≤ ∣∣∣∣Q′(S(z))S′(z)

ns

∣∣∣∣+

∣∣∣∣P (R(z))

2

∣∣∣∣. (1.9)

If we choose R(z) = S(z) in inequality (1.9), we get the following corollary:

Corollary 1.7. Let Q(R(z)) be a polynomials of degree ns having all its zeros
in |z| ≤ 1 and P (R(z)) be a polynomial of degree not exceeding that of Q(R(z)).
If |P (R(z))| ≤ |Q(R(z))| for |z| = 1, then∣∣∣∣P ′(R(z))R′(z)

ns

∣∣∣∣+

∣∣∣∣Q(R(z))

2

∣∣∣∣ ≤ ∣∣∣∣Q′(R(z))R′(z)

ns

∣∣∣∣+

∣∣∣∣P (R(z))

2

∣∣∣∣. (1.10)

If we take R(z) = z in inequality (1.10), we immediately have under the
hypothesis of Theorem 1.1,∣∣∣∣P ′(z)n

∣∣∣∣+

∣∣∣∣Q(z)

2

∣∣∣∣ ≤ ∣∣∣∣Q′(z)n

∣∣∣∣+

∣∣∣∣P (z)

2

∣∣∣∣, for |z| = 1. (1.11)

Inequality (1.11), is of course better than inequality (1.2) and has also been
independently proved by Jain [2].
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The following result that we prove will include inequality (1.4), as a partic-
ular case.

Theorem 1.8. If PoR ∈ Pnr and P (R(z)) 6= 0 for |z| < 1 and R(z) 6= 0 for
|z| ≥ 1, then for |z| ≥ 1, we have

|P ′(R(z))| ≤ M ′n

m′(m′ +M ′)
|z|nr−r|P (R(z))|, (1.12)

where m′ = Min|z|=1|R(z)| and M ′ = Max|z|=1|R(z)|.

Remark 1.9. If we choose R(z) = z in inequality (1.12), we get

|P ′(z)| ≤ n

2
|z|n−1Max|z|=1|P (z))|, for |z| ≥ 1. (1.13)

Which in particualr gives Erdös-Lax Theroem.

2. Lemmas

For the proof of above theorems we need the following lemma.

Lemma 2.1. If P (R(z)) is a polynomial of degree nr having all its zeros in
|z| ≤ 1, then for |z| = 1,

|z[P (R(z))]′| ≥ ns

2
|P (R(z))|.

Proof. Let zi (i = 1, 2, ..., ns) be the zeros of P (R(z)), then it is obvious∣∣∣∣eiθ [P (R(z))]′

P (R(z))

∣∣∣∣ =

∣∣∣∣ ns∑
i=1

eiθ

eiθ − zi

∣∣∣∣ ≥ ns∑
i=1

1

2
=
ns

2
. (2.1)

Which concludes the proof of Lemma 2.1. �

3. Proof of theorems

Proof of Theorem 1.2. Since Q(S(z)) 6= 0 for |z| > 1, is a polynomial of
degree ms and |P (R(z))| ≤ |Q(S(z))|, for |z| = 1 where |P (R(z))| is a polyno-
mial of degree nr. Therefore, if β is any complex number with |β| > 1, then
by Rouche’s theorem all the zeros of P (R(z))−βQ(S(z)) lie in |z| ≤ 1. Hence,
by Gauss-Lucas theorem all the zeros of P ′(R(z))R′(z) − βQ′(S(z))S′(z) lie
in |z| ≤ 1, for every complex number β with |β| > 1. This gives

|P ′(R(z))||R′(z)| ≤ |Q′(S(z)||S′(z)|, for |z| ≥ 1. (3.1)

For if this is not true, then there is a point zo with |zo| ≥ 1, such that

|P ′(R(zo))||R′(zo)| > |Q′(S(zo)||S′(zo)|,
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we take

β =
P ′(R(zo))R

′(zo)

Q′(S(zo)S′(zo)
,

then |β| > 1 and with this choice of β, we have

P ′(R(zo))R
′(zo)− βQ′(S(zo))S

′(zo) = 0, for |zo| ≥ 1.

This is a contraduction and therefore

|P ′(R(z))||R′(z)| ≤ |Q′(S(z)||S′(z)|.
Let R(z) 6= 0 for |z| ≥ 1. If m′ = Min|z|=1|R(z)|, then we can easly prove

|R′(z)| ≥ rm′|z|r−1, for |z| ≥ 1. (3.2)

Similarly if S(z) 6= 0, for |z| ≥ 1 and Max|z|=1|S(z)| = M ′, then

|S′(z)| ≤ sM ′|z|s−1, for |z| ≥ 1. (3.3)

Using inequalities (3.2) and (3.3) in inequality (3.1), we have

|P ′(R(z))| ≤ sM ′

rm′
|z|s−r|Q′(S(z)|.

Which proves the result. �

Proof of Theorem 1.5. Let P (R(z)) and Q(S(z)) satisifies the hypothesis
of the theorem. Therefore for any complex number α with |α| > 1, we have
by Rouche’s Theorem all the zeros of P (R(z)) + αQ(S(z)) lie in |z| < 1. Now
by lemma 1 for |z| = 1, we have∣∣∣∣zP ′(R(z))R′(z) + zαQ′(S(z))S′(z)

∣∣∣∣ ≥ ns

2

∣∣∣∣P (R(z)) + αQ(S(z))

∣∣∣∣. (3.4)

From inequality (3.4), we note for any β with |β| < 1,

zP ′(R(z))R′(z) + zαQ′(S(z))S′(z)|+ β
ns

2
(P (R(z)) + αQ(S(z)) 6= 0. (3.5)

From inequality (3.5), we conclude that

zP ′(R(z))R′(z)

ns
+
β

2
P (R(z)) 6= −α

(
zQ′(S(z))S′(z)

ns
+
β

2
Q(S(z))

)
. (3.6)

For an approprate choice of the argument of α in the right hand side of the
inequality (3.6), we get∣∣∣∣zP ′(R(z))R′(z)

ns
+
β

2
P (R(z))

∣∣∣∣ 6= |α|∣∣∣∣zQ′(S(z))S′(z)

ns
+
β

2
Q(S(z))

∣∣∣∣. (3.7)

From Inequality (3.7), we observe that∣∣∣∣zP ′(R(z))R′(z)

ns
+
β

2
P (R(z))

∣∣∣∣ < |α|∣∣∣∣zQ′(S(z))S′(z)

ns
+
β

2
Q(S(z))

∣∣∣∣. (3.8)
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Making |α| → 1, inequality (3.8) implies∣∣∣∣zP ′(R(z))R′(z)

ns
+
β

2
P (R(z))

∣∣∣∣ ≤ ∣∣∣∣zQ′(S(z))S′(z)

ns
+
β

2
Q(S(z))

∣∣∣∣.
Which completes the proof of Theorem 1.5. �

Proof of Theorem 1.8. Let p(z) = P (R(z)) and q(z) = Q(R(z)) such that

q(z) = znrp

(
1
z

)
.

Now, we know

|p′(z)|+ |q′(z)| ≤ nr|z|nr−1Max|z|=1|p(z)|, for |z| ≥ 1.

Equivalently

|P ′(R(z))||R′(z)|+ |Q′(R(z))||R′(z)| ≤ nr|z|nr−1Max|z|=1|P (R(z))|. (3.9)

Inequality (3.9), implies

|P ′(R(z))|+ |Q′(R(z))|

≤ nr

|R′(z)|
|z|nr−1Max|z|=1|P (R(z))|, for |z| ≥ 1.

(3.10)

Now, from inequality (1.7),

|P ′(R(z))|+ M ′

m′
|P ′(R(z))| ≤ M ′

m′
(|P ′(R(z))|+ |Q′(R(z))|). (3.11)

Using inequality (3.10) in inequality (3.11), we get

|P ′(R(z))| ≤ M ′nr

|R′(z)|(m′ +M ′)
|z|nr−1|P (R(z))|, for |z| ≥ 1.

|P ′(R(z))| ≤ M ′n

m′(m′ +M ′)
|z|(n−1)r|P (R(z))|, for |z| ≥ 1.

This completes the proof of Theorem 1.8. �
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