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Abstract. In this paper we study the moment stability for uncertain stochastic neural
networks with time-delays

dx = [−(A+4A(t))x(t) + f(t, x(t), x(t− τ(t)))]dt+
∑m
j=1 gj(t, x(t), x(t− τ(t)))dwj(t).
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1. Introduction

Neural networks arise in important applications in combinatorial optimiza-
tion, signal processing, pattern recognition and in solving nonlinear algebraic
equations [1, 7, 8, 14]. There are only a few papers in the literature which
discuss the stability of stochastic and delay equations; see [4, 5, 6, 12, 13, 15]
and the references therein.

For notational purposes with x(t) = (x1(t), x2(t), · · · , xn(t))T and B =
[bij(t)]n×n, let

|x(t)|1 =
∑n

i=1 |xi(t)|
and

‖B(t)‖3 =
∑n

i,j=1 |bij(t)|.
Let (Ω,F , P ) be a complete probability space with a filtration {Ft}t≥0 sat-
isfying the usual conditions, i.e. it is right continuous and F0 contains all
P -null sets. Let CbF0

([−τ, 0];R) be the family of all bounded, F0-measurable
functions. We denote by C([−τ, 0];R) the family of all continuous functions
ϕ : [−τ, 0]→ R with

‖ϕ‖2 = sup−τ≤θ≤0 |ϕ(θ)|1,
where τ is a positive constant.

In this paper, using the variation-of-constants formula and comparison prin-
ciple, we discuss the moment stability of the stochastic cellular neural network

dx = [−(A+4A(t))x(t) + f(t, x(t), x(t− τ(t)))]dt
+
∑m

j=1 gj(t, x(t), x(t− τ(t)))dwj(t), t ≥ t0,
(1.1)

with the initial condition

xt0(s) = ϕ(s) ∈ C([−τ , 0];Rn), −τ ≤ s ≤ 0, (1.2)

where xt0(s) = x(t0 + s), τ = max{τ(t)}, x(t) = (x1(t), x2(t), · · · , xn(t))T

is the state vector, A = diag(a1, a2, · · · , an) > 0, 4A(t) represents the time-
varying parameter uncertainties and is bounded. Here w(t) = (w1(t), w2(t), · · · ,
wm(t))T ∈ Rm is a m-dimensional Brownian motion defined on a complete
probability space (Ω,F , P ) and f : R+×Rn×C([−τ , 0];Rn)→ Rn is the neu-
ron activation function and we assume f(t, 0, 0) = 0. The stochastic distur-
bance terms, gj : R+×Rn×C([−τ , 0];Rn)→ Rn, can be viewed as stochastic
perturbations on the neuron states and delayed neuron states.

In [10], Lei obtained necessary and sufficient conditions for the second mo-
ment to be bounded by using Laplace transform techniques. In [2], via the
H−representation technique and comparison principles, Zhao and Deng ob-
tained the second order moment equations of nonlinear stochastic systems
with-delays. This paper is largely motivated by [2, 10]. Only a few papers
in the literature use the variation-of-constants formula to discuss the second
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moment stability of stochastic neural networks and the method in this paper
is different from usual methods (see [3, 11]).

2. Preliminaries

Now we give the definitions of the pth moment stability and the pth moment
boundedness. Let

x(t) = x(t0, ϕ)(t), t ≥ t0
denote solutions of Eq.(1.1) with the initial date xt0 = ϕ. We denote by E the
mathematical expectation.

Definition 2.1. For p ≥ 2, the trivial solution of Eq.(1.1) is said to be stable
in the pth moment if for each ε > 0, t0 ∈ R+, there exists δ = δ(t0, ε) > 0
such that E(‖ϕ‖22) < δ implies

E(‖x(t0, ϕ)(t)− E(x(t0, ϕ)(t)‖p2) < ε, t ≥ t0 − τ . (2.1)

Definition 2.2. For p ≥ 2, the trivial solution of Eq.(1.1) is said to be uni-
formly stable in the pth moment if (2.1) holds with δ independent of t0.

Definition 2.3. For p ≥ 2, the trivial solution of Eq.(1.1) is said to be asymp-
totically stable in the pth moment if it is stable in pth moment and if for any
ε > 0, t0 ∈ R+, there exists δ0 = δ0(t0) > 0 and T = T (t0, ε) > 0 such that
E(‖ϕ‖22) < δ implies

E(‖x(t0, ϕ)(t)− E(x(t0, ϕ)(t)‖p2) < ε, t ≥ t0 + T. (2.2)

Definition 2.4. For p ≥ 2, the trivial solution of Eq.(1.1) is said to be uni-
formly asymptotically stable in the pth moment if (2.1) and (2.2) hold with δ,
δ0 and T independent of t0.

Definition 2.5. The trivial solution of Eq.(1.1) is said to be the first moment
exponentially stable if there exist two positive constants µ and β such that

‖Ex(t0, ϕ)(t)‖2 ≤ µ‖ϕ‖2e−β(t−t0), t ≥ t0,
for each t0 ∈ R+. When p ≥ 2, Eq.(1.1) is said to be the pth moment
exponentially stable if there exist two positive constants µ and β such that

E(‖x(t0, ϕ)(t)− E(x(t0, ϕ)(t))‖p2) ≤ µ‖ϕ‖p2e−β(t−t0), t ≥ t0.

Definition 2.6. For p ≥ 2, Eq.(1.1) is said to be the pth moment bounded if
there exists a positive constant µ̃ = µ̃(‖ϕ‖p) such that

E(‖x(t0, ϕ)(t)− E(x(t0, ϕ)(t))‖p2) ≤ µ̃, t ≥ t0. (2.3)



526 C. J. Guo, D. O’Regan, F. Q. Deng and R. P. Agarwal

Otherwise, the pth moment is said to be unbounded.

Let A = (ai,j), B = (bi,j) be n×m matrices, and denote A ≤ B if ai,j ≤ bi,j
for all i = 1, 2, · · · , n; j = 1, 2, · · · ,m. Denote by Θ the zero matrix, that is,
all of the entries of Θ are 0.

Lemma 2.7. ([9], Comparison principle) Assume that P,Q ∈ C(R,Rr×r),
P (t) ≥ Θ, Q(t) ≥ Θ and F (t) ∈ C(R,Rr). Let x, y be the solutions of the
following systems

dx
dt ≤ P (t)x(t) +Q(t)x(t− τ) + F (t), t ≥ 0,

x(θ) ≤ φ(θ), −τ ≤ θ ≤ 0

and 
dy
dt = P (t)y(t) +Q(t)y(t− τ) + F (t), t ≥ 0,

y(θ) ≤ χ(θ), −τ ≤ θ ≤ 0,

respectively, where φ, χ ∈ C([−τ , 0];Rr). Then φ(θ) ≤ χ(θ)(−τ ≤ θ ≤ 0)
implies x(t) ≤ y(t) for t ≥ 0.

3. Moment boundedness of uncertain stochastic neural
networks with time-delays

In this section we investigate the stability properties of nonlinear stochastic
cellular neural network.

Throughout this paper, we always assume the following:
(H1) there exists a positive constant α such that

‖f(t, x(t), x(t− τ(t)))− f(t, y(t), y(t− τ(t)))‖2
≤ α[‖x− y‖1 + ‖x(t− τ(t))− y(t− τ(t))‖2];

(H2) there exist positive constants β(j), and positive definite constant ma-

trices D
(0)
j , D̃

(0)
j , D

(1)
j , D̃

(1)
j , D

(2)
j and D̃

(2)
j such that

‖gj(t, x(t), x(t− τ(t)))− gj(t, y(t), y(t− τ(t)))‖2
≤ β(j)[‖x− y‖1 + ‖x(t− τ(t))− y(t− τ(t))‖2]

and

‖D̃(0)
j ‖3 + xT (t)D̃

(1)
j x(t) + xT (t− τ(t))D̃

(2)
j x(t− τ(t))

≤ gTj (t, x(t), x(t− τ(t)))× gj(t, x(t), x(t− τ(t)))

≤ ‖D(0)
j ‖3 + xT (t)D

(1)
j x(t) + xT (t− τ(t))D

(2)
j x(t− τ(t)),

where T represents the transpose and j = 1, 2, · · · ,m.



Moment stability for uncertain stochastic neural networks with time-delays 527

Let x(t) = x(t0, ϕ)(t) be the solution of (1.1) and (1.2). Note from (1.1)
and (1.2) that

x(t) = exp−A(t− t0){ϕ(s)

+
∫ t
t0

exp(As)[−4A(s)x(s) + f(s, x(s), x(s− τ(s)))]ds

+
∑m

j=1

∫ t
t0
gj(s, x(s), x(s− τ(s))) exp(As)dw(s)}.

(3.1)

From (H1) and (H2) we have that f(·, ·, ·) and gj(·, ·, ·) satisfy a Lipschitz
condition. Then there is a unique solution x(t) of Equation (1.1) through
(t, ϕ).

3.1. The first moment stability. Note from (3.1) we have

‖Ex(t)‖2
= ‖ exp−A(t− t0){ϕ(s)

+
∫ t
t0

exp(As)[−4A(s)x(s) + f(s, x(s), x(s− τ(s)))]ds‖2.
(3.2)

Now, we consider the following deterministic equation dx = [−(A+4A(t))x(t) + f(t, x(t), x(t− τ(t)))]dt, t ≥ t0,

xt0(s) = ϕ(s) ∈ C([−τ , 0];Rn), −τ ≤ s ≤ 0.
(3.3)

Let xϕ(t) be the solution of (3.3).

Theorem 3.1. Suppose

(H3) The solution of (3.3) is exponentially stable, i.e., there exist two posi-
tive constants κ and λ such that

‖xϕ(t)‖2 ≤ κ‖ϕ‖2e−λ(t−t0), t ≥ t0.
Then Eq.(1.1) is first moment exponentially stable, i.e.,

‖Ex(t)‖2 = ‖xϕ(t)‖2 ≤ κ‖ϕ‖2e−λ(t−t0), t ≥ t0. (3.4)

Proof. The result follows from (H3) and (3.2). �

In the following discussions, we always assume that Eq.(1.1) is first moment
exponentially stable.

3.2. Second moment boundedness and stability. Now we study the sec-
ond moment.

Let

x̃(t) = x(t)− Ex(t)

=
∫ t
t0

[
∑m

j=1 exp−A(t− s)gj(s, x(s), x(s− τ(s)))]dwj
(3.5)

and
V(t) = E(‖x̃(t)‖22), (3.6)
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where x(t) = x(t0, ϕ)(t) is the solution of (1.1) and (1.2). Note that

x̃(t0) = x(t0)− Ex(t0) = ϕ(s)− Eϕ(s) = ϕ(s)− ϕ(s) = 0, −τ ≤ s ≤ 0.

Then we have V(t0) = 0. Since E(dwjdwk) = δjk(j, k = 1, 2, · · · ,m), we have
from (3.4) and (3.6) that

V(t)

= E(‖x̃(t)‖22) = E‖
∫ t
t0

∑m
j=1 expA(s− t)gj(s, x(s), x(s− τ(s)))dwj(s)‖22

≤ E
∫ t
t0
‖ expA(s− t)‖23[

∑m
j=1 g

T
j (s, x(s), x(s− τ(s)))

×gj(s, x(s), x(s− τ(s)))]ds

≤ E
∫ t
t0
n2e2λmin(A)(s−t)[

∑m
j=1(‖D

(0)
j ‖3

+xT (s)D
(1)
j x(s) + xT (s− τ(s))D

(2)
j x(s− τ(s)))]ds

= E
∫ t
t0
n2e2λmin(A)(s−t){

∑m
j=1[‖D

(0)
j ‖3+(x̃(s)+Ex(s))TD

(1)
j (x̃(s)+Ex(s))

+(x̃(s− τ(s)) + Ex(s− τ(s)))TD
(2)
j (x̃(s− τ(s)) + Ex(s− τ(s)))]}ds

≤
∫ t
t0
n2e2λmin(A)(s−t){

∑m
j=1[nλmax(D

(0)
j ) + nλmax(D

(1)
j )(E(‖x̃(s)‖22)

+(‖Ex(s)‖2)2) + nλmax(D
(2)
j )(E(‖x̃(s− τ(s))‖22)

+(E(‖x(s− τ(s))‖2))2)]}ds

=
∫ t
t0
e2λmin(A)(s−t){n3

∑m
j=1[λmax(D

(0)
j ) + λmax(D

(1)
j )(V(s) + (‖Ex(s)‖2)2)

+λmax(D
(2)
j )(V(s− τ(s)) + (‖Ex(s− τ(s))‖2)2)]}ds

≤
∫ t
t0
e2λmin(A)(s−t){n3

∑m
j=1[λmax(D

(0)
j ) + λmax(D

(1)
j )(V(s) + κ2‖ϕ‖22e−2λs)

+λmax(D
(2)
j )(V(s− τ(s)) + κ2e2λτ‖ϕ‖22e−2λs)]}ds

≤
∫ t
t0
e2λmin(A)(s−t){n3

∑m
j=1[λmax(D

(0)
j ) +Hj + λmax(D

(1)
j )V(s)

+λmax(D
(2)
j )V(s− τ(s))]}ds

=
∫ t
t0
e2λmin(A)(s−t)[D

(0)
+D

(1)V(s) +D
(2)V(s− τ(s))]ds,

(3.7)

where λmin(A) represents the minimal eigenvalue of A, λmax(D
(0)
j ), λmax(D

(1)
j )

and λmax(D
(2)
j ) represent the maximal eigenvalues of D

(0)
j , D

(1)
j and D

(2)
j (j =

1, 2, · · · ,m),

D
(0)

= n3
∑m

j=1[λmax(D
(0)
j ) +Hj ], D

(1)
= n3

∑m
j=1 λmax(D

(1)
j ),
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D
(2)

= n3
∑m

j=1 λmax(D
(2)
j ),

Hj = κ2‖ϕ‖22λmax(D
(1)
j ) + κ2e2λτ‖ϕ‖22λmax(D

(2)
j ),

expA(s− t) =


ea1(s−t) 0 0 · · · 0

0 ea2(s−t) 0 · · · 0
...

...
...

...
...

0 0 0 · · · ean(s−t)


and

‖ expA(s− t)‖3 =
∑n

i=1 e
ai(s−t);

here we used the relation

E(x(t)− Ex(t)) = E(x(t− τ(t))− Ex(t− τ(t)) = 0.

Now we chose two functions φ(t), χ(t) ∈ C([−τ , 0];R) with φ(0) = 0 such that

φ(t) ≤ χ(t), t ∈ [−τ , 0]. (3.8)

Theorem 3.2. Let (H1)− (H3) be satisfied. Then

V(t) ≤ u(t), t ≥ t0,

where u(t) = u(t0, χ)(t) is the solution of the comparison equation u̇(t)=(−2λmin(A)+D
(1)

)u(t)+D
(2)
u(t−τ(t))+D

(0)
, t ≥ t0,

ut0(s) = χ(s), s ∈ [−τ , 0].

(3.9)

Proof. Let M(t) =
∫ t
t0
e2λmin(A)(s−t)[D

(0)
+D

(1)V(s) +D
(2)V(s− τ(s))]ds, t ≥ t0,

Mt0(s) = φ(s), s ∈ [−τ , 0].
(3.10)

We have from (3.7) and (3.10) that

Ṁ(t)

= −2λmin(A)
∫ t
t0
e2λmin(A)(s−t)[D

(0)
+D

(1)V(s) +D
(2)V(s− τ(s))]ds

+D
(0)

+D
(1)V(t) +D

(2)V(t− τ(t))

≤ −2λmin(A)M(t) +D
(0)

+D
(1)
M(t) +D

(2)
M(t− τ(t))

= (−2λmin(A) +D
(1)

)M(t) +D
(2)
M(t− τ(t)) +D

(0)
, t ≥ 0.
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Applying Lemma 2.7 (Comparison principle), from (3.8)-(3.10) we get u(t) ≥
M(t), t ≥ t0, thus

V(t) ≤M(t) ≤ u(t), t ≥ t0. (3.11)

The proof is complete. �

For convenience, we assume that the equilibrium of the system (3.9) is a
trivial solution. From Theorem 3.2, we can obtain stability and boundedness
criteria for (1.1) and (1.2).

Theorem 3.3. If the assumptions of Theorem 3.2 are satisfied, and the trivial
solution of the system (3.9) is stable, then the trivial solution of the system
(1.1) and (1.2) is also stable in the 2th moment.

Proof. Assume that the trivial solution u(t) = u(t0, χ)(t) of (3.9) is stable.
For ε > 0 there exists a positive number δ = δ(t0, ε) such that

‖u(t0, χ)(t)‖2 ≤ ε, ‖χ‖2 < δ, t ≥ t0 − τ . (3.12)

We have from (3.12) that

0 = V(t0) ≤ ‖χ‖2 < δ. (3.13)

From (3.6), Theorem 3.2, (3.11)-(3.12) and the above, we get

E(‖x̃(t)‖22) = V(t) ≤ ‖u(t0, χ)(t)‖2 ≤ ε, t ≥ t0 − τ . (3.14)

We see from (3.13) and (3.14) that the trivial solution of the system (1.1) and
(1.2) is stable in the 2th moment. �

Theorem 3.4. If the assumptions of Theorem 3.2 are satisfied, and the trivial
solution of the system (3.9) is uniformly stable, then the trivial solution of the
system (1.1) and (1.2) is also uniformly stable in the 2th moment.

Proof. Follows as in Theorem 3.3. �

Theorem 3.5. If the assumptions of Theorem 3.2 are satisfied, and the trivial
solution of the system (3.9) is asymptotically stable, then the trivial solution
of the system (1.1) and (1.2) is also asymptotically stable in the 2th moment.

Proof. By Theorem 3.3, we just need to show the last part of Definition 2.3
is true. For given ε > 0, there exist a δ1 > 0 (δ1 is independent of ε) and a
T = T (t0, ε) > 0 such that

‖u(t0, χ)(t)‖2 ≤ ε, ‖χ‖2 < δ1, t ≥ t0 + T. (3.15)

We have from (3.6) and (3.15) that

0 = V(t0) ≤ ‖χ‖2 < δ1. (3.16)
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From Theorem 3.2, (3.11) and (3.15)-(3.16), we get

E(‖x̃(t)‖22) = V(t) ≤ ‖u(t0, χ)(t)‖2 ≤ ε, t ≥ t0 + T. (3.17)

Hence the trivial solution of (1.1) and (1.2) is asymptotically stable in the 2th
moment. �

Theorem 3.6. If the assumptions of Theorem 3.2 are satisfied, and the trivial
solution of the system (3.9) is uniformly asymptotically stable, then the trivial
solution of the system (1.1) and (1.2) is also uniformly asymptotically stable
in the 2th moment.

Proof. Follows as in Theorem 3.5. �

Theorem 3.7. If the assumptions of Theorem 3.2 are satisfied, and the trivial
solution of the system (3.9) is exponentially stable, then the trivial solution of
the system (1.1) and (1.2) is also exponentially stable in the 2th moment.

Proof. The argument is similar to that in Theorem 3.5. �

Theorem 3.8. If the assumptions of Theorem 3.2 are satisfied, and the trivial
solution of the system (3.9) is bounded, then the trivial solution of the system
(1.1) and (1.2) is also bounded in the 2th moment.

Proof. Assume that the trivial solution of (3.9) is bounded. For arbitrary
δ > 0 there exists a positive constant µ̃ such that

‖u(t0, χ)(t)‖2 ≤ µ̃, ‖χ‖2 < δ, t ≥ t0 − τ . (3.18)

We have from (3.18) that

0 = V(t0) ≤ ‖χ‖2 < δ. (3.19)

From (3.6), Theorem 3.2, (3.18)-(3.19) and the above, we get

E(‖x̃(t)‖22) = V(t) ≤ ‖u(t0, χ)(t)‖2 ≤ µ̃, t ≥ t0 − τ .

Hence the trivial solution of the system (1.1) and (1.2) is bounded in the 2th
moment. �



532 C. J. Guo, D. O’Regan, F. Q. Deng and R. P. Agarwal

3.3. Second moment unboundedness and instability. Similar reasoning
as in (3.7) we have from (3.5) and (3.6) that

V(t)

= E(‖x̃(t)‖22) = E‖
∫ t
t0

∑m
j=1 expA(s− t)gj(s, x(s), x(s− τ(s)))dwj(s)‖22

= E‖
∫ t
t0

exp 2A(s− t)[
∑m

j=1 g
T
j (s, x(s), x(s− τ(s)))

×gj(s, x(s), x(s− τ(s)))]ds‖2

≥ E
∫ t
t0
n2e2λmax(A)(s−t)[

∑m
j=1(‖D̃

(0)
j ‖3 + xT (s)D̃

(1)
j x(s)

+xT (s− τ(s))D̃
(2)
j x(s− τ(s)))]ds

= E
∫ t
t0
n2e2λmax(A)(s−t){

∑m
j=1[‖D̃

(0)
j ‖3+(x̃(s)+Ex(s))T D̃

(1)
j (x̃(s)+Ex(s))

+(x̃(s− τ(s)) + Ex(s− τ(s)))T D̃
(2)
j (x̃(s− τ(s)) + Ex(s− τ(s)))]}ds

≥
∫ t
t0
n2e2λmax(A)(s−t){

∑m
j=1[nλmin(D̃

(0)
j )

+nλmin(D̃
(1)
j )(E(‖x̃(s)‖22) + (‖Ex(s)‖2)2)

+nλmin(D̃
(2)
j )(E(‖x̃(s− τ(s))‖22) + (E(‖x(s− τ(s))‖2))2)]}ds

≥
∫ t
t0
e2λmax(A)(s−t){n3

∑m
j=1[λmin(D̃

(0)
j ) + λmin(D̃

(1)
j )V(s)

+λmin(D̃
(2)
j )V(s− τ(s))]}ds

=
∫ t
t0
e2λmax(A)(s−t)[D̂(0) + D̂(1)V(s) + D̂(2)V(s− τ(s))]ds,

(3.20)

where λmax(A) represents the maximal eigenvalue of A, λmin(D̃
(0)
j ), λmin(D̃

(1)
j )

and λmin(D̃
(2)
j ) represent the minimal eigenvalues of D̃

(0)
j , D̃

(1)
j and D̃

(2)
j (j =

1, 2, · · · ,m),

D̂(0) = n3
∑m

j=1 λmin(D̃
(0)
j ), D̂(1) = n3

∑m
j=1 λmin(D̃

(1)
j ),

D̂(2) = n3
∑m

j=1 λmin(D̃
(2)
j ).

Now we chose two functions φ(t), χ(t) ∈ C([−τ , 0];R) with χ(0) = 0 such that

φ(t) ≤ χ(t), t ∈ [−τ , 0]. (3.21)

Theorem 3.9. Let (H1)− (H3) be satisfied. Then

V(t) ≥ u(t), t ≥ t0,
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where u(t) = u(t0, φ)(t) is the solution of the comparison equation u̇(t)=(−2λmax(A)+D̂(1))u(t)+D̂(2)u(t−τ(t))+D̂(0), t ≥ t0,

ut0(s) = φ(s), s ∈ [−τ , 0].
(3.22)

Proof. Let M(t) =
∫ t
t0
e2λmax(A)(s−t)[D̂(0) + D̂(1)V(s) + D̂(2)V(s− τ(s))]ds, t ≥ t0,

Mt0(s) = χ(s), s ∈ [−τ , 0].
(3.23)

We have from (3.20) and (3.23) that

Ṁ(t)

= −2λmax(A)
∫ t
t0
e2λmax(A)(s−t)[D̂(0) + D̂(1)V(s) + D̂(2)V(s− τ(s))]ds

+D̂(0) + D̂(1)V(t) + D̂(2)V(t− τ(t))

≥ −2λmax(A)M(t) + D̂(0) + D̂(1)M(t) + D̂(2)M(t− τ(t))

= (−2λmax(A) + D̂(1))M(t) + D̂(2)M(t− τ(t)) + D̂(0).

Applying Lemma 2.7 (Comparison principle), from (3.21)-(3.23) we getM(t) ≥
u(t), t ≥ t0, thus

V(t) ≥M(t) ≥ u(t), t ≥ t0.

The proof is complete. �

For convenience, we assume that the equilibrium of the system (3.22) is a
trivial solution. From Theorem 3.9, we can obtain unboundedness and insta-
bility criteria for (1.1) and (1.2).

Theorem 3.10. If the assumptions of Theorem 3.9 are satisfied, and the
trivial solution of the system (3.22) is unbounded, then the trivial solution of
the system (1.1) and (1.2) is also unbounded in the 2th moment.

Proof. Assume that the trivial solution of (3.22) is unbounded. For an arbi-

trary positive constant ν̃, there exist a positive constant δ̃ and a t̃ ≥ t0 such
that

‖u(t0, φ)(t̃)‖2 > ν̃, ‖φ‖2 < δ̃. (3.24)

We have from (3.24) that

0 = V(t0) ≤ ‖φ‖2 < δ. (3.25)

From (3.6), Theorem 3.9, (3.18)-(3.19) and the above, we get

E(‖x̃(t̃)‖22) = V(t̃) ≥ ‖u(t0, φ)(t̃)‖2 > ν̃.
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Hence the trivial solution of the system (1.1) and (1.2) is unbounded in the
2th moment. �

Theorem 3.11. If the assumptions of Theorem 3.9 are satisfied, and the
trivial solution of the system (3.22) is instable, then the trivial solution of the
system (1.1) and (1.2) is also instable in the 2th moment.

Proof. Assume that the trivial solution of (3.22) is instable. For an arbitrary

positive constant ε̃, there exist a positive constant δ̂ and a t̂ ≥ t0 such that

‖u(t0, φ)(t̂)‖2 > ε̃, ‖φ‖2 < δ̂. (3.26)

We have from (3.26) that

0 = V(t0) ≤ ‖φ‖2 < δ̂. (3.27)

From (3.6), Theorem 3.9, (3.26)-(3.27) and the above, we get

E(‖x̃(t̂)‖22) = V(t̂) ≥ ‖u(t0, φ)(t̂)‖2 > ε̃.

Hence the trivial solution of the system (1.1) and (1.2) is instable in the 2th
moment. �

Remark 3.12. The system (1.1) can be generalized to the general form

dx

= [−(A+4A(t))x(t)+(B+4B(t))f(t, x(t), x(t− τ1(t)), · · · , x(t− τm(t)))

+
∑k

p=1(Wp +4Wp(t))
∫ t
t−rp(t) gp(x(s))ds]dt

+
∑l

j=1 hj(t, x(t), x(t− σj(t)))dw(t).

Example 3.13. Consider the following stochastic neutral cellular network

dx(t)

= [−(a+4a(t))x(t) + f(t, x(t), x(t− τ))]dt

+[σ0(t) + σ1(t)x(t) + σ2(t)x(t− τ)]dw(t),

(3.28)

with the initial condition x0 = ϕ, where

ϕ = {ϕ(θ),−τ ≤ θ ≤ 0} ∈ CbF0
([−τ, 0];R), (3.29)

τ , a are two positive constants, |4a(t)| is bounded, σj(t) ∈ C(R) (j = 0, 1, 2)
with |σj(t)| bounded and −2a+ σ21 + 2|σ1σ2|+ σ22 6= 0.

Now we chose two functions φ̃(t), χ̃(t) ∈ C([−τ , 0];R) with φ̃(0) = 0 such
that

φ̃(t) ≤ χ̃(t), t ∈ [−τ , 0].
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Conclusion 3.14. Suppose

(1) the assumptions (H1) and (H3) are satisfied;
(2) there exists a positive constant γ such that

2(2a− σ21 − |σ1σ2| − γ) > σ22 + |σ1σ2|

and

2γ > σ22 + |σ1σ2|.

Then

V(t) ≤ u(t), t ≥ 0,

where u(t) = u(0, χ̃)(t) is the solution of the comparison equation
u̇(t) = (−2a+ σ21 + |σ1σ2|)u(t) + (σ22 + |σ1σ2|)u(t− τ)

+(|σ0|+ |σ1|κ‖ϕ‖2 + |σ2|κ‖ϕ‖2eλτ )2, t ≥ 0,

u0(s) = χ̃(s), s ∈ [−τ, 0].

(3.30)

Proof. Obviously condition (H2) holds since σj(t) ∈ C(R)(j = 0, 1, 2) with
|σj(t)| bounded. Then there is a unique solution of Equation (3.28) and (3.29)
through (t, ϕ) from (H1) and (H3). By the definition of V(t0, ϕ)(t), we have
from (3.6) that

V(t)

=
∫ t
0 exp{−2a(t− s)}‖[σ21V(s) + σ22V(s− τ)

+2σ1σ2E(x̃(s)x̃(s− τ))]ds+ F (t)‖2
≤

∫ t
0 exp{−2a(t− s)}‖[σ21V(s) + σ22V(s− τ)

+2σ1σ2E(x̃(s)x̃(s− τ))]‖2ds+ ‖F (t)‖2
≤

∫ t
0 exp{−2a(t− s)}[σ21V(s) + σ22V(s− τ)

+|σ1σ2|(V(s) + V(s− τ))]ds+ ‖F (t)‖2,

(3.31)

where t0 = 0 and

F (t)=
∫ t
0 exp{−2a(t− s)}[σ0(s)+σ1(s)Ex(s)+σ2(s)Ex(s− τ)]2ds; (3.32)

here we used the relation

‖E(x̃(t)x̃(t− τ))‖2 ≤ (E(|x̃(t)|21))
1
2 (E(‖x̃(t− τ)‖22))

1
2

= V
1
2 (t)V

1
2 (t− τ) ≤ V(t)+V(t−τ)2 .
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Also, we have from (H3), (3.31) and (3.32) that

V(t)

≤
∫ t
0 exp{−2a(t− s)}[σ21V(s) + σ22V(s− τ)

+|σ1σ2|(V(s) + V(s− τ))

+(|σ0|+ |σ1|κ‖ϕ‖2 + |σ2|κ‖ϕ‖2eλτ )2]ds

≤
∫ t
0 exp{−2a(t− s)}[σ21V(s) + σ22V(s− τ)

+|σ1σ2|(V(s) + V(s− τ))

+(|σ0|+ |σ1|κ‖ϕ‖2 + |σ2|κ‖ϕ‖2eλτ )2]ds.

(3.33)

Let 

M(t) =
∫ t
0 exp{−2a(t− s)}[σ21V(s) + σ22V(s− τ)

+|σ1σ2|(V(s) + V(s− τ))

+(|σ0|+ |σ1|κ‖ϕ‖2 + |σ2|κ‖ϕ‖2eλτ )2,

M0(s) = φ̃(s), s ∈ [−τ, 0],

(3.34)

where φ̃(0) = 0. We have from (3.34) that

Ṁ(t)

= −2a
∫ t
0 exp{−2a(t− s)}[σ21V(s) + σ22V(s− τ)

+|σ1σ2|(V(s) + V(s− τ))

+(|σ0|+ |σ1|κ‖ϕ‖2 + |σ2|κ‖ϕ‖2eλτ )2]ds

+[(|σ0|+ |σ1|κ‖ϕ‖2 + |σ2|κ‖ϕ‖2eλτ )2

+σ21V(t) + σ22V(t− τ) + |σ1σ2|(V(t) + V(t− τ))]

≤ −2aM(t) + [σ21M(t) + σ22M(t− τ) + |σ1σ2|(M(t) +M(t− τ))]

+(|σ0|+ |σ1|κ‖ϕ‖2 + |σ2|κ‖ϕ‖2eλτ )2

= (−2a+ σ21 + |σ1σ2|)M(t) + (σ22 + |σ1σ2|)M(t− τ)

+(|σ0|+ |σ1|κ‖ϕ‖2 + |σ2|κ‖ϕ‖2eλτ )2.

(3.35)

Applying Lemma 2.7 (Comparison principle), from (3.33)-(3.35), we get u(t) ≥
M(t), t ≥ 0, and so

V(t) ≤M(t) ≤ u(t), t ≥ 0. (3.36)
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Let

y(t) = u(t) + (|σ0|+|σ1|κ‖ϕ‖2+|σ2|κ‖ϕ‖2eλτ )2
−2a+σ2

1+2|σ1σ2|+σ2
2

. (3.37)

Then we have from (3.30) and (3.37) that
ẏ(t)=(−2a+ σ21+|σ1σ2|)y(t)+(σ22+|σ1σ2|)y(t− τ), t ≥ 0,

y0(s) = u0(s) + (|σ0|+|σ1|κ‖ϕ‖2+|σ2|κ‖ϕ‖2eλτ )2
−2a+σ2

1+2|σ1σ2|+σ2
2

, s ∈ [−τ, 0].
(3.38)

Also, let

V (t, y) = 1
2y

2(t) + γ
∫ 0
−τ y

2(θ)dθ, γ > 0, (3.39)

where y(t) is the solution of (3.38). Then we have from condition (2), (3.38)
and (3.39) that

V̇ (t, y)

= (−2a+ σ21 + |σ1σ2|+ γ)y2(t) + (σ22 + |σ1σ2|)y(t)y(t− τ)− γy2(t− τ)

≤ (−2a+ σ21 + |σ1σ2|+ γ)y2(t)+
(σ2

2+|σ1σ2|)
2 [y2(t) + y2(t− τ)]−γy2(t− τ)

= [−2a+ σ21 + |σ1σ2|+ γ +
(σ2

2+|σ1σ2|)
2 ]y2(t) + [−γ +

(σ2
2+|σ1σ2|)

2 ]y2(t− τ)

≤ 0.

This implies that

1
2y

2(t) ≤ V (t, y) ≤ [12 + γτ ] max−τ≤s≤0 |y(s)|21, t ≥ 0.

Hence Equation (3.38) is asymptotically stable. Furthermore, Equation (3.30)
is asymptotically stable from (3.37). Applying Lemma 2.7 (Comparison prin-
ciple) and (3.36), we see that the stochastic system (3.28) and (3.29) is 2th
moment asymptotically stable. �
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