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Abstract. In this paper, we consider orthogonal stability of 2-dimensional mixed type
additive and quartic functional equation of the form

2f(2x + y) + 2f(2x− y) = 2g(x + y) + 2g(x− y) + 12g(x)− 3g(y),

with x⊥y, where ⊥ is orthogonality in the sense of Ratz.

1. Introduction

In 1940, Ulam [8] proposed the general Ulam stability problem: Let G1 be
a group, G2 a metric group with the metric d. Given ε > 0, does there exists
δ > 0 such that if a function h : G1 → G2 satisfies the inequality

d
(
h(xy)− h(x)h(y)

)
< δ, (x, y ∈ G1),

then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε, (x ∈ G1)?

Hyers [5] gave a partial affirmative answer to the question of Ulam in the
context of Banach spaces. In 1950, a generalized version of Hyers’ theorem
for approximate additive mappings was given by Aoki [1]. In 1978, Rassias [6]
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extended the theorem of Hyers by considering the unbounded cauchy difference
inequality

‖f(x+ y)− f(x)− f(y)‖ 6 ε(‖x‖p + ‖y‖p), (ε ≥ 0, p ∈ [0, 1)). (1.1)

Let us recall the orthogonality in the sense of Ratz.

Definition 1.1. ([7]) Suppose that X be a real vector space with dimX ≥ 2
and ⊥ is a binary relation on X with the following properties:

(a) totality of ⊥ for zero: x⊥0, 0⊥x for all x ∈ X;
(b) independence: if x, y ∈ X − {0}, then x, y are linearly independent;
(c) homogeneity: if x, y ∈ X, x⊥y, then αx⊥βy for all α, β ∈ X;
(d) the Thalesian property: Let P be a 2-dimensional subspace of X. If

x ∈ P and λ ∈ R+, then there exists y0 ∈ P such that x⊥y0 and
x+ y0⊥λx− y0.

The pair (X,⊥) is called an orthogonality space. By an orthogonality
normed space, we mean an orthogonality space equipped with a norm. Some
examples of special interest are

(i) the trivial orthogonality on a vector space X defined by (a), and for
non-zero elements x, y ∈ X, x⊥y if and only if x, y are linearly inde-
pendent,

(ii) the ordinary orthogonality on an inner product space (X, (., .)) given
by x⊥y if and only if (x, y) = 0,

(iii) the Birkhoff- James orthogonality on a normed space (X, ‖.‖) defined
by x⊥y if and only if ‖x+ y‖ ≥ ‖x‖ for all λ ∈ R.

The relation ⊥ is called symmetric if x⊥y implies that y⊥x for all x, y ∈ X.
Clearly conditions (i) and (ii) are symmetric but (iii) is not. It is remarkable
to note, however, that a real normed space of dimension greater than or equal
to 3 is an inner product space if and only if the Birkhoff-James orthogonality
is symmetric.

The orthogonal Cauchy functional equation

f(x+ y) = f(x) + f(y), (x, y ∈ A, x⊥y), (1.2)

in which ⊥ is an abstract orthogonally was first investigated by Gudder and
Strawther [4]. Ger and Sikkorska discussed the orthogonal stability of the
equation (1.2) in [3]. Arunkumar and Hema Latha investigated the problem
of the orthogonal stabilitx, y of a generalized quartic functional equation

7[f(2x+ y) + f(2x− y)]

= 28[f(x+ y) + f(x− y)]− 3[f(2y)− 2f(y)] + 14[f(2x)− 4f(x)],

in Banach spaces [2].
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In this paper, we deal with the next functional equation Pexider functions:

2f(2x+ y) + 2f(2x− y) = 2g(x+ y) + 2g(x− y) + 12g(x)− 3g(y), (1.3)

for all x, y ∈ A, with x⊥y. We will use the following notation

Df,g(x, y) = 2f(2x+ y) + 2f(2x− y)− 2g(x+ y)

− 2g(x− y)− 12g(x) + 3g(y),
(1.4)

for all x, y ∈ A, with x⊥y.

2. Main Results

In the class of real functionals f, g : (X,⊥)→ R defined on an orthogonality
space in the sense of Ratz, let us consider the conditional equation (1.3). we
describe its solutions first assuming that f, g are odd functionals, then even
functionals, finally, using the decomposition of f, g into their even and odd
parts, we describe the general solutions.

Lemma 2.1. Let f, g : (X,⊥) → R be odd real functionals satisfying (1.3),
then the solutions of (1.3) are f(x) = g(x) = 0 .

Proof. Letting x = 0 in (1.3), oddness of f, g, we obtain g(y) = 0. Now by
letting y = 0 in (1.3), we obtain 4f(2x) = 0 for all x ∈ X. �

Theorem 2.2. Let f, g : (X,⊥)→ R be real functionals satisfying (1.3), then
the solutions of (1.3) are given by

f(x) = Q(x)− f(0),

g(x) = 4Q(x)− g(0),
(2.1)

where Q : (X,⊥)→ R is orthogonality quartic functional.

Proof. According to Lemma (2.1), it is enough to assume f, g : (X,⊥) → R
be even real functionals satisfying (1.3). In equation (1.3), by letting (x, y) =
(0, 0), we obtain

4f(0)− 13g(0) = 0. (2.2)

Replacing in (1.3), (x, y) by (0, y), we obtain

4f(y) = g(y) + 12g(0). (2.3)

By using (2.2) and (2.3), equation (1.3) may be rewritten as

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y)− 24f(0).
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Moreovere, we have

f(2x+ y)− f(0) + f(2x− y)− f(0)

= 4f(x+ y)− 4f(0) + 4f(x− y)− 4f(0)

+ 24f(x)− 24f(0)− 6f(y) + 6f(0).

Now, setting Q(x) = f(x)− f(0), we imply

Q(2x+ y) +Q(2x− y) = 4Q(x+ y) + 4Q(x− y) + 24Q(x)− 6Q(y).

Hence, Q is a quartic functional and we have

f(x) = Q(x) + f(0). (2.4)

Also from (2.3) and (2.4), we have

g(x) = 4f(x)− 12g(0) = 4Q(x) + 4f(0)− 12g(0). (2.5)

By adding and subtracting g(0) in (2.5), and by using (2.2), we have

g(x) = 4Q(x) + g(0).

�

Through out this paper, let (A,⊥) denote an orthogonality normed space
with norm ‖ . ‖A and (B, ‖ . ‖B) is a Banach space.

In this section, we present the Hyers-Ulam-Aoki-Rassias stability of the
orthogonal functional equation (1.3).

Theorem 2.3. Let α and s, (s < 1) be nonnegative real numbers, and fo, go :
A −→ B are odd mappings satisfying

‖Dfo,go(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (2.6)

for all x, y ∈ A, with x⊥y. Then there are unique orthogonally quartic map-
pings Q́fo : A −→ B and Q́go : A −→ B such that

‖fo(x)− Q́fo(x)‖B ≤
19α

12

(
1

16
+

1

2s

)
1

1− 2s−4
‖x‖sA, (2.7)

‖ go(x)− Q́go(x)‖B ≤
α

3

1

1− 2s−4
‖x‖sA, (2.8)

for all x ∈ A. The functions Q́fo , Q́go are defined by

Q́fo = lim
n→∞

fo(2
nx)

16n
, (2.9)

Q́go = lim
n→∞

go(2
nx)

16n
, (2.10)

for all x ∈ A.
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Proof. By letting (x, y) = (x, 0) in (2.6), we obtain

‖4fo(2x)− 16go(x)‖B ≤ α‖x‖sA, (2.11)

for all x ∈ A. Setting (x, y) by (0, y) in (2.6), we get

‖3go(y)‖B ≤ α‖y‖sA, (y ∈ A) (2.12)

or

‖go(y)‖B ≤
α

3
‖y‖sA, (y ∈ A). (2.13)

Using (2.13) and (2.11), we have

‖4fo(2x)‖B ≤ ‖4fo(2x)− 16go(x)‖B + ‖16go(x)‖B

≤ α‖x‖sA +
16α

3
‖x‖sA =

19α

3
‖x‖sA.

(2.14)

Then

‖ fo(2x) ‖B≤
19α

12
‖ x ‖sA, (x ∈ A). (2.15)

Replacing x by x
2 in (2.15), we get

‖fo(x)‖B ≤
19α

12

1

2s
‖x‖sA, (2.16)

for all x ∈ A. From (2.15) and (2.16), we have∥∥∥∥ 1

16
fo(2x)− fo(x)

∥∥∥∥
B

≤
∥∥∥∥ 1

16
fo(2x)

∥∥∥∥
B

+ ‖ − fo(x)‖B

≤ 1

16

19α

12
‖x‖sA +

19α

12

1

2s
‖x‖sA

=
19α

12

(
1

16
+

1

2s

)
‖x‖sA.

(2.17)

Now replacing x by 2x and dividing by 16 in (2.17) and summing resulting
inequality with (2.17), the following inequality is obtained∥∥∥∥fo(22x)

162
− fo(2x)

16

∥∥∥∥
B

≤ 19α

12

(
1

16
+

1

2s

)
2s−4‖x‖sA, (2.18)

for all x ∈ A. In general, using induction on a positive integer n, we obtain∥∥∥∥fo(2nx)

16n
− fo(x)

∥∥∥∥
B

≤ 19α

12

(
1

16
+

1

2s

) n−1∑
k=0

2k(s−4)‖x‖sA

≤ 19α

16

(
1

16
+

1

2s

) ∞∑
k=0

2k(s−4)‖x‖sA,
(2.19)
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for all x ∈ A. In order to prove the convergence of the sequence
{

fo(2nx)
16n

}
, by

replacing x by 2nx and dividing by 2m in (2.19), for any m,n > 0, we obtain∥∥∥∥fo(2m2nx)

16m16n
− fo(2

mx)

16m

∥∥∥∥
B

=
1

16m

∥∥∥∥fo(2m2nx)

16n
− fo(2mx)

∥∥∥∥
B

≤ 19α

12

(
1

16
+

1

2s

) n−1∑
k=0

2m(s−4)2k(s−4)‖x‖sA

=
19α

12

(
1

16
+

1

2s

) n−1∑
k=0

2(s−4)(m+k)‖x‖sA,

(2.20)

for all x ∈ A. For s < 4, right hand side of (2.20) tends to zero as m→ 0 for

all x ∈ A. Thus
{

fo(2nx)
16n

}
is a Cauchy sequence. Since B is complete, there

exists a mapping Q́fo : A −→ B such that

Q́fo(x) = lim
n→∞

fo(2
nx)

16n
, (x ∈ A).

Letting n→∞ in (2.13), implies∥∥∥∥ lim
n→∞

fo(2
nx)

16n
− fo(x)

∥∥∥∥
B

≤ 19α

12

(
1

16
+

1

2s

) ∞∑
k=0

2k(s−4)‖x‖sA

=
19α

12

(
1

16
+

1

2s

)
1

1− 2s−4
‖x‖sA.

Then formula (2.9), is satisfied. In order to prove that Q́fo satisfies (1.3), we
replace (x, y) by (2nx, 2ny) in (2.6) and divide by 2n, and so we deduce that

1

16n
‖fo(2n(2x+ y)) + fo(2

n(2x− y))− 2fo(2
n(x+ y))

− 2fo(2
n(x− y))− 12fo(2

n(x)) + 3fo(2
n(y))‖

≤ 2× 2n(s−4){‖x‖sA + ‖y‖sA}.

Taking limit as n→∞, we get

Q́fo(2x+ y) + Q́fo(2x− y)

= 2Q́fo(x+ y) + 2Q́fo(x− y)− 12Q́
fo

(x) + 10Q́fo(x),

for all x, y ∈ A with x⊥y. Therefore Q́fo : A −→ B is an orthogonally

quartic mapping that satisfies (1.3). To prove the uniqueness of Q́fo , let Q̀fo

be another orthogonally quartic mapping satisfying (1.3) and inquality (2.8).
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Then

‖Q́fo(x)− Q̀fo(x)‖ =
1

16n
‖Q́fo(2nx)− Q̀fo(2nx)‖

≤ 1

16n
(‖Q́fo(2nx)− fo(2nx)‖+ ‖fo(2nx)− Q̀fo(2nx)‖)

≤ 2

2n(4−s)

(
19α

12

(
1

16
+

1

2s

)
1

1− 2s−4
‖x‖sA

)
,

which left hand side tends to zero as n −→ ∞ for all x ∈ A. Therefor Q́fo is
unique. From (2.13), we have

‖go(2x)‖B ≤
2sα

3
‖x‖sA, (x ∈ A). (2.21)

Now from (2.21) and (2.13), we have∥∥∥∥ 1

16
go(2x)− go(x)

∥∥∥∥
B

≤
∥∥∥∥ 1

16
go(2x)

∥∥∥∥
B

+ ‖ − go(x)‖B

≤ α

3
(1 + 2s−4)‖x‖sA.

(2.22)

By replacing x by 2x and dividing by 16 in (2.22) and summing resulting
inequality with (2.22), we have∥∥∥∥go(22x)

162
− go(2x)

16

∥∥∥∥
B

≤ α

3
(1 + 2s−4)

2s

16
‖ x ‖sA, (2.23)

for all x ∈ A. In general, using induction on a positive integer n, we obtain∥∥∥∥go(2nx)

16n
− go(x)

∥∥∥∥
B

≤ α

3
(1 + 2s−4)

n−1∑
k=0

2k(s−4)‖x‖sA

≤ α

3
(1 + 2s−4)

∞∑
k=0

2k(s−4)‖x‖sA,
(2.24)

for all x ∈ A. Since
{

go(2nx)
16n

}
is Cauchy sequence (The proof is similar to the

first part) and B is complete, there exists a mapping Q́go : A −→ B such that

Q́go(x) = lim
n→∞

go(2
nx)

16n
, (x ∈ A).

Letting n → ∞ in (2.24), we arrive the formula (2.8) for all x ∈ A. To prove

Q́go satisfies (1.3) and is unique, the proof is similar to the first part. �

Theorem 2.4. Let α and s(s < 4) be nonnegative real number and fe, ge :
A −→ B are even mappings satisfying

‖Dfe,ge(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (2.25)
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for all x, y ∈ A, with x⊥y. Then there are unique orthogonally quartic map-
pings Q́fe : A −→ B and Q́ge : A −→ B such that

‖fe(x)− Q́fe(x)‖B ≤
17α

64

(
1

1− 2s−4

)
‖x‖sA, (2.26)

‖ge(x)− Q́ge(x)‖B ≤
α

16
(1− 2s)

(
1

1− 2s−4

)
‖x‖sA, (2.27)

for all y ∈ A. The functions Q́fe , Q́ge are defined by

Q́fe = lim
n→∞

fe(2
nx)

16n
, (2.28)

Q́ge = lim
n→∞

ge(2
nx)

16n
, (2.29)

for all x ∈ A.

Proof. By letting y = 0 in (2.25), we obtain

‖4fe(2x)− 16ge(x)‖B ≤ α‖x‖sA, (2.30)

for all x ∈ A. Setting x by zero in (2.25), we have

‖4fe(y)− ge(y)‖B ≤ α‖y‖sA, (2.31)

for all x ∈ A. From (2.30) and (2.31), we get∥∥∥∥ 1

16
fe(2x)− fe(x)

∥∥∥∥
B

≤
∥∥∥∥ 1

16
fe(2x)− 1

4
ge(x)

∥∥∥∥
B

+

∥∥∥∥−fe(y) +
1

4
ge(y)

∥∥∥∥
B

≤ 17α

64
‖x‖sA.

(2.32)

Now replacing x by 2x and dividing by 16 in (2.32) and summing resulting
inequality with (2.32), also using induction on a positive integer n , we obtain∥∥∥∥fe(2nx)

16n
− fe(x)

∥∥∥∥
B

≤ 17α

64

n−1∑
k=0

2k(s−4)‖x‖sA

≤ 17α

64

∞∑
k=0

2k(s−4)‖x‖sA,
(2.33)

for all x ∈ A. Since
{

fo(2nx)
16n

}
is Cauchy sequence (The proof is similar to

Theorem (2.3)) and B is complete, there exists a mapping Q́fe : A −→ B such
that

Q́fe(x) = lim
n→∞

fe(2
nx)

16n
, (x ∈ A).
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Letting n→∞ in (2.33), the formula (2.26) is satisfied for all x ∈ A. To prove

Q́fe satisfies (1.3) and is unique, the proof is similar to the proof of Theorem
(2.3). From (2.14), we have∥∥∥∥ 1

16
ge(2x)− ge(x)

∥∥∥∥
B

≤
∥∥∥∥−1

4
fe(2x) +

1

16
ge(2x)

∥∥∥∥
B

+

∥∥∥∥−ge(x) +
1

4
fe(2x)

∥∥∥∥
B

≤ α

16
(1 + 2s)‖x‖sA, (x ∈ A).

(2.34)

Now replacing x by 2x and dividing by 16 in (2.34) and summing resulting
inequality with (2.34), and, using induction on a positive integer n, we obtain∥∥∥∥ge(2nx)

16n
− ge(x)

∥∥∥∥
B

≤ α

16
(1 + 2s−2)

n−1∑
k=0

2k(s)‖x‖sA

≤ α

16
(1 + 2s)

∞∑
k=0

2k(s−4)‖x‖sA,
(2.35)

for all x ∈ A. Since
{

ge(2nx)
16n

}
is Cauchy sequence (The proof is similar to

Theorem (3.1)) and B is complete, there exists a mapping Q́ge : A −→ B such
that

Q́ge(x) = lim
n→∞

ge(2
nx)

16n
, (x ∈ A).

Letting n→∞ in (2.35), the formula (2.27) is correct for all x ∈ A. To prove

Q́ge satisfies (1.3) and is unique, the proof is similar to the proof of Theorem
(3.1). �

Theorem 2.5. Let α and s(s < 4) be nonnegative real number and f, g :
A −→ B are mappings satisfying

‖Df,g(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (2.36)

for all x, y ∈ A, with x⊥y. Then there are unique orthogonally quartic map-
pings Qf : A −→ B and Qg : A −→ B such that

‖f(x)−Qf (x)‖B

≤
{

17α

64

(
1

1− 2s−4

)
+

19α

12

(
1

16
+

1

2s

)(
1

1− 2s−4

)}
‖x‖sA,

(2.37)

‖g(x)−Qg(x)‖B ≤
{
α(1 + 2s)

16

(
1

1− 2s−4

)
+
α

3

1

1− 2s−4

}
‖x‖sA, (2.38)
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for all x ∈ A. The functions Qf , Qg are defined by

Qf (x) = lim
n→∞

f(2nx)

16n
, (2.39)

Qg(x) = lim
n→∞

g(2nx)

16n
, (2.40)

for all x ∈ A.

Proof. Define

f(x) = fe(x) + fo(x),

g(x) = ge(x) + go(x),

for all x ∈ A. In (2.36), we have

‖fe(2x+ y) + fo(2x+ y) + 2fe(2x− y) + 2fo(2x− y)

− 12ge(x)− 2ge(x+ y)− 2go(x+ y)− 2ge(x− y)

− 2go(x− y)− 12go(x) + 3ge(y) + 3go(y)‖
≤ α{‖x‖sA + ‖y‖sA}.

(2.41)

Replacing (x, y) by (−x,−y) in (2.41), and since fe(−x) = fe(x), fo(−x) =
−fo(x), we have

‖fe(2x+ y)− fo(2x+ y) + 2fe(2x− y)− 2fo(2x− y)

− 12ge(x)− 2ge(x+ y) + 2go(x+ y)− 2ge(x− y)

+ 2go(x− y) + 12go(x) + 3ge(y)− 3go(y)‖
≤ α{‖x‖sA + ‖y‖sA}.

(2.42)

Then

‖ − fe(2x+ y) + fo(2x+ y)− 2fe(2x− y) + 2fo(2x− y)

− 12go(x) + 12ge(x) + 2ge(x+ y)− 2go(x+ y)

+ 2ge(x− y)− 2go(x− y)− 3ge(y) + 3go(y)‖
≤ α{‖x‖sA + ‖y‖sA}.

(2.43)

By summing (2.41) and (2.42), we get

‖Dfe,ge(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}.

By summing (2.41) and (2.43), we obtain

‖Dfo,go(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}.

By Theorem (2.3) and (2.4), we have

‖fe(x)− Q́fe(x)‖B ≤
17α

64

(
1

1− 2s−4

)
‖x‖sA, (2.44)
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‖fo(x)− Q́fo(x)‖B ≤
19α

12

(
1

16
+

1

2s

)(
1

1− 2s−4

)
‖x‖sA (2.45)

and

‖ge(x)− Q́ge(x)‖B ≤
α(1 + 2s)

16

1

1− 2s−4
‖x‖sA, (2.46)

‖go(x)− Q́go(x)‖B ≤
α

3

1

1− 2s−4
‖x‖sA. (2.47)

From (2.44), (2.45), (2.46) and (2.47), we have

‖f(x)−Qf (x)‖B ≤
{

17α

64

(
1

1− 2s−4

)
+

19α

12

(
1

16
+

1

2s

)(
1

1− 2s−4

)}
‖x‖sA,

‖g(x)−Qg(x)‖B ≤
{
α

16
(1− 2s−2)

(
1

1− 2s

)
+
α

3

1

1− 2s−4

}
‖x‖sA,

for all x ∈ A . Hence the proof completes. �
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