Nonlinear Functional Analysis and Applications Vol. 20, No. 4 (2015), pp. 551-559

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright © 2015 Kyungnam University Press

A GENERALIZATION OF CARISTI KIRK'S THEOREM FOR COMMON FIXED POINTS ON *G*-METRIC SPACES

Shaban Sedghi¹, Nabi Shobkolaei² and Seyed Hasan Sadati³

¹Department of Mathematics Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran e-mail: sedghi_gh@yahoo.com

²Department of Mathematics Babol Branch, Islamic Azad University, Babol, Iran e-mail: nabi_shobe@yahoo.com

³Department of Mathematics Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran e-mail: sadati_s@yahoo.com

Abstract. In this article, lower semi-continuous maps are used to generalize Cristi-Kirk's fixed point theorem on G-metric spaces. Some more general results are also obtained in G-metric spaces.

1. INTRODUCTION

Recently, Mustafa and Sims [8] introduced a new structure of generalized metric spaces, which are called *G*-metric spaces as generalization of metric space (X, d), to develop and introduce a new fixed point theory for various mappings in this new structure. Some authors [2, 9, 14] have proved some fixed point theorems in these spaces. Fixed point problems of contractive mappings in metric spaces endowed with a partially order have been studied in a number of works. Some recent references on this topic are the works noted in [1, 3, 6, 7]. Metric spaces are very important in mathematics and applied sciences. So, some authors have tried to give generalizations of metric spaces in several ways. For example, Dhage [4] and Gähler [5] introduced

⁰Received March 18, 2015. Revised July 9, 2015.

⁰2010 Mathematics Subject Classification: 54H25, 47H10.

⁰Keywords: Fixed point, *G*-metric.

the concepts of 2-matric spaces and D-metric spaces, respectively, but some authors pointed out that these attempts are not valid (see [10, 11, 12, 13, 15]).

First, we present some known definitions and propositions in G-metric spaces.

Definition 1.1. ([8]) Let X be a nonempty set and let $G : X \times X \times X \to R^+$ be a function satisfying the following properties:

- $(G_1) G(x, y, z) = 0$ if x = y = z,
- (G_2) 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$,
- (G_3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
- (G_4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$, symmetry in all three variables,
- (G_5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$.

Then the function G is called a generalized metric or a G-metric on X and the pair (X, G) is called a G-metric space.

Definition 1.2. ([8]) Let (X, G) be a *G*-metric space and $\{x_n\}$ be a sequence in *X*. A point $x \in X$ is said to be limit of $\{x_n\}$ iff

$$\lim_{n,m\to\infty}G(x,x_n,x_m)=0.$$

In this case, the sequence $\{x_n\}$ is said to be G-convergent to x.

Definition 1.3. ([8]) Let (X, G) be a *G*-metric space and $\{x_n\}$ be a sequence in *X*. $\{x_n\}$ is called *G*-Cauchy iff

$$\lim_{n, m, l \to \infty} G(x_l, x_n, x_m) = 0.$$

(X, G) is called *G*-complete if every *G*-Cauchy sequence in (X, G) is *G*-convergent in (X, G).

Proposition 1.4. ([8]) In a G-metric space (X, G), the following are equivalent.

- (1) The sequence $\{x_n\}$ is G-Cauchy.
- (2) For every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$, for all $n, m \ge N$.

Proposition 1.5. ([8]) Let (X, G) be a *G*-metric space. Then the function G(x, y, z) is jointly continuous in all three of its variables.

Proposition 1.6. ([8]) Let (X, G) be a *G*-metric space. Then for any $x, y, z, a \in X$, it follows that

- (i) if G(x, y, z) = 0 then x = y = z,
- (ii) $G(x, y, z) \le G(x, x, y) + G(x, x, z)$,
- (iii) $G(x, y, y) \le 2G(x, x, y)$,
- (iv) $G(x, y, z) \le G(x, a, z) + G(a, y, z)$,
- (v) $G(x, y, z) \le \frac{2}{3}[G(x, a, a) + G(y, a, a) + G(z, a, a)].$

Proposition 1.7. ([8]) Let (X, G) be a *G*-metric space. Then for a sequence $\{x_n\} \subseteq X$ and a point $x \in X$, the following are equivalent

- (i) $\{x_n\}$ is G-convergent to x,
- (ii) $G(x_n, x_n, x) \to 0 \text{ as } n \to \infty$,
- (iii) $G(x_n, x, x) \to 0 \text{ as } n \to \infty$,
- (iv) $G(x_m, x_n, x) \to 0 \text{ as } m, n \to \infty.$

We can find some examples and basic properties of G-metric spaces in Mustafa and Sims [8].

2. Main results

Lemma 2.1. Let (X,G) be a G-metric space and $\varphi : X \longrightarrow \mathbb{R}$. Define the relation \preceq on X as follows:

$$x \preceq y \Longleftrightarrow G(x, y, y) \le \varphi(x) - \varphi(y).$$

Then \leq is a (partial) order on X induced by φ .

Proof. (i) It is easy to see that $x \leq x$. (ii) Let $x \leq y$ then $G(x, y, y) \leq \varphi(x) - \varphi(y)$. Also, if $y \leq x$ then $G(y, x, x) \leq \varphi(y) - \varphi(x)$. Therefore,

$$G(x, y, y) + G(y, x, x) \le 0,$$

thus x = y.

(iii) Let $x \leq y$ then $G(x, y, y) \leq \varphi(x) - \varphi(y)$. Also, if $y \leq z$ then $G(y, z, z) \leq \varphi(y) - \varphi(z)$. Therefore,

$$G(x, z, z) \le G(x, y, y) + G(y, z, z) \le \varphi(x) - \varphi(z),$$

thus $x \leq z$.

Definition 2.2. Let (X, G) be a *G*-metric space. (i) Let $T: X \longrightarrow X$ be an arbitrary self-mapping on X such that

$$G(x, Tx, Tx) \le \varphi(x) - \varphi(Tx)$$

for all $x \in X$, then T is called a Caristi map on (X, G). (ii) Let $S, T : X \longrightarrow X$ be two selfmappings on X such that

$$G(Sx, Tx, Tx) \le \varphi(Sx) - \varphi(Tx)$$

for all $x \in X$, then T is called a S-Caristi map on (X, G).

Theorem 2.3. Let (X,G) be a complete G-metric space and $\varphi : X \longrightarrow \mathbb{R}$ be a lower semi-continuous function which is bounded below and \leq the order introduced by φ . Let $S,T : X \longrightarrow X$ be two self-mappings such that T is a S-Caristi map on (X,G). If S(X) be a closed subspace of X then there exists $z \in X$ such that Sz = Tz.

Proof. For each $x \in X$, define

$$H(x) = \{ z \in X : Sx \leq z \},$$

$$\alpha(x) = \inf\{\varphi(z) : z \in H(x) \}.$$
(2.1)

Since $Sx \in H(x)$, then $H(x) \neq \emptyset$. From (2.1), we have $\alpha(x) \leq \varphi(Sx)$.

Take $x \in X$ and say $x = x_0$. We construct a sequence $\{x_n\}$ in the following way:

$$x_1 := Sx,$$

$$Sx_{n+1} \in H(x_n) \text{ such that } \varphi(Sx_{n+1}) \le \alpha(x_n) + \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$
(2.2)

Thus, one can easily observe that

$$G(Sx_n, Sx_{n+1}, Sx_{n+1}) \le \varphi(Sx_n) - \varphi(Sx_{n+1}),$$

$$\alpha(x_n) \le \varphi(Sx_{n+1}) \le \alpha(x_n) + \frac{1}{n}, \quad \forall \ n \in \mathbb{N}.$$
(2.3)

Note that (2.3) implies that $\{\varphi(Sx_n)\}\$ is a decreasing sequence of real numbers and it is bounded. Therefore, the sequence $\{\varphi(Sx_n)\}\$ is convergent to some positive real number, say L. Thus, regarding (2.3), we have

$$L = \lim_{n \to \infty} \varphi(Sx_n) = \lim_{n \to \infty} \alpha(x_n).$$
(2.4)

From (2.3) and (2.4), for each $k \in \mathbb{N}$, there exists $N_k \in \mathbb{N}$ such that

$$\varphi(Sx_n) \le L + \frac{1}{k}, \quad \forall \ n \ge N_k.$$
 (2.5)

Regarding the monotonicity of $\{\varphi(Sx_n)\}$, for $m \ge n \ge N_k$, we have

$$L \le \varphi(Sx_m) \le \varphi(Sx_n) \le L + \frac{1}{k}.$$
(2.6)

Thus, we obtain

$$\varphi(Sx_n) - \varphi(Sx_m) < \frac{1}{k}, \ \forall \ m \ge n \ge N_k.$$
 (2.7)

On the other hand, taking (2.3) into account, together with the triangle inequality, we observe that

$$G(Sx_n, Sx_{n+2}, Sx_{n+2}) \le G(Sx_n, Sx_{n+1}, Sx_{n+1}) + G(Sx_{n+1}, Sx_{n+2}, Sx_{n+2})$$

$$\le \varphi(Sx_{n+1}) - \varphi(Sx_{n+2}) + \varphi(Sx_n) - \varphi(Sx_{n+1}).$$

Thus

$$G(Sx_n, Sx_{n+2}, Sx_{n+2}) \le \varphi(Sx_n) - \varphi(Sx_{n+2}).$$
 (2.8)

Analogously,

$$G(Sx_n, Sx_{n+3}, Sx_{n+3}) \le G(Sx_n, Sx_{n+2}, Sx_{n+2}) + G(Sx_{n+2}, Sx_{n+3}, Sx_{n+3})$$

$$\le \varphi(Sx_n) - \varphi(Sx_{n+2}) + \varphi(Sx_{n+2}) - \varphi(Sx_{n+3}).$$

Thus

$$G(Sx_n, Sx_{n+3}, Sx_{n+3}) \le \varphi(Sx_n) - \varphi(Sx_{n+3}).$$

$$(2.9)$$

By induction, we obtain that

 $G(Sx_n, Sx_m, Sx_m) \le \varphi(Sx_n) - \varphi(Sx_m), \quad \forall \ m \ge n$ (2.10)

and taking (2.7) into account, (2.10) turns into

$$G(Sx_n, Sx_m, Sx_m) \le \varphi(Sx_n) - \varphi(Sx_m) < \frac{1}{k}, \ \forall \ m \ge n \ge N_k.$$
(2.11)

Since the sequence $\{\varphi(Sx_n)\}$ is convergent which implies that the right-hand side of (2.11) tends to zero. That is $\{Sx_n\}$ is a Cauchy sequence in the *G*-metric space (X, G). Since (X, G) is complete then the sequence $\{Sx_n\}$ converges in the *G*-metric space (X, G), say $\lim_{n \to \infty} G(Sx_n, Sx_n, x^*) = 0$. Since S(X) is a closed subspace of X, there exists $z \in X$ such that $\lim_{n\to\infty} Sx_n = x^* = Sz$.

On the other hand, with the triangle inequality, we observe that

$$G(Sx_n, Tz, Tz) \leq G(Sx_n, Sz, Sz) + G(Sz, Tz, Tz)$$

$$\leq \varphi(Sx_n) - \varphi(Sz) + \varphi(Sz) - \varphi(Tz).$$

That is

$$G(Sx_n, Tz, Tz) \le \varphi(Sx_n) - \varphi(Tz).$$

Hence, $Tz \in H(x_n)$ for all $n \in \mathbb{N}$ which yields that $\alpha(x_n) \leq \varphi(Tz)$ for all $n \in \mathbb{N}$. From (2.4), the inequality $L \leq \varphi(Tz)$ is obtained. Moreover, by lower semi-continuous of φ , we have

$$\varphi(Sz) \leq \liminf_{n \to \infty} \varphi(Sx_n) = L \leq \varphi(Tz).$$

Since T is S-Caristi for each $x \in X$, then we have $\varphi(Tz) \leq \varphi(Sz)$. Hence $\varphi(Tz) = \varphi(Sz)$. Therefore,

$$G(Sz, Tz, Tz) \le \varphi(Sz) - \varphi(Tz) = 0.$$

Regarding definition, Tz = Sz.

Corollary 2.4. Let (X, G) be a complete G-metric and $\varphi : X \longrightarrow \mathbb{R}$ be a lower semi-continuous function which is bounded below and \leq the order introduced by φ . Let $T : X \longrightarrow X$ be a self-mapping such that T be a Caristi map on (X, G). Then there exists $z \in X$ such that Tz = z.

Theorem 2.5. Let (X,G) be a complete *G*-metric and let $T: X \longrightarrow X$ be a selfmap, satisfying for all $x, y, z \in X$ and $0 < k < \frac{1}{3}$ the condition

$$\frac{1}{2}G(x,x,Tx) \le G(x,y,z) \Longrightarrow G(Tx,Ty,Tz) \le kG(x,y,z).$$
(2.12)

Then T has a unique fixed point in X.

Proof. Putting y = x and z = Tx in (2.12). Hence from

$$\frac{1}{2}G(x, x, Tx) \le G(x, x, Tx),$$

it follows

$$G(Tx, Tx, T^2x) \le kG(x, x, Tx), \tag{2.13}$$

for every $x \in X$. Let $x_0 \in X$ be arbitrary and form the sequence $\{x_n\}$ by $x_1 = Tx_0$ and $x_n = Tx_{n-1}$ for $n \in \mathbb{N}$. By (2.13), we have

$$G(x_{n+1}, x_{n+1}, x_{n+2}) = G(Tx_n, Tx_n, T^2x_n)$$

$$\leq kG(x_n, x_n, Tx_n) = kG(x_n, x_n, x_{n+1})$$

$$\vdots$$

$$\leq k^n G(x_0, x_0, x_1).$$

Hence, $G(x_{n+1}, x_{n+2}, x_{n+2}) \leq 2G(x_{n+1}, x_{n+1}, x_{n+2}) \leq 2k^n G(x_0, x_0, x_1)$. Also, by Axioms G_5 of Definition of G-metric spaces, we have

$$\begin{aligned} &G(x_n, x_m, x_m) \\ &\leq G(x_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+2}, x_{n+2}) + \dots + G(x_{m-1}, x_m, x_m) \\ &\leq 2k^n G(x_0, x_0, x_1) + 2k^{n+1} G(x_0, x_0, x_1) + \dots + 2k^{m-1} G(x_0, x_0, x_1) \\ &= 2\frac{k^n - k^m}{1 - k} G(x_0, x_0, x_1) \\ &\leq 2\frac{k^n}{1 - k} G(x_0, x_0, x_1) \longrightarrow 0. \end{aligned}$$

Hence, $\{x_n\}$ is a G-Cauchy sequence. Since X is G-complete, there exists $z \in X$ such that $x_n \to z$ as $n \to \infty$. That is,

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} T x_n = z.$$

Let us prove now that

$$G(z, Tx, Tx) \le kG(z, x, x),$$

holds for each $x \neq z$. Since $G(x_n, x_n, Tx_n) \to 0$ and $G(x_n, x, x) \to G(z, x, x) \neq 0$, it follows that there exists a $n_0 \in \mathbb{N}$ such that

$$\frac{1}{2}G(x_n, x_n, Tx_n) \le G(x_n, x, x).$$

holds for every $n \ge n_0$. Assumption (2.12) implies that for such n

$$G(Tx_n, Tx, Tx) \le kG(x_n, x, x),$$

thus as $n \to \infty$ (and continuity of G), we get that

$$G(z, Tx, Tx) \le kG(z, x, x).$$
(2.14)

On the other hand,

$$G(z, Tz, Tz) \le G(z, Tx, Tx) + G(Tx, Tz, Tz).$$

Therefore for $x \neq z$ by using (2.14), we have

$$G(z, Tz, Tz) \le kG(z, x, x) + G(Tx, Tz, Tz).$$

$$(2.15)$$

We prove that Tz = z. For, if $Tz \neq z$, putting x = Tz in (2.15) inequality we get

$$G(z, Tz, Tz) \le kG(z, Tz, Tz) + G(T^2z, Tz, Tz),$$

by using (2.13) we have

$$G(z, Tz, Tz) \le kG(z, Tz, Tz) + kG(z, z, Tz),$$

thus

$$(1-k)G(z,Tz,Tz) \le kG(Tz,z,z) \le 2kG(z,Tz,Tz).$$

Since $k < \frac{1}{3}$ it follows that $\frac{2k}{1-k} < 1$, hence

$$G(z, Tz, Tz) \le \frac{2k}{1-k}G(z, Tz, Tz) < G(z, Tz, Tz),$$

which is contradiction. Thus, we have proved that z is a fixed point of T. The uniqueness of the fixed point follows easily from (2.12). Indeed, if y, z are two fixed points of T,

$$0 = \frac{1}{2}G(z, z, z) = \frac{1}{2}G(z, z, Tz) \le G(z, y, y),$$

then (2.12) implies that

$$G(z, y, y) = G(Tz, Ty, Ty) \le kG(z, y, y) < G(z, y, y),$$

whereform y = z.

Example 2.6. Let $X = [0, \infty)$ and G(x, y) = |x - y| + |y - z| + |x - z|, then (X, G) is a *G*-metric space. Suppose $T : X \to X$ such that $Tx = \frac{3x}{8}$ and $Sx = \frac{x}{2}$ for all $x \in X$ and $\varphi : X \to [0, \infty)$ such that $\varphi(x) = 8x$. Then

$$G(Sx, Tx, Tx) = 2\left|\frac{x}{2} - \frac{3x}{8}\right| = \frac{x}{4},$$

and $\varphi(Sx) - \varphi(Tx) = x$. Other conditions of Theorem 2.3 are also satisfied. Therefore T and S have coincidence point; indeed x = 0 is the required point.

Example 2.7. Let $X = [0, \pi]$ and G(x, y) = |x - y| + |y - z| + |x - z|. If define the relation \preceq on X as follows:

$$x \preceq y \Longleftrightarrow y \leq x$$
.

Then \leq is a (partial) order on X induced by φ and (X, G) is a G-metric space. Suppose $T: X \to X$ such that $Tx = \sin(x)$ for all $x \in X$ and $\varphi: X \to [0, \infty)$ such that $\varphi(x) = 4x$. Then

$$G(x, Tx, Tx) = 2|x - \sin(x)| = 2x - 2\sin(x)$$

and $\varphi(x) - \varphi(Tx) = 4x - 4\sin(x)$. Other conditions of Corollary 2.4 are also satisfied. Then there exists $0 \in X$ such that T0 = 0, indeed x = 0 is the required point.

References

- T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393.
- [2] R. Chugh, T. Kadian, A. Rani and B.E. Rhoades, Property P in G-metric spaces, Fixed Point Theory Appl., 2010 Article ID 401684.
- [3] Lj.B. Cirić, D. Mihet and R. Saadati, Monotone generalized contractions in partiality ordered probabilistic metric spaces, Topology and its Appl., 156 (2009), 2838–2844.
- [4] B.C. Dhage, Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329–336.
- [5] S. Gähler, 2-metrische Räume und iher topoloische Struktur, Math. Nachr., 26 (1963), 115–148.
- [6] J. Harjani, B. López and K. Sadarangani, Fixed point theorems for weakly C-contractive mappings in ordered metric spaces, Computers and Mathematics with Applications, doi:10.1016/j.camwa.2010.12.027.
- [7] V. Lakshmikantham and Lj.B. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341–4349.
- [8] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
- [9] Z. Mustafa, H. Obiedat and F. Awawdeh, Some common fixed point theorems for mapping on complete G-metric spaces, Fixed Point Theory Appl., 2008 Article ID 189870.
- [10] Z. Mustafa and B. Sims, Some results concerning D-metric spaces, Proc. of The Internat. Conference on Fixed Point Theory and Applications, pp. 189–198, Valencia, Spain, 2003.

- [11] S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat. J. Math. Math. Sci., 2004(51) (2004), 2719–2740.
- [12] S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On the concepts of balls in a D-metric space, Internat. J. Math. Math. Sci., 2005(1) (2005), 133–141.
- [13] S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On convergent sequences and fixed point theorems in D-Metric spaces, Internat. J. Math. Math. Sci., 2005(12) (2005), 1969–1988.
- [14] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in Gmetric spaces, Fixed Point Theory Appl., 2010(2010), Article ID 181650.
- [15] S.G. Matthews, *Partial metric topology*, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., **728** (1994), 183–197.