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Abstract. In this article, lower semi-continuous maps are used to generalize Cristi-Kirk’s
fixed point theorem on G-metric spaces. Some more general results are also obtained in

G-metric spaces.

1. INTRODUCTION

Recently, Mustafa and Sims [8] introduced a new structure of generalized
metric spaces, which are called G-metric spaces as generalization of metric
space (X,d), to develop and introduce a new fixed point theory for various
mappings in this new structure. Some authors [2, 9, 14] have proved some
fixed point theorems in these spaces. Fixed point problems of contractive
mappings in metric spaces endowed with a partially order have been studied
in a number of works. Some recent references on this topic are the works
noted in [1, 3, 6, 7]. Metric spaces are very important in mathematics and
applied sciences. So, some authors have tried to give generalizations of metric
spaces in several ways. For example, Dhage [4] and Géhler [5] introduced
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the concepts of 2-matric spaces and D-metric spaces, respectively, but some
authors pointed out that these attempts are not valid (see [10, 11, 12, 13, 15]).

First, we present some known definitions and propositions in G-metric
spaces.

Definition 1.1. ([8]) Let X be a nonempty set and let G: X x X x X — R
be a function satisfying the following properties:

(G1) G(z,y,2) =0ifx =y =z,

(G2) 0 < G(z,z,y) for all x,y € X with = # y,
(G3) G(z,z,y) < G(x,y,2) for all x,y,z € X with y # z,
(G4) G(z,y,2) = G(z,2,y) = G(y,z,x) = - -+, symmetry in all three vari-

ables,

(Gs) G(z,y,2) < G(z,a,a) + G(a,y, z) for all z,y,z,a € X.
Then the function G is called a generalized metric or a G-metric on X and
the pair (X, G) is called a G-metric space.

Definition 1.2. ([8]) Let (X, G) be a G-metric space and {x, } be a sequence
in X. A point z € X is said to be limit of {z,} iff

lim G(z,zp,xmy) =0.
n,Mm—00

In this case, the sequence {z,} is said to be G-convergent to z.

Definition 1.3. ([8]) Let (X, G) be a G-metric space and {z,} be a sequence
in X. {z,} is called G-Cauchy iff

lim  G(x,xn, zm) = 0.
n, m, l—oo

(X, Q) is called G-complete if every G-Cauchy sequence in (X, G) is G-conver-
gent in (X, G).

Proposition 1.4. ([8]) In a G-metric space (X, G), the following are equiva-
lent.
(1) The sequence {xy} is G-Cauchy.
(2) For every e > 0, there exists N € N such that G(zy, Tm,Tm) < €, for
alln,m > N.

Proposition 1.5. ([8]) Let (X,G) be a G-metric space. Then the function
G(x,y, z) is jointly continuous in all three of its variables.

Proposition 1.6. ([8]) Let (X, G) be a G-metric space. Then for any z,y, z,a €
X, it follows that
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(i) if G(z,y,2) =0 thenx =y = 2,
(i) G(z,y,2) < G(z,z,y) + G(x,x, 2),
(i) G(zy.y) < 2G(z,2,1),
(iv) G(z,y,2) < G(z,a,z) + G(a,y, 2),
(v) G(z,y,2) < 2[G(z,a,a) + G(y,a,a) + G(z,a,a)].

Proposition 1.7. ([8]) Let (X,G) be a G-metric space. Then for a sequence
{zp} C X and a point x € X, the following are equivalent

(i) {zn} is G-convergent to x,
(i) G(xp,zn,x) — 0 as n — oo,
(iii) G(xp,z,z) = 0 as n — o0,
(iv) G(zm,zn,x) — 0 as m,n — oo.
We can find some examples and basic properties of G-metric spaces in
Mustafa and Sims [8].

2. MAIN RESULTS

Lemma 2.1. Let (X,G) be a G-metric space and ¢ : X — R. Define the
relation < on X as follows:

z 2y <= Gz, y,y) < (@) = p(y).
Then < is a (partial) order on X induced by ¢.

Proof. (i) It is easy to see that = < x.
(ii) Let z = y then G(z,y,y) < ¢(x) — ¢(y). Also, if y < x then G(y,z,z) <
o(y) — p(z). Therefore,

G(z,y,y) + Gy, z,z) <0,
thus x = y.
(iii) Let < y then G(z,y,y) < ¢(z) — p(y). Also, if y < z then G(y, z,2) <
©(y) — ¢(z). Therefore,
G(z,2,2) < G(z,y,y) + Gy, 2, 2) < p(x) — ¢(2),
thus = < z. O

Definition 2.2. Let (X, G) be a G-metric space.
(i) Let T: X — X be an arbitrary self-mapping on X such that

Gz, Tx,Tz) < p(z) — o(Tx)

for all x € X, then T is called a Caristi map on (X, G).
(ii) Let S, T : X — X be two selfmappings on X such that

G(Sz, Tz, Txz) < o(Sx) — p(Tx)



554 S. Sedghi, N. Shobkolaei and S. H. Sadati

for all z € X, then T is called a S-Caristi map on (X, G).

Theorem 2.3. Let (X,G) be a complete G-metric space and ¢ : X — R
be a lower semi-continuous function which is bounded below and < the order
introduced by p. Let S\ T : X — X be two self-mappings such that T is a
S-Caristi map on (X,G). If S(X) be a closed subspace of X then there exists
z € X such that Sz =Tz.

Proof. For each x € X, define
H(z)={z¢€ X: Sz =<z},
a(z) =inf{p(z): z € H(z)}.

Since Sz € H(z), then H(x) # (. From (2.1), we have a(x) < ¢(Sz).
Take z € X and say z = xg. We construct a sequence {z,} in the following
way:

(2.1)

xr1 = Sz,
1 (2.2)
Sxpy1 € H(xy,) such that o(Szp41) < alx,) + e VneN.
Thus, one can easily observe that
G(Sxm STpi1, an—H) < @(an) - @(an—i-l)a
(2.3)

1
a(zn) < @(Sxny1) < alzy) + e VneN.

Note that (2.3) implies that {¢(Sx,,)} is a decreasing sequence of real numbers
and it is bounded. Therefore, the sequence {¢(Sz,)} is convergent to some
positive real number, say L. Thus, regarding (2.3), we have
L= lim p(Sz,) = lim a(x,). (2.4)
n—oo

n—oo

From (2.3) and (2.4), for each k € N, there exists N € N such that

o(Szp) < L+ %7 V' n > Ng. (2.5)
Regarding the monotonicity of {¢(Szy)}, for m > n > Nj, we have
ngw%ggw&M§L+%. (2.6)
Thus, we obtain
o(Szp) — p(Szy) < %, V'm >n> Ny. (2.7)
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On the other hand, taking (2.3) into account, together with the triangle
inequality, we observe that

G(Sxyn, Stpio, Stnt2) < G(Szy, STni1, STni1) + G(STpi1, SThio, STyi2)
< @(Sznt1) — P(STpt2) + ©(Szn) — @(STni1).

Thus

G(Sxn, STy, Stpio) < ©(Sty) — p(STpi2). (2.8)
Analogously,
G(Szy, Stpis, Stnts) < G(Szy, STnia, STnia) + G(STpia, SThis, STyys)

< @(Szn) — (STnt2) + 0(STnt2) — P(STnys).

Thus

G(Sxn, Stpis, Stpis) < ©(Styn) — p(STpys). (2.9)
By induction, we obtain that

G(Szp, Sz, Stp) < ©(Sxy) — 0(STp), YVm>n (2.10)

and taking (2.7) into account, (2.10) turns into
1
G(Sxp, ST, Stm) < @(Szy) — @(Stp) < T V'm >n > Ny. (2.11)

Since the sequence {p(Sx,)} is convergent which implies that the right-hand
side of (2.11) tends to zero. That is {Sx,} is a Cauchy sequence in the
G-metric space (X,G). Since (X,G) is complete then the sequence {Sz,}
converges in the G-metric space (X, G), say nli_}ngoG(Smn, Sy, z*) = 0. Since

S(X) is a closed subspace of X, there exists z € X such that lim,_,. Sz, =
’ 6n‘sjcie other hand, with the triangle inequality, we observe that
G(Szp, Tz, Tz) < G(Szp,Sz,52) + G(Sz,Tz,T=)
< o(Szn) — p(52) + 0(S2) — (Tz).
That is
G(Sxn, Tz, Tz) < p(Sxn) — o(T2).

Hence, Tz € H(xy,) for all n € N which yields that a(x,) < ¢(T'z) for all
n € N. From (2.4), the inequality L < ¢(T'z) is obtained. Moreover, by lower
semi-continuous of ¢, we have

p(S2) < liminf p(Szy) = L < o(T=).
Since T is S-Caristi for each z € X, then we have p(Tz) < ¢(Sz). Hence
o(Tz) = ¢(Sz). Therefore,

G(Sz,Tz,Tz) < ¢(Sz) — ¢(Tz) = 0.
Regarding definition, Tz = Sz. O
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Corollary 2.4. Let (X, G) be a complete G-metric and ¢ : X — R be a lower
semi-continuous function which is bounded below and = the order introduced
by p. Let T : X — X be a self-mapping such that T be a Caristi map on
(X,G). Then there exists z € X such that Tz = z.

Theorem 2.5. Let (X,G) be a complete G-metric and let T : X — X be a
selfmap, satisfying for all x,y,z € X and 0 < k < % the condition

%G(:c,a:,Tm) < G(z,y,2z) = G(Tx,Ty,Tz) < kG(z,y, 2). (2.12)

Then T has a unique fized point in X.
Proof. Putting y = z and z = Tz in (2.12). Hence from
%G(m,x,T&:) < G(z,z,Tx),
it follows
G(Tz, Tz, T%x) < kG(z,z,Tx), (2.13)

for every € X. Let xg € X be arbitrary and form the sequence {x,} by
x1 =Tz and x,, = T'xy—1 for n € N. By (2.13), we have

G(Tnt1, Tni1, Tnso) = G(Tay, Txn, T?xy)
< kG(xp, xn, Tay) = kG(xn, Tn, Tni1)

< k"G(z0,z0,21)-
Hence, G(zp+1, Tn+2, Tnt+2) < 2G(Tpt1, Tntl, Tny2) < 2k"G(x9, xo, x1). Also,
by Axioms G5 of Definition of G-metric spaces, we have
G(Tn, Tm, Tm)
< G(xn, Tnt1, Tnt1) + G(Tng1, Tngo, Tng2) + -+ G(Tm—1, T,y Tm)
< 2k"G(x0, o, 1) + 2k" T G (w0, w0, 1) + - - - + 2k™ LG (w0, w0, 1)

kn— km
= 2ﬁG($0,$0,x1)
< .
< 21 — kG(xo,xO,xl) — 0

Hence, {x,} is a G-Cauchy sequence. Since X is G-complete, there exists
z € X such that x,, — z as n — oo. That is,

lim zp41 = lim Tx, = 2.
n—oo n—oo

Let us prove now that
G(z,Tz,Tx) < kG(z,x, x),
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holds for each = # z. Since G(zy, Tn, Txy) — 0 and G(zp, z,z) = G(2,z,2) #
0, it follows that there exists a ng € N such that

1
§G(mn,$n,Txn) < G(zp,x, ),

holds for every n > ng. Assumption (2.12) implies that for such n
G(Tzp, Tz, Tz) < kG(xp, z, ),
thus as n — oo (and continuity of G), we get that
G(z,Tx,Tx) < kG(z,x,x). (2.14)
On the other hand,
G(2,T2,T2) <Gz, Tz, Tx)+ G(Tz,Tz,T=z).

Therefore for x # z by using (2.14), we have

G(2,T2,Tz) < kG(z,z,z) + G(T'z,Tz,Txz). (2.15)

We prove that Tz = z. For, if Tz # z, putting z = Tz in (2.15) inequality we
get

G(2, Tz Tz) < kG(2,Tz,Tz) + G(T%2,Tz,T=z),
by using (2.13) we have
G(2,Tz,Tz) <kG(2,Tz,Tz) + kG(z,2,Tz),

thus
(1-k)G(2,T2,Tz) <kG(Tz,z,z) <2kG(2,Tz,Txz).

Since k < % it follows that % < 1, hence

2k
G(2,Tz,Tz) < mG(z,Tz,Tz) < G(2,TzTz),

which is contradiction. Thus, we have proved that z is a fixed point of T'. The
uniqueness of the fixed point follows easily from (2.12). Indeed, if y, z are two
fixed points of T,

0= %G(Z,Z,Z) = %G(Z,Z,TZ) < G(zvyvy)a

then (2.12) implies that
G(z,9,y) = G(T2, Ty, Ty) < kG(2,y,y) < G(2,9,9),

whereform y = z. O
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Example 2.6. Let X = [0,00) and G(z,y) = |x —y| + |y — 2| + | — z|, then
(X,G) is a G-metric space. Suppose T' : X — X such that Tx = %" and
Sz =% forallz € X and ¢ : X — [0,00) such that ¢(z) = 8x. Then

r 3 o

2 8 4’

and ¢(Sx) — p(Tx) = . Other conditions of Theorem 2.3 are also satisfied.
Therefore T' and S have coincidence point; indeed z = 0 is the required point.

G(Sz,Tx,Tx) =2

Example 2.7. Let X = [0,7] and G(z,y) = |z —y| + |y — 2| + |z — 2|. If
define the relation < on X as follows:

ry<=y<uzx.

Then =< is a (partial) order on X induced by ¢ and (X, G) is a G-metric space.
Suppose T': X — X such that Tx = sin(z) for all z € X and ¢ : X — [0, 00)
such that ¢(x) = 4. Then

G(z,Tz,Tz) = 2|z — sin(x)| = 2z — 2sin(z)

and ¢(x) — ¢(Tx) = 4x — 4sin(z). Other conditions of Corollary 2.4 are also
satisfied. Then there exists 0 € X such that T0 = 0, indeed x = 0 is the
required point.
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