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Abstract. In our previous works [29, 30], we obtained three general KKM type theorems

A, B, and C for abstract convex spaces. In a recent work [34], we showed that these three

theorems are mutually equivalent. Actually, by adopting a method of making new abstract

convex spaces from old, we gave a direct proof of Theorem C from Theorem B. In this

paper, we apply our new method to φA-spaces and other spaces appeared in the KKM

theory. Especially, we define some new abstract convex spaces called Ψl-spaces, Ψu-spaces,

and Ψ-spaces generalizing φA-spaces.

1. Introduction

In 1929, Knaster, Kuratowski and Mazurkiewicz obtained a celebrated in-
tersection theorem (the KKM theorem for short), which concerned with a
particular type of multimaps called KKM maps later. The KKM theory is the
study of applications of various equivalent formulations of the KKM theorem
and their generalizations.

From 1961, Ky Fan showed that the KKM theorem provides the foundation
for many of the modern essential results in diverse areas of mathematical sci-
ences. Consequently, at the beginning, the basic theorems in the KKM theory
and their applications were established for convex subsets of topological vector
spaces mainly by Fan in 1961-1984. Then, the KKM theory was extended to
convex spaces by Lassonde in 1983, and to c-spaces (or H-spaces) by Horvath
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in 1983-1993 and others. Since 1993 the theory is extended to generalized
convex (G-convex) spaces in a sequence of articles of the present author and
others; see [12].

While G-convex spaces were investigated by a large number of authors, the
concept has been challenged by several authors who aimed to obtain more
general concepts. In fact, a number of modifications or imitations of G-convex
spaces followed. It is known in 2007-2009 [20-26] that all of such spaces belong
to the class of φA-spaces. Furthermore, since 2006, all of the above mentioned
classes of spaces are unified to that of abstract convex spaces [15, 22, 27], and
the KKM theory tends to the research of such new spaces.

In our previous works [29, 30], we obtained three general KKM type theo-
rems A, B, and C for abstract convex spaces. In a recent work [34], we showed
that these three theorems are mutually equivalent. Actually, by adopting a
method of making new abstract convex spaces from old, we gave a direct
proof of Theorem C from Theorem B. In the present article, we apply our new
method to φA-spaces and other spaces appeared in the KKM theory. More-
over, we obtain generalizations of φA-spaces. In fact, we define some new
abstract convex spaces called Ψl-spaces, Ψu-spaces, and Ψ-spaces.

In Section 2, the basic concepts on our abstract convex spaces are given
as a preliminary. Section 3 concerns with the standard forms of our general
KKM type theorems and the method of making new KKM spaces from old. In
Section 4, we recall that φA-spaces are KKM spaces. Section 5 concerns with
generalizations of φA-spaces. In fact, we define new abstract convex spaces
called Ψl-spaces, Ψu-spaces, and Ψ-spaces (which are KKM spaces). In Section
6, several variants of Ψ-spaces previously due to other authors are introduced.
Finally, in Section 7, some historical remarks are added.

2. Abstract convex spaces and the KKM spaces

A multimap F : X ( Y is a function F : X → 2Y to the power set of
Y and F− : Y ( X is defined by F−(y) := {x ∈ X : y ∈ F (x)} for y ∈ Y .
Multimaps are also simply called maps. Let 〈D〉 denote the set of all nonempty
finite subsets of a set D.

The following is the original Knaster-Kuratowski-Mazurkiewicz theorem
and its open valued version:

Theorem (KKM). Let Fi (0 ≤ i ≤ n) be n+1 closed [resp. open] subsets of an
n-simplex v0v1 · · · vn. If the inclusion relation vi0vi1 · · · vik ⊂ Fi0∪Fi1∪· · ·∪Fik
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holds for all faces vi0vi1 · · · vik (0 ≤ k ≤ n, 0 ≤ i0 < i1 < · · · < ik ≤ n), then⋂n
i=0 Fi 6= ∅.
Recall the following in [15, 22, 27] and others:

Definition 2.1. Let E be a topological space, D a nonempty set, and Γ :
〈D〉 ( E a multimap with nonempty values ΓA := Γ(A) for A ∈ 〈D〉. The
triple (E,D; Γ) is called an abstract convex space whenever the Γ-convex hull
of any D′ ⊂ D is denoted and defined by

coΓD
′ :=

⋃
{ΓA : A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to some
D′ ⊂ D if for any N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD

′ ⊂ X.
When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X;

in other words, X is Γ-convex relative to D′ := X ∩D.
In case E = D, let (E; Γ) := (E,E; Γ).
If E is compact, then (E,D; Γ) is called a compact abstract convex space.

Example 2.2. The following are typical examples of abstract convex spaces.
Others can be seen in [27] and the references therein.
(1) A convex space (X,D) = (X,D; Γ) is a triple where X is a subset of a
vector space, D ⊂ X such that coD ⊂ X, and each ΓA is the convex hull of
A ∈ 〈D〉 equipped with the Euclidean topology. This concept generalizes the
one due to Lassonde for X = D.
(2) A generalized convex space or a G-convex space (X,D; Γ) due to Park is
an abstract convex space such that for each A ∈ 〈D〉 with the cardinality
|A| = n + 1, there exists a continuous function φA : ∆n → Γ(A) such that
J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J), where ∆J is the face of ∆n corresponding to
J ∈ 〈A〉.

Definition 2.3. Let (E,D; Γ) be an abstract convex space. If a map G : D(
E satisfies

ΓA ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map.

Definition 2.4. Let (E,D; Γ) be an abstract convex space and Z a topological
space. For a multimap F : E ( Z with nonempty values, if a multimap
G : D( Z satisfies

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,
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then G is called a KKM map with respect to F . A KKM map G : D( E is
a KKM map with respect to the identity map 1E .

A multimap F : E ( Z is called a KC-map [resp. a KO-map] if, for any
closed-valued [resp. open-valued] KKM map G : D ( Z with respect to F ,
the family {G(y)}y∈D has the finite intersection property. In this case, we
denote F ∈ KC(E,D,Z) [resp. F ∈ KO(E,D,Z)].

We have plenty of examples of KC-maps and KO-maps, see [16-18, 33].

Definition 2.5. The partial KKM principle for an abstract convex space
(E,D; Γ) is the statement 1E ∈ KC(E,D,E); that is, for any closed-valued
KKM map G : D( E, the family {G(y)}y∈D has the finite intersection prop-
erty. The KKM principle is the statement 1E ∈ KC(E,D,E) ∩ KO(E,D,E);
that is, the same property also holds for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satisfies the
(partial) KKM principle, respectively.

Example 2.6. (1) Known examples of KKM spaces are given in [27]. Re-
cently, Kulpa and Szymanski [4] found some partial KKM spaces which are
not KKM spaces.
(2) Let E = {0, 1} with the discrete topology, D = R the set of real numbers,
and Γ : 〈D〉 ( E is defined by Γ(A) = {0} for A ⊂ Q the set of rational
numbers, Γ(A) = {1} for A ⊂ R \Q, and Γ(A) = E for other cases.

Let G : D ( E be defined by G(x) = {0} if x ∈ Q and G(x) = {1} if
x ∈ R \ Q. Then G is a KKM map, but (E,D; Γ) is not a (partial) KKM
space.

We had the following diagram for triples (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space
=⇒ H-space =⇒ G-convex space =⇒ φA-space =⇒ KKM space
=⇒ Partial KKM space =⇒ Abstract convex space.

3. New KKM spaces from old

In this section we introduce a method of making new KKM spaces from old.

In [29, 30], we gave standard forms of the general KKM type theorems as
follows:

Theorem A. Let (E,D; Γ) be an abstract convex space, the identity map
1E ∈ KC(E,D,E) [resp. 1E ∈ KO(E,D,E)], and G : D ( E a multimap
satisfying
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(1) G has closed [resp. open] values; and
(2) ΓN ⊂ G(N) for any N ∈ 〈D〉 (that is, G is a KKM map).

Then {G(y)}y∈D has the finite intersection property.

Further, if
⋂
y∈M G(y) is compact for some M ∈ 〈D〉, then we have⋂

y∈D
G(y) 6= ∅.

Recall that Theorem A is a simple consequence of the definitions of the
partial KKM principle or the KKM principle.

Consider the following related four conditions for a map G : D( Z with a
topological space Z:

(a)
⋂
y∈DG(y) 6= ∅ implies

⋂
y∈DG(y) 6= ∅.

(b)
⋂
y∈DG(y) =

⋂
y∈DG(y) (G is intersectionally closed-valued).

(c)
⋂
y∈DG(y) =

⋂
y∈DG(y) (G is transfer closed-valued).

(d) G is closed-valued.

From the partial KKM principle we have a whole intersection property of
the Fan type as follows:

Theorem B. Let (E,D; Γ) be a partial KKM space [that is, 1E ∈ KC(E,D,E)]
and G : D( E a map such that

(1) G is a KKM map [that is, ΓA ⊂ G(A) for all A ∈ 〈D〉]; and
(2) there exists a nonempty compact subset K of E such that either

(i)
⋂
{G(y) | y ∈M} ⊂ K for some M ∈ 〈D〉; or

(ii) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of
E relative to some D′ ⊂ D such that N ⊂ D′ and

LN ∩
⋂
y∈D′

G(y) ⊂ K.

Then we have K ∩
⋂
y∈DG(y) 6= ∅. Furthermore,

(α) if G is transfer closed-valued, then K ∩
⋂
{G(y) | y ∈ D} 6= ∅;

(β) if G is intersectionally closed-valued, then
⋂
{G(y) | y ∈ D} 6= ∅.

Recall that conditions (i) and (ii) in Theorem B are usually called the
compactness conditions or the coercivity conditions, and (ii) has numerous
variations or particular forms appeared in a very large number of literature.
Note that Theorem B can be easily deduced from the compact case of Theorem
A; see [29, 30].

The following are recently given in [34].
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Definition 3.1. Let (E,D; Γ) be an abstract convex space, Z a topological
space, and F : E ( Z a map. Let ΛA := F (ΓA) for each A ∈ 〈D〉. Then
(Z,D; Λ) is called the abstract convex space induced by F.

Let Y ⊂ Z and D′ ⊂ D such that ΛB ⊂ Y for each B ∈ 〈D′〉. Then Y
is called a Λ-convex subset of Z relative to D′, and (Y,D′; Λ′) a subspace of
(Z,D; Λ) whenever Λ′ = Λ|〈D′〉.

Proposition 3.2. A KKM map G : D ( Z on an abstract convex space
(E,D; Γ) with respect to F : E ( Z is simply a KKM map on the correspond-
ing abstract convex space (Z,D; Λ) induced by F .

Proof. Simply note that ΛA := F (ΓA) ⊂ G(A) for each A ∈ 〈D〉. �

Proposition 3.3. For an abstract convex space (E,D; Γ), the corresponding
abstract convex space (Z,D; Λ) induced by F : E ( Z is a partial KKM space
if and only if F ∈ KC(E,D,Z).

The abstract convex space (Z,D; Λ) induced by F : E ( Z is a KKM space
if and only if F ∈ KC(E,D,Z) ∩ KO(E,D,Z).

Proof. (Z,D; Λ) is a partial KKM space
⇐⇒ For every closed-valued KKM map G : D ( Z (that is, ΛA = F (ΓA) ⊂
G(A) for each A ∈ 〈D〉), it has the finite intersection property of map-values.
⇐⇒ For every closed-valued KKM map G : D( Z with respect to F , it has
the finite intersection property of map-values.
⇐⇒ F ∈ KC(E,D,Z).

Similarly, for an open-valued KKM map G : D ( Z, it has the finite
intersection property of map-values ⇐⇒ F ∈ KO(E,D,Z). �

4. On φA-spaces: Revisited

From 2007, the following became one of the main themes of the KKM theory
[20-25]:

Definition 4.1. A space having a family {φA}A∈〈D〉 or simply a φA-space

(X,D; {φA}A∈〈D〉) or simply (X,D;φA)

consists of a topological space X, a nonempty set D, and a family of continuous
functions φA : ∆n → X (that is, singular n-simplices) for A ∈ 〈D〉 with the
cardinality |A| = n+1. For a φA-space (X,D;φA), a subset C of X is said to be
φA-convex relative to D′ ⊂ D if for each A ∈ 〈D′〉, we have φA(∆|A|−1) ⊂ C.

Every φA-space (X;D;φA) with ΓA := φA(∆n) for A ∈ 〈D〉 with |A| = n+1
is a KKM space which is not G-convex in general.
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If we put ΓA := φA(∆n), then any φA-space becomes an abstract convex
space. Moreover, by different methods, φA-space can be made into a G-convex
space; see [31].

Example 4.2. There are lots of examples of φA-spaces; see [20, 21, 23-27]
and the references therein. So, the KKM theory was extended to the study
of KKM maps on φA-spaces. Note that Khanh et al. studied φA-spaces using
the name of GFC-spaces; see [35].

Definition 4.3. For a φA-space (X,D;φA), any map T : D( X satisfying

φA(∆J) ⊂ T (J) for each A ∈ 〈D〉 and J ∈ 〈A〉

is called a KKM map.

This definition contains various previous particular ones.

Proposition 4.4. A KKM map T : D ( X on a φA-space (X,D;φA) is a
KKM map on the corresponding abstract convex space (X,D; Γ) with ΓA :=
φA(∆n) for all A ∈ 〈D〉 with |A| = n+ 1.

Proof. 1. From the definitions of a KKM map T : D( X on (X,D;φA) and
ΓA := φA(∆n), we have

ΓA = φA(∆|A|−1) ⊂ T (A); ΓJ = φJ(∆|J |−1) ⊂ T (J)

for all A, J ∈ 〈D〉. This immediately implies T is a KKM on the abstract
convex space (X,D; Γ). �

Proof. 2. Define ΓT : 〈D〉 ( X by ΓTA := T (A) for each A ∈ 〈D〉. Then
(X,D; ΓT ) becomes an abstract convex space. Note that ΓA ⊂ T (A) for each
A ∈ 〈D〉 and hence T : D( X is a KKM map on the abstract convex space
(X,D; ΓT ). �

Proposition 4.5. A KKM map T : D ( X on a φA-space (X,D;φA) is a
KKM map on a new abstract convex space (X,D; ΓT ).

Proof. Define ΓT : 〈D〉 ( X by ΓTA := T (A) for each A ∈ 〈D〉. Then
(X,D; ΓT ) becomes an abstract convex space. Note that ΓTA ⊂ T (A) for
each A ∈ 〈D〉 and hence T : D ( X is a KKM map on the abstract convex
space (X,D; ΓT ). �

The following is a KKM theorem for φA-spaces. The proof is just a simple
modification of the corresponding previous one.



568 Sehie Park

Theorem 4.6. For a φA-space (X,D;φA), let G : D ( X be a KKM map
with closed values. Then {G(z)}z∈D has the finite intersection property. (More
precisely, for each A ∈ 〈D〉 with |A| = n+1, we have φA(∆n)∩

⋂
z∈AG(z) 6= ∅.)

Further, if ⋂
z∈M G(z) is compact for some M ∈ 〈D〉, (∗)

then we have
⋂
z∈DG(z) 6= ∅.

Proof. Let A = {z0, z1, . . . , zn} ∈ 〈D〉. Since G : D ( X is a KKM map,
for each vertex ei of ∆n, we have φA(ei) ⊂ G(zi) for 0 ≤ i ≤ n. Then
ei 7→ φ−1G(zi) is a closed valued map since φA is continuous. Moreover,

∆k = co{ei0 , ei1 , . . . , eik} ⊂
⋃k
j=0 φ

−1G(zij ) for each face ∆k of ∆n. Therefore,

by the original KKM theorem, ∆n ⊃
⋂n
i=0 φ

−1G(zi) 6= ∅ and hence φA(∆n) ∩⋂
z∈AG(z) 6= ∅. The second conclusion is clear. �

Theorem 4.7. For a φA-space (X,D;φA), let G : D ( X be a KKM map
with open values. Then {G(z)}z∈D has the finite intersection property.

Proof. Let A = {z0, z1, . . . , zn} ∈ 〈D〉. Since G : D ( X be a KKM map,
for each vertex ei of ∆n, we have φA(ei) ⊂ G(zi) for 0 ≤ i ≤ n. Then
ei 7→ φ−1G(zi) is an open valued map since φA is continuous. Moreover,

∆k = co{ei0 , ei1 , . . . , eik} ⊂
⋃k
j=0 φ

−1G(zij ) for each face ∆k of ∆n. Therefore,

by the KKM theorem for open valued KKM maps, ∆n ⊃
⋂n
i=0 φ

−1G(zi) 6= ∅
and hence φA(∆n) ∩

⋂
z∈AG(z) 6= ∅. �

Corollary 4.8. Every φA-space is a KKM space.

The above proofs were given in [31]. However, we have another proofs by
adopting our new method as follows:

Proofs of Theorems 4.6, 4.7 and Corollary 4.8. Let (X,D;φA) be a φA-space,
G : D( X be a KKM map with closed (or open) values, and A ∈ 〈D〉. Then
(∆|A|−1, A; co) is an abstract convex space where A can be regarded as the set
of vertices of ∆|A|−1. Define a new abstract convex space (X,A; Λ) induced
by φA : ∆|A|−1 → X with Λ(J) := φA(∆|J |−1) for each J ∈ 〈A〉, where ∆|J |−1

is the face of ∆|A|−1 corresponding to J ⊂ A. Since φA is a continuous map,
we know φA ∈ KC(∆|A|−1, A,X) ∩ KO(∆|A|−1, A,X) (see [16-18]). Therefore,
by Proposition 3.3, (X,A; Λ) is a KKM space(Hence it satisfies Theorem A).
Since G|A is a KKM map, we have

⋂
y∈AG(y) 6= ∅. This means (X,D;φA) is

a KKM space. �
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5. Generalizations of φA-spaces

For topological spaces X and Y , a map F : X ( Y with nonempty values,
and a subset B ⊂ Y , we define

F+(B) := {x ∈ X : F (x) ⊂ B}, F−(B) := {x ∈ X : F (x) ∩B 6= ∅}.
We say that F is

(i) upper semicontinuous (u.s.c.) iff F−(C) is closed in X for each closed
set C ⊂ Y , or F+(O) is open in X for each open set O ⊂ Y ;

(ii) lower semicontinuous (l.s.c.) iff F−(O) is open in X for each open set
O ⊂ Y , or F+(C) is closed in X for each closed set C ⊂ Y ; and

(iii) continuous (u.s.c.) iff it is u.s.c. and l.s.c.

In this section, we give another examples of (partial) KKM spaces extending
φA-spaces:

Definition 5.1. An abstract convex space (X,D; Γ) is called a Ψl-space [resp.
Ψu-space] if, for each N ∈ 〈D〉, there exists a l.s.c. [resp. an u.s.c.] map
F : ∆n( X such that F (∆J) ⊂ Γ(J) for all J ⊂ N = {y0, y1, . . . , yn}, where
∆J denotes the face of ∆n corresponding to J ⊂ N .

An abstract convex space (X,D; Γ) is called a Ψ-space if, for each N ∈ 〈D〉,
there exists a continuous multimap F : ∆n( X such that F (∆J) ⊂ Γ(J) for
all J ⊂ N .

A Ψl-space [resp. Ψu-space] can be denoted by (X,D; Ψl) [resp. (X,D; Ψu)],
and a Ψ-space by (X,D; Ψ).

Lemma 5.2. Any (X,D; Ψ) is a Ψl-space [resp. Ψu-space].

Example 5.3. (1) Any φA-space is a Ψ-space. Hence G-convex spaces are
Ψ-spaces.
(2) A similar concept adopting u.s.c. maps with nonempty compact values
instead of mere u.s.c. maps is called a pseudo H-space in [6]; see Section 6.
(3) In [3], the concept of Ψl-spaces are implicitly given without any practical
examples.

Lemma 5.4. Let V={e0, e1, . . . , en}, X be a topological space, and (∆n, V ; co)
be the abstract convex space as in the original KKM theorem. Let G : V ( X
be a closed [resp. an open] valued multimap. If G is a KKM map with respect
to a l.s.c. [resp. an u.s.c.] map F : ∆n( X, then

⋂n
i=0G(ei) 6= ∅.

Proof. Since F (∆J) ⊂ G(J) for each J ⊂ V , we have ∆J ⊂ F+G(J) for each
J ⊂ D. Then F+G : V ( ∆n is a KKM map. Moreover, it is closed-valued
[resp. open-valued] since F is l.s.c. [resp. u.s.c.]. Therefore, by the original
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KKM theorem, we have
⋂n
i=0 F

+G(ei) = F+(
⋂n
i=0G(ei)) 6= ∅. Consequently,⋂n

i=0G(ei)) 6= ∅. �

From this Lemma, we have the following:

Theorem 5.5. Let (X,D; Γ) be an abstract convex space and G : D( X be
a KKM map with closed [resp. open] values. If (X,D; Γ) is a Ψl-space [resp.
Ψu-space], then {G(y) : y ∈ D} has the finite intersection property. Further if

G(y) is compact for some y ∈ D, then
⋂
y∈DG(y) 6= ∅.

Proof. Given N = {y0, y1, . . . , yn} ⊂ D, we prove
⋂n
i=0G(yi) 6= ∅. Since G is

a KKM map, we have

Γ(J) ⊂
⋃
y∈J

G(y), ∀ J ⊂ N.

Then there exists a l.s.c. [resp. an u.s.c.] map F : ∆n( X such that

F (∆J) ⊂ Γ(J) ⊂
⋃
y∈J

G(y), ∀ J ⊂ N.

From Lemma 5.4, it follows that
⋂n
i=0G(yi) 6= ∅. The second part is clear. �

From the definition of a KKM map of an abstract convex space, we can
define the following:

Definition 5.6. For a Ψl-space (X,D; Ψl), a map G : D ( X is called a
KKM map if, for each N ∈ 〈D〉, there exists a l.s.c. map F : ∆n ( X such
that F (∆J) ⊂ Γ(J) for all J ⊂ N . For a Ψu-space, we can define a KKM map
similarly.

Remark 5.7. A KKM map for a Ψl-space is called a generalized L-KKM map
in [3], where it is said to contain the so-called generalized R-KKM maps. The
author of [2] claimed as follows: “The class of generalized R-KKM mappings in-
cludes those classes of KKM mappings, H-KKM mappings, G-KKM mappings,
generalized G-KKM mappings, generalized S-KKM mappings, GLKKM map-
pings and GMKKM mappings defined in topological vector spaces, H-spaces,
G-convex spaces, G-H-spaces, L-convex spaces and hyperconvex metric spaces,
respectively, as true subclasses.”

Proposition 5.8. A KKM map G : D ( X on a Ψl-space (X,D; Ψl) is a
KKM map on a new abstract convex space (X,D; Γ).

Proof. Define Γ : 〈D〉 ( X by Γ(A) := G(A) for each A ∈ 〈D〉. Then
(X,D; Γ) becomes an abstract convex space. Note that Γ(A) ⊂ G(A) for each
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A ∈ 〈D〉 and hence G : D( X is a KKM map on the abstract convex space
(X,D; Γ). �

Proposition 5.8 also holds for Ψu-spaces.

Now we have the following diagram:

φA-space =⇒ Ψ-space =⇒ Ψl-space

⇓ ⇓

KKM space =⇒ Partial KKM space

In fact, we have the following:

Corollary 5.9. Every Ψ-space is a KKM space. Every Φl
A-space is a partial

KKM space.

6. Some variants of abstract convex spaces

In this section, we collect some possible variants of abstract convex spaces
or Ψ-spaces. Some of them may or may not have concrete examples at present.

6.1. Youness type E-convex spaces. In [37], a class of sets and a class
of functions called E-convex sets and E-convex functions are introduced by
relaxing the definitions of convex sets and convex functions. This kind of
generalized convexity is based on the effect of an operator E on the sets and
domain of definition of the functions. The optimality results for E-convex
programming problems are established in [37].

Definition 6.1. ([37]) A set M ⊂ Rn is said to be E-convex iff there is a map
E : Rn → Rn such that (1 − λ)E(x) + λE(y) ∈ M , for each x, y ∈ M and
0 < λ < 1.

There is an example of an E-convex set, which is not convex [37].

Example 6.2. An E-convex set is an example of an abstract convex space
and hence can be applied the KKM theory.

In fact, let D be a subset of M . Then (M,D; Γ) is an abstract convex space,
where Γ : 〈D〉 →M is defined by

Γ{x0, x1, . . . , xn} = coE{x0, x1, . . . , xn}

=

{
n∑
i=0

λiE(xi) : 0 ≤ λi ≤ 1,

n∑
i=0

λi = 1

}
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for each {x0, x1, . . . , xn} ∈ 〈D〉. Hence, every E-convex set M ⊂ Rn is an
abstract convex space (M,M ; Γ). Moreover, it is an example of φA-spaces or
GFC-spaces and hence partially KKM spaces. Therefore, it satisfies so many
results in the KKM theory as shown in [27] and many other articles.

More generally, we have the following way of making new abstract convex
spaces from old:

Definition 6.3. Let (E,D; Γ) be an absolute convex space and let F : D( D
be a map. Then (E,D; ΓF ) is called an abstract F -convex space whenever

ΓF (A) := coΓ(F (A)) for each A ∈ 〈D〉.

Note that this concept reduces to that of an abstract convex space whenever
F = 1D, the identity map on D.

6.2. ψ-space. We can consider a ψA-space (X,D; {ψA}A∈〈D〉), similar to a
φA-space, where ψA : [0, 1]n → X is continuous for each A ∈ 〈D〉 with |A| =
n + 1. Such types of spaces are given by Michael [9], Llinares [7], and Cain
and Gonzáles [1]. For each n ≥ 0, considering continuous functions gn : ∆n →
[0, 1]n given by

gn : u =

n∑
i=0

λi(u)ei 7→ (λ0(u), · · · , λn−1(u))

for u ∈ ∆n and by putting φA := ψAgn, a ψA-space becomes a φA-space.

6.3. Lin-Yao’s pseudo H-spaces. In 2003 [6], its authors introduced the
following:

Definition 6.4. ([6]) Let X be a topological space, D be a nonempty set. The
triple (X,D, q) is said to be a pseudo H-space if for each nonempty finite subset
A of D, the restricted mapping q : ∆|A|−1 → 2X is upper semicontinuous with
nonempty compact values, where ∆|A|−1 is an (|A| − 1)-simplex with vertices
{e1, e2, . . . , e|A|}. If D = X, the triple (X,D, q) is written by (X, q).

Its authors incorrectly observed that a G-convex space (X,D; Γ) with |D| <
∞ is an example of pseudo H-space and gave no other proper example. There-
fore, they might obtain some statements on their spaces, but it seems to be
not practical.

Now, by defining ΓA := q(∆|A|−1) for each nonempty finite subset A of
D, then (X,D, q) can be an abstract convex space (X,D; Γ). Therefore the
basic theorems in the recently developed abstract convex space theory can be
applied.
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Moreover, the following is given:

Definition 6.5. ([5]) Let (X,D, q) be a pseudo H-space. A mapping F :
D → 2X is a q-map if for each nonempty finite subset A of D, q(∆|A|−1) ⊂⋃
x∈A F (x) and q(∆|J |−1) ⊂

⋃
x∈J F (x) for all nonempty finite subset J of A,

where ∆|J |−1 is the convex hull of {ei1 , ei2 , . . . , eik+1
} if A = {a1, a2, . . . , an+1},

J = {ai1 , ai2 , . . . , aik+1
}.

The authors of [5] then showed that, under a strong restriction, a q-map
can be a KKM map and that 1X ∈ KC(X,X). From this KKM theorem, they
deduced routine intersection result, Fan-Browder type fixed point theorems, a
selection theorem, a Ky Fan type minimax inequality, and an application to
abstract economies. However, they fail to give any proper example of their
space which is not a G-convex space.

Later, the authors of [6] incorrectly stated that if the map q is single-valued
and we set Γ(A) = q(∆|A|−1) for each nonempty finite subset A of X, then
(X,D,Γ) forms a G-convex space. Note also that their Example 1 can not be
an example of their space.

6.4. Ψl-space of Fang et al. Our Ψl-spaces are motivated by Fang and
Huang [3] as follows:

Definition 6.6. ([3], Definition 2.1.) Let X be a nonempty set and Y be a
topological space. A set-valued mapping G : X → 2Y is called a generalized
L-KKM mapping if, for any N = {x0, . . . , xn} ∈ 〈X〉 (where some elements in
N may be same), there exists a lower semicontinuous mapping ϕN : ∆n → 2Y

such that for each {ei0 , . . . , eik} ⊂ {e0, . . . , en},

ϕN (∆k) ⊂
k⋃
j=0

G(xij ),

where ∆k = co({ei0 , . . . , eik}).

All arguments in [3] are based on the following:

Theorem 6.7. ([3], Theorem 3.1.) Let X be a nonempty set, Y be a topological
space, and G : X → 2Y be a generalized L-KKM mapping such that for each
x ∈ X and N = {x0, . . . , xn} ∈ 〈X〉 (where some elements in N may be
same), G(x)∩ϕN (∆n) is closed in ϕN (∆n), where ϕN : ∆n → 2Y is the lower
semicontinuous mapping in touch with N in Definition 2.1. Then

ϕN (∆n) ∩
n⋂
i=0

G(xi) 6= ∅.
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This follows from Theorem 5.5 by putting G(x) ∩ ϕN (∆n) instead of G(x).

6.5. FWC-spaces of Lu and Zhang. The following was introduced:

Definition 6.8. ([8], Definition 2.3.) A triple (Y,D;ϕN ) is said to be a finite
weakly convex space (shortly, an FWC-space) if Y, D are two nonempty sets
and for each N = {u0, . . . , un} ∈ 〈D〉 where some elements in N may be
same, there exists a set-valued mapping ϕN : ∆n → 2Y with nonempty values.
When D ⊂ Y , the space is denoted by (Y ⊃ D;ϕN ). In case Y = D, let
(Y ;ϕN ) := (Y, Y ;ϕN ).

Its authors stated: “It is worthwhile noticing that Y and D in Definition
2.3 do not possess any linear, convex and topological structure and so the set-
valued mapping ϕN has no continuity requirement. Even Y is a topological
space, it is easy to see that convex subsets of topological vector spaces, Las-
sonde’s convex spaces, H-spaces introduced by Horvath, G-convex spaces in-
troduced by Park and Kim, L-convex spaces introduced by Ben-El-Mechaiekh
et al., G-H-spaces introduced by Verma, pseudo H-spaces introduced by Lai et
al., GFC-spaces due to Khanh et al., FC-spaces due to Ding, and many other
topological spaces with abstract convex structure are all particular forms of
FWC-spaces.” For the references, see [8]. Here L-spaces are carelessly called
L-convex spaces as many peoples do.

Recall that FC-spaces (Y ;ϕN ) due to Ding is a particular form of FWC-
spaces for topological spaces Y and continuous ϕN . According to the defini-
tions of FC-spaces and FWC-spaces, for each N = {u0, . . . , un} ∈ 〈D〉 where
some elements in N may be same, there should be an infinite number of maps
ϕN : ∆n → 2Y .

Note that all of the preceding examples of FWC-spaces are known to be
KKM spaces (that is, abstract convex spaces satisfying abstract form of the
KKM theorem and its open-valued version); see Section 2.

For further comments on FWC-spaces, see [36].

7. Historical remarks

In 2006-09, we proposed new concepts of abstract convex spaces and the
(partial) KKM spaces which are proper generalizations of G-convex spaces
and adequate to establish the KKM theory; see [15, 22, 27] and the references
therein. Some corrections of [27] were given in [32].

The partial KKM principle for an abstract convex space is an abstract form
of the classical KKM theorem. A partial KKM space is an abstract convex
space satisfying the partial KKM principle. A KKM space is an abstract
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convex space satisfying the partial KKM principle and its “open” version.
Now the KKM theory becomes the study of spaces satisfying the partial KKM
principle.

In our work [27], we clearly derive a sequence of a dozen statements which
characterize the KKM spaces and equivalent formulations of the partial KKM
principle. As their applications, we add more than a dozen statements includ-
ing generalized formulations of von Neumann minimax theorem, von Neumann
intersection lemma, the Nash equilibrium theorem, and the Fan type minimax
inequalities for any KKM spaces. Consequently, [27] unifies and enlarges pre-
viously known several proper examples of such statements for particular types
of KKM spaces.

For topologies of abstract convex spaces; see [13, 28].

Our study on abstract convex spaces is closely related to the fixed point
theory of our better admissible class B of multimaps. The origin of the class
of multimaps is given in [10, 11] as a generalization of the admissible class Aκc
due to Park earlier. Later, for topological spaces X and Y , we defined the
“better” admissible class B of maps from X into Y [14, 19, 33]. A number of
authors imitated our definition, sometimes incorrectly.
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[1] G.L. Cain Jr. and L. González, The Knaster-Kuratowski-Mazurkiewicz theorem and
abstract convexities, J. Math. Anal. Appl., 338 (2008), 563–571.

[2] X.P. Ding, New generalized R-KKM type theorems in general topological spaces and
applications, Acta Math. Sinica, English Ser., 23(10) (2007), 1869–1880.

[3] M. Fang and N.-j. Huang, Generalized L-KKM type theorems in topological spaces with
an application, Comput. Math. Appl., 53 (2007), 1896–1903.

[4] W. Kulpa and A. Szymanski, Some remarks on Park’s abstract convex spaces, Top.
Meth. Nonlinear Anal., 44(2) (2014), 369–379.

[5] T.C. Lai, Y.C. Lin and J.C. Yao, Existence of equilibrium for abstract economics on
pseudo H-space, Appl. Math. Lett., 17 (2004), 691–696.

[6] Y.-C. Lin and J.-C. Yao, Fixed point theorems on the product pseudo H-spaces and
applications, J. Nonlinear Convex Anal., 4 (2003), 381–388.

[7] J.-V. Llinares, Unified treatment of the problem of existence of maximal elements in
binary relations: a characterization, J. Math. Economics, 29 (1998), 285–302.

[8] H. Lu and J. Zhang, A section theorem with applications to coincidence theorems and
minimax inequalities in FWC-spaces, Comput. Math. Appl., 64 (2012), 570–588.

[9] E. Michael, Convex structures and continuous selections, Canad. J. Math., 11 (1959),
556–575.

[10] S. Park, Coincidence theorems for the better admissible multimaps and their applications,
Nonlinear Anal., 30(7) (1997), 4183–4191.

[11] S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean
Math. Soc., 35 (1998), 803–829. Corrections, ibid., 36 (1999), 829–832.



576 Sehie Park

[12] S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math., 27 (1999),
193–232.

[13] S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal.
Appl., 5 (2000), 67–79.

[14] S. Park, Fixed points of multimaps in the better admissible class, J. Nonlinear Convex
Anal., 5 (2004), 369–377.

[15] S. Park, On generalizations of the KKM principle on abstract convex spaces, Nonlinear
Anal. Forum, 11 (2006), 67–77.

[16] S. Park, Fixed point theorems on KC-maps in abstract convex spaces, Nonlinear Anal.
Forum, 11(2) (2006), 117–127.

[17] S. Park, Remarks on KC-maps and KO-maps in abstract convex spaces, Nonlinear Anal.
Forum, 12(1) (2007), 29–40.

[18] S. Park, Examples of KC-maps and KO-maps on abstract convex spaces, Soochow J.
Math., 33(3) (2007), 477–486.

[19] S. Park, Fixed point theorems for better admissible multimaps on almost convex sets, J.
Math. Anal. Appl., 329 (2007), 690–702.

[20] S. Park, Various subclasses of abstract convex spaces for the KKM theory, Proc. Nat.
Inst. Math. Sci., 2(4) (2007), 35–47.

[21] S. Park, Comments on some abstract convex spaces and the KKM maps, Nonlinear Anal.
Forum, 12 (2007), 125–139.

[22] S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math. Soc.,
45 (2008), 1–27.

[23] S. Park, Comments on recent studies on abstract convex spaces, Nonlinear Anal. Forum,
13 (2008), 1–17.

[24] S. Park, Comments on the KKM theory on φA-spaces, PanAmerican Math. J., 18 (2008),
61–71.

[25] S. Park, Remarks on fixed points, maximal elements, and equilibria of economies in
abstract convex spaces, Taiwan. J. Math., 12 (2008), 1365–1383.

[26] S. Park, Generalized convex spaces, L-spaces, and FC-spaces, J. Glob. Optim., 45(2)
(2009), 203–210.

[27] S. Park, The KKM principle in abstract convex spaces: Equivalent formulations and
applications, Nonlinear Anal., 73 (2010), 1028–1042.

[28] S. Park, Remarks on some basic concepts in the KKM theory, Nonlinear Anal., 74
(2011), 2439–2447.

[29] S. Park, A genesis of general KKM theorems for abstract convex spaces, J. Nonlinear
Anal. Optim., 2 (2011), 133–146.

[30] S. Park, Remarks on certain coercivity in general KKM theorems, Nonlinear Anal. Fo-
rum, 16 (2011), 1–10.

[31] S. Park, Abstract convex spaces, KKM spaces and φA-spaces, Nonlinear Anal. Forum,
17 (2012), 1–10.

[32] S. Park, Review of recent studies on the KKM theory, II, Nonlinear Funct. Anal. Appl.,
19(1) (2014), 145–157.

[33] S. Park, Applications of multimap classes in abstract convex spaces, J. Nat. Acad. Sci.,
ROK, Nat. Sci. Ser., 51(2) (2012), 1–27.

[34] S. Park, A genesis of general KKM theorems for abstract convex spaces: Revisited, J.
Nonlinear Anal. Optim., 4(2) (2013), 127–132.

[35] S. Park, A review of the KKM theory on φA-spaces or GFC-spaces, Advances in Fixed
Point Theory, 3(2) (2013), 353–382.



Making new KKM spaces from old 577

[36] S. Park, Comments on the FWC-spaces of H. Lu and J. Zhang, Nonlinear Anal. Forum,
18 (2013), 33–38.

[37] E.A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. Optim.
Theory Appl., 102 (1999), 439–450.


