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Abstract. We introduce the concept of the equivalence of S-norms on a linear space which

can be given different S-norms completely. Then for every n-dimensional S-normed space X,

by using the norm of X: ||z|| = (3 |£i|2)% (Vz = > zie; € X), we get a new S-normed space
i=1 i=1
(X, ||z||®), and get a conclusion that any B-norm on a finite dimensional S-normed space is

equivalent to ||z|®. Further more, we prove that all of the S-norms on a finite dimensional
linear space are equivalent. At last, we give an application of norm equivalence: Suppose
X,Y are two n-dimensional real spaces, then the Banach-Mazur distance d(X,R") = 01_102,
where c1, c2 are two constants concerned with the norm of X. We also give an estimation of
d(X,Y).

1. PRELIMINARIES

Suppose X is an n-dimensional space(n € N), e1,eg,--- , e, is a basis of X,
IIIl1, || ]|2 are two different norms on X, it is well known of the following results
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n

in [1] : there exist two constants ci,c2 > 0, such that for Vo = ) z,e; € X,
i=1

we have

a(Y l&)z <zl < (Y l&a?)? (i=1,2).
=1 =1

n

There also exist two constants a,b > 0, such that for Vo = > z;e; € X, we
i=1

have

allzll2 < ||zlx < bll]]2.

Motivated by above results, we will discuss if there are similar results in
[B-normed spaces and discuss the equivalence of the two S-norms on any finite
dimensional S-normed space. At last, we will discuss the applications of norm
equivalence. Firstly, let us give some definitions.

Definition 1.1 ([2]). Suppose B is a fized number 0 < 5 <1, X is a linear
space on K, where K is real or complex, and ||-||g : X — RTUO is a functional.
Then (X, || - ||g) is called a B-normed space if

(1) zllg = 0,||zlls =0 = =0;

(2) Nz +ylls <llzlls + [lylls;

(3) llazlls = al’|lzls,
for alla e K and z,y,z € X, where 0 is a zero element in X, The functional
|lz||g is called a S-norm on X.

Definition 1.2 ([1]). Suppose X is a real space. || - ||1,] - [|2 are two norms
on X. Then || -||2 is not weaker than || - ||1 is that: for the arbitrary {x,} C
X,xp € X, we have

|xn — zoll2 = 0= ||zn —zo|l1 = 0 (n — 00).

We say norm || - ||1 and norm || - ||2 are equivalent if norm || -||1 is not weaker
than norm || - ||2, and norm || - ||2 is not weaker than norm | - |1 .

There is also an equivalent conditions of the equivalence of two norms || - ||;
and || - [|2 on X.

Theorem 1.3 ([1]). Suppose X is a real space. |- ||1,| - |2 are two norms on
X. Then ||-||1 and || - ||2 are equivalent if and only if there exist two constants
a,b >0, such that

allzlla < flzfi <ollzfz (Ve € X).

The equivalence of S-norms has not a clear definition, and we do not know if
there are two similar equivalent definitions of the equivalence of two S-norms
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on a B-normed space just like the equivalence of norms on a normed space.
Also we do not know if all the S-norms on a finite dimensional S-normed space
are equivalent.

In this paper, we use the equivalence of two norms on a general normed
space to give a clear definition of equivalence of two [-norms, by giving a
counter example, we prove we can not use the inequation of S-norms like the
inequation in Theorem 1.3 to define the equivalence of two S-norms. We also
prove all the S-norms on a finite dimensional S-normed space are equivalent.

Definition 1.4. Let X be a real or complex linear space , and || - g, - ||g,
are two B-norms on X. We say || - ||g, is not weaker than || - ||5, is that: for
the arbitrary {x,} C X,z9 € X, we have

[z = 2ollg, = 0= llzn — zollgy =0 (n = 00),

We say B-norm ||-|| g, and B-norm |- ||z, are equivalent if B-norm |- ||z, is not
weaker than B-norm ||-||g,, and B-norm ||-| g, is not weaker than B-norm ||-||s, .

Definition 1.5 ([3], [2]). Suppose E and E; are two topology linear spaces. T
18 a mapping from E to E1. M is an arbitrary bounded subset in E. We say
T is bounded if TM is bounded in E1. We say T is strongly bounded if there
exists a p > 0, such that | Tx| < p||z||,Vz € E.

For the sake of convenience, from now on, we use X to denote an arbitrary
n-dimensional linear space which can be given different S-norms, 0 < § <
1,neN.

2. ANY (B-NORM IS EQUIVALENT TO A NEW [3-NORM ON X

In this part, we prove that any finite dimensional S-normed space X, can be
given a new S-norm, any other S-norm on X is equivalent to the new S-norm.

Lemma 2.1. Let (X, ||z|g) be an n-dimensional -normed space, then X can
be given a new B-norm ||z||? for Vo € X.

n
Proof. Suppose e1,ez,--- ,e, is a basis of X, let [|z||® = (32 |§i|2)§,Vm =
i=1
n
&e; € X. Tt is easy to know that ||z||® > 0, and ||z||® = 0 if and only if
i=1
z = 0, |laz| = |a?||z]|?, to prove ||z||? is a B-norm, we only need to show
lz + 1 <zl + fJ2]°.



334 Baorui Zhang
n
In fact, [z = (3 [¢[%)* is a norm on X, so [l& +y| < [|l| + |y[. Then
=1

2+ yl1” < ()l + llyl)” < )l + llyll”.
So ||z||? is a B-norm, (X, ||z||?) is a new S-normed space. O
Remark 2.2. In fact, any linear space can be endowed with a norm (see [4],

page 35). Here, we can say any finite dimensional linear space can be given a
new [B-norm.

Theorem 2.3. Suppose || - || is an arbitrary B-norm on X, then || - g is
equivalent to the B-norm given in Lemma 2.1.

Proof. We suppose X is a real linear space, when X is complex, the proof is
similar. .
Suppose e1, ez, , e, is a basis of X. For any x = )_ &e; € X, define a
i=1
mapping 7' : X — R", T : x — (&1,&2,- -+ ,&,). Then T is a linear isomorphic
mapping from X to R"™.

n n

zlls =l ineillﬁ < §|§i‘ﬁ‘|€i‘|ﬁ
1= 1=

n 8,2 25 . 2-8

< (X 165 (S lledll3) 5"

B
2.

Let ¢ = (Z leill 3~ ) - Then [|z[|s = | Z Sieills < C(Z 1&il?)
On the other hand, let A be the Sphere of R™, that i 1s

A:{a:(£1a€25'”7§n GRH Z|§z %: }

For any a = (£1,&, -+ ,&,) € A, there exists a x = Zfiei € X, define a
i=1
mapping f : R™ — RT U {0},

n
a) = &eills = |z

i=1
Then f is continuous. In fact, for any sequence {a,,},m € N, a,, = a(m —
o0), there exists {z,,} and = in X (m € N), such that a,, = Tx,,a = Tz, and

n

B8
|F(am) = £(@)] = Ilzmlls — lzlls] < lom —zlls < (> €™ — &)

i=1

Where Ay, = (é-gm),§2m), s 7(1 ) a = (617§27'” 7€n)7n7m eN.
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Since in R" a,, — a if and only if §i(m) = &,m — o0o,i = 1,2,--- n, we
have |f(am) — f(a)] — 0, then f is continuous. Again, A € R" is a bounded,
closed set, then A is compact. Since continuous functional can get maximum
and minimum, there exist ag = Txy and by = T'yy in A, such that

f(ao) = min{f(a)la € A}, f(bo) = max{f(a)la € A}.
Let c1 = f(ao), c2 = f(bo), then f(ao) = |lzofls > 0, f(bo) = [lvolls > 0, for
any r = Z &ei € X, and x # 0, we have € A, where ||Tz|| = (Z & ) .
Thus

c1 =min{f(a)|la € A} </

That is

HTxH

Tx
arle = () < max{/(@a € 4} = o

B

aM1a?)? < lzlls < 23 161» (@ #0).
=1 =1

The above inequation is also right when x = 6. Thus

a(Y16R)2 < lels <X I6P)7 (2= &ei € X).
=1 i=1

i=1
For the arbitrary {z,,} C X,zp € X, m € N, it is obvious to see that

M

@

| — z0||® = 0 & ||zm — 205 — 0 (n — o00).
By Definition 1.4 and the arbitrariness of the S-norm || - ||g, we can get any
B-norm || - ||3 on X is equivalent to the B-norm | - ||? given in Lemma 2.1. O

3. ANY TWO (5-NORMS ON X ARE EQUIVALENT

In this part, we give one of our main theorems.

Theorem 3.1. Let ||z||,,||z||g, be two different B-norms on X, where 0 <
B1,B2 <1 and By # B2. Then ||z||g, and ||z||f2 are equivalent.

Proof. Let e1,e3,--- ,e, be a basis of X. By Theorem 2.3, for || - ||g,, || - ||,
there exist four constants l1,l2,d1, do > 0, such that

Zléz ) < s, < Ia Zléz )7, (3.1)

1\3

and

B2

d ()16 F < allg, < da Zl& )7, (3.2)
=1
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n
for Vo = Y &e; € X.
i=1
For the arbitrary {z,,} C X,z9 € X,m € N, define a mapping 7' : X —
R*T : z — (&,&, -+ ,&,). Suppose Tz, = (§§m),§§m),--- ,5,(1m)),Tx0 =

( %0),550), e ,(10)). If ||z — xol|g, = 0(m — o00), then for any € > 0, there
exists a M € N, such that when m > M, m € N, we have

||a:m — ongl <e. (33)
By (3.1), we can get
0)(y AL 0 AL
W™ = €DF < flam —wollsy <G -67DF ()
i=1 i=1
S e(m) (0 AL
By (3.3), (3.4), we can get for any m > M, 11(Y &, =& ') 2 <e, then
i=1
¢ L (1<i<n,m— ). (3.5)
By the right side of (3.2) and (3.5), we can get
[€m = xollg, =0 (m — o0).
By Definition 1.4, f-norm || - ||, is not weaker than S-norm || - ||g,. Similarly,
we can get: J-norm || - ||g, is not weaker than S-norm || - ||g,. That is || - ||,
and | - ||g, are equivalent. Hence our proof is complete. O

Theorem 3.2. If there exist two constants a,b > 0, such that
alzlls, < llzllg, <bllxllg,  (Vz e X), (*)

then || - ||g, and || - ||5, are equivalent. But if || -||g, and ||- |5, are equivalent,
there is no need of the existence of a,b satisfying (x).

Proof. If there exist a, b satisfying (), then the Cauchy sequences in (X, ||-|/5,)
and (X, | - ||g,) are same. It is easy to see || - ||, and || - ||, are equivalent.
The rest proof of this theorem will be finished by a counter example.

In fact, suppose X is a one-dimensional real linear space. Especially, sup-
pose X = R. For V¢ € R, define

lzllg, = €17, llllg, = 117

Then || - |5, and || - |5, are two different S-norms on X, || - ||, is equivalent to
| - || 3,- But there is obviously no existence of two constants a, b, such that

allzllg, < llzlls, <bllzlls (Vo € X).
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4. SOME COROLLARIES

In this part, we show that some properties which a finite dimensional
normed space shares are also shared by a finite dimensional S-normed space.

Corollary 4.1. Any finite dimensional B-normed space X is complete, there-
for any finite dimensional subspace of a B-normed space is closed.

Proof. Let ej,eq,- - ,e, be a basis of X. If {z,,} is a cauchy sequence in X,
by the theorem 2.3 and follow the signals of Theorem 2.3, we have: T{:cm} is
a cauchy sequence in R™. Since (R", ||z||) is complete, where ||z| = (E €12 )

i=1
for Vo = (&§1,&2,- -+ ,&,) € R™, then there exists an a = Tz in R”, such that

T({xm}) = a =Tz, then z,,, > x € X(m — 00), so X is complete.
Since X is complete, it must be closed. So any finite dimensional subspace
of a B-normed space is closed. O

Corollary 4.2. Linear operators on a finite dimensional S-normed space are
bounded.

Proof. Suppose (X, || - lg,), (Y, - ||,) are two S-normed spaces, dim(X) =
n,ei, e, -+ ey is a basis of X, T : X — Y is a linear operator. For any
n

T = Z &'ei € X, then
=1

n n
ITzlls, =l Z §iTeillg, < Z €17 | Teil g,

(Z ITeill s, 52) (E &7,

(2@ R
(ZHTezII2 ﬁQ) (i\ |)£}(Z‘5Z| )z (z#0).

i=1

By Theorem 2.3, there exists a constant ¢; > 0, such that

n
8
1O 16112 < lllg,-
=1

Let

(Z ITeq 3, )% (Z 62 %
(Z 27

Then .
Bz
ITzllg, < rer(D 16172 <rlalls,  (z#0). (4.1)
i=1
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(4.1) also holds when = = 6. So
ITzllg, < rllzls, (V=7 &ei€ X)

If € > 0, then there is a positive = £ > 0, such that when |z —0]|g, <0,
then

[Tz =T, < rllzlls, <e.

So T is continuous at 6.
T is continuous at #, then there is an open ball V' centered at 6, such that
|Tx||g, < 1, whenever x € V. For each bounded subset B of X, there is a

positive tg, such that B C tgV, and so ||Tz|g, < t% it x € B. Thus T is
bounded. Hence, our proof is complete. O

Remark 4.3. Linear operators on a finite dimensional B-normed space may
not be strongly bounded.

151

Example 4.4. Suppose ( (n)) (l(ﬁj)) 0 < p1 < B2 <1 are two n-dimensional

B-normed space, then (l?ﬁ)) (l%)) Let a linear operator I:

(Iw) = ()l =2 (Yo e ().
We claim T is bounded, but not strongly bounded.

In fact, suppose K is a bounded set in (l?l)) for each x = (fl, €2, ,&n) €

. |lzllg, < My, where M; > 0 is a constant, then || —t lg, < 1. So
(My)P1
!%\ < 1,1 <i < mn Since B < By, then |—2|5 < 1. That is
(My)P1 (Ml)ﬁ

Ba
|lz]|g, < (M7)Pr. So I is bounded.
But I is not strongly bounded. In fact, if there exists a p > 0, such that

lells, = I1Tzls, < pllalls, (Y = (1,60, &) € (1F2)).

n n
Thatis > || < p 3 &), Butif welet z,,, = (m,0,0,---,0) € (l(ﬁﬁ)),m €
k=1 k=1

N, we can get

B2
mP2=A = <p (Vm € N).

mp

Notice that, 82 — 51 > 0, so the above inequation is obviously not exist. So I
is not strongly bounded.
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5. AN APPLICATION OF THE EQUIVALENCE OF NORMS

Banach-Mazur distance is one of the most basic conceptions in Banach
local theories. It can denote how closed the two isomorphic Banach spaces
are. Suppose X is an n-dimensional real Banach space, an estimation about
d(X,l(ln)) is given in [5], [7] : d(X, l(ln)) < n. Another classic estimation given
by T.John [6] in 1948 is: d(X, l(Qn)) < y/n. Here, we will use the equivalence
of norms on a finite dimensional normed space to give an exact method to
calculate d(X,R™), not an estimation about d(X,R"), where R” is an Euclid

n

space with a norm |z| = (> |§1|2)% for Vo = (§1,62,--+ ,&n) € R™. At last,
i=1

we give an estimation about d(X,Y’), where X,Y are two n-dimensional real

normed spaces.

Definition 5.1 ([5]). Given two Banach spaces E, F and the isomorphic

mapping T from E to F. The Banach-Mazur distance between them is defined

by d(X,Y) = inf{[|T||T7Y,T : E — F}.

Theorem 5.2. Suppose (X, | - ||x) is an n-dimensional normed space with
a basis ey, ea, -+ ,en. R™ is an n-dimensional real Euclid space with a norm

|z|| = (i |§,]2)% for Vo = (&1,&2,---,&,) € R™. Then for any isomorphic
mappin‘(;zi1 from R™ to X, we have

d(X,R™) = inf{||T|[||T~ ", T : R" = X} = ¢; '
Where d(X,R"™) denotes the Banach-Mazur distance between R™ and X. And
er = min{| 2 &) e = max{|| 2 €eillx) for (3 [61) =1

Proof. Since two finite linear spaces are isomorphic, we can suppose T is
n

an arbitrary isomorphic mapping from R" to X, where Tx = »_ me; for
i=1
Ve = (£1,&2, - ,&,) € R™. Among these isomorphic mappings, we denote

n

the isomorphic Ty as Toxr = > &e;. Since X is a special S-normed space, by
i=1

Theorem 2.3, there exist two constants cy, co, such that

a(Y1a?)? < 1Y Geillx < e J6f)2.
=1 =1 i=1

Meantime, by
IToll = sup{|Tox|lx, l|lz] = 1},
and

ez = max{|| Y &eillx (Y |6z =1},
=1 i=1
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we can see ||Tp|| = c2. On the other hand, for Vy = Tyz,

1Ty M = inf{p, |75 'y ?pllg/lllx}
=inf{p, lyllx = ;175 "y} (5.1)
. -1
= inf{, k|75 'yl < [lyllx3-

n
By Theorem 2.3, for Vo € R", there is a ¢; = min{|| Y_ &e;||x}, where
i=1

n
(> |§,\2)% = 1, such that ||Toz||x > ci||z||. Then we have
i=1

c1 = sup{l : ||Toz||x > l]|z||} (5.2)

Otherwise, if ¢; # sup{l : ||Tox|x > I||z|}, there exists a cg > ¢1, such
that || Tox||x > collz||, then |[|[Toz|x > co for Vx € R™, ||| = 1, which is a
contradiction with ¢; = min{||Tpz| x for Vz € R™, ||z| = 1},¢1 < ¢o. By (5.1)
and (5.2), we can get ¢; ' = ||T; ||, and

d(X,RY) = mf{| T[T, T: R o X} < B T5 ) = s (5.3)
Next, we will prove d(X,R"™) > CIICQ. In fact, for the arbitrary isomorphic

n
mapping T and @ = (€1, &, -+ , &) € R, Tz = Y- miey, since
=1

lz| = |77 || < |77 T
we have [|T7Y|7Hz]| < [[Tz]x, so
1T~ el < 1 T2llx < 17l (5.4)

By Theorem 2.3, there exist ¢y, ca > 0, such that
n 1 n n 1
ad )z <D mieillx < 2> Imil?)z. (5.5)
i=1 i=1 i=1

By (5.5), when x # 0, we can get

n
< ZlmeiHX (5.6)
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By the proof of Theorem 2.3 and 7' is isomorphic, there exist 1 and zs in R",
such that | Tz1||x = c1, [|[Tz2||x = 2, by (5.4) and (5.6), we can get

(3 Imif?) (3 i)
a-T——> T, e g—— < T (5.7)
(3 &l (3 I&P)

y (5.7), we can get | T||[|T~|| > ¢; *ca. Then

NI
NI

dA(X,R™) = inf{||T|||T7|T : R™ = X} > ¢ 'eo. (5.8)
By (5.3) and (5.8), we can get d(X,R") = ¢] ' ca. O
Theorem 5.3. Suppose (Xi,| - |1), (X2, - |2) are two n-dimensional real

normed spaces. Then the Banach-Mazur dzstance d(X1,X9) < d 1dgl 1l2
Where dy = min{| Z Gieill1}, d2 = max{|| Z gieill1}, 11 = min{]| Z Gicill2}, 12 =

max{|| 2&'6@'”2} for Vo = (&1,&,---,&) € R, ||lz|| = 1.

Proof. By theorem 2.3, there exist four constants dy, do, l1, l2, such that

& 1 " 1
(Y 161M)2 <zl < da(d 162,
=1 =1
and

AU < el < I8P

for Va = z &ei € X. By Theorem 5.2, d(X1,R") = dy 'da, d( X2, R") = I 1.

Since for three isomorphic Banach spaces X, Y, Z, the Banach-Mazur distances
satisfying d(X, Z) < d(X,Y)d(Y, Z), then we can get d(X1, X2) < dy 'dal; 'la.
Hence, our proof is complete. O

Remark 5.4. Suppose X,Y are two n-dimensional real normed spaces. Theo-
rem 5.2 gives a new method to calculate d(X,R™). It improves the calculation
of d(X,R") = mf{||T|| T[T : B" = X} by d(X,R") = [ Tol|IITy .

is also helpful to estimate d(X,Y). And, people can change the d(X,R™) by
rENOTMING.
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