Nonlinear Functional Analysis and Applications Vol. 17, No. 3 (2012), pp. 331-342

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2012 Kyungnam University Press

THE EXTENSION AND APPLICATION OF THE EQUIVALENCE OF NORMS ON A FINITE DIMENSIONAL SPACE

Baorui Zhang¹, Xiandong Wang² and Meimei Song³

¹Department of Mathematics Qingdao University Qingdao, 266071, P.R. China e-mail: baorui10@163.com

²Department of Mathematics Qingdao University Qingdao, 266071, P.R. China

³College of Science, Tianjin University of Technology Tianjin, P.R. China e-mail: songmeimei@tjut.edu.cn

Abstract. We introduce the concept of the equivalence of β -norms on a linear space which can be given different β -norms completely. Then for every *n*-dimensional β -normed space X, by using the norm of X: $||x|| = (\sum_{i=1}^{n} |\xi_i|^2)^{\frac{1}{2}} (\forall x = \sum_{i=1}^{n} x_i e_i \in X)$, we get a new β -normed space $(X, ||x||^{\beta})$, and get a conclusion that any β -norm on a finite dimensional β -normed space is equivalent to $||x||^{\beta}$. Further more, we prove that all of the β -norms on a finite dimensional linear space are equivalent. At last, we give an application of norm equivalence: Suppose X, Y are two *n*-dimensional real spaces, then the Banach-Mazur distance $d(X, \mathbb{R}^n) = c_1^{-1}c_2$, where c_1, c_2 are two constants concerned with the norm of X. We also give an estimation of d(X, Y).

1. Preliminaries

Suppose X is an n-dimensional space $(n \in \mathbb{N})$, e_1, e_2, \dots, e_n is a basis of X, $\|\cdot\|_1, \|\cdot\|_2$ are two different norms on X, it is well known of the following results

⁰Received October 10, 2011. Revised July 4, 2012.

 $^{^02000}$ Mathematics Subject Classification: 39B62, 46B03, 46B20, 47A30, 47A63.

⁰Keywords: equivalence, β -normed space, equivalence of β -norms, Banach-Mazur distance, isomorphic mapping.

⁰Research supported by the NSF of China(Grant No.11171021).

in [1]: there exist two constants $c_1, c_2 > 0$, such that for $\forall x = \sum_{i=1}^n x_i e_i \in X$, we have

$$c_1(\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}} \le ||x||_i \le c_2(\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}} \quad (i=1,2).$$

There also exist two constants a, b > 0, such that for $\forall x = \sum_{i=1}^{n} x_i e_i \in X$, we have

 $a||x||_2 \le ||x||_1 \le b||x||_2.$

Motivated by above results, we will discuss if there are similar results in β -normed spaces and discuss the equivalence of the two β -norms on any finite dimensional β -normed space. At last, we will discuss the applications of norm equivalence. Firstly, let us give some definitions.

Definition 1.1 ([2]). Suppose β is a fixed number $0 < \beta \leq 1$, X is a linear space on \mathbb{K} , where \mathbb{K} is real or complex, and $\|\cdot\|_{\beta} : X \mapsto \mathbb{R}^+ \cup 0$ is a functional. Then $(X, \|\cdot\|_{\beta})$ is called a β -normed space if

- (1) $||x||_{\beta} \ge 0, ||x||_{\beta} = 0 \Leftrightarrow x = \theta;$
- (2) $||x + y||_{\beta} \le ||x||_{\beta} + ||y||_{\beta};$
- $(3) \quad \|\alpha x\|_{\beta} = |\alpha|^{\beta} \|x\|_{\beta},$

for all $\alpha \in \mathbb{K}$ and $x, y, z \in X$, where θ is a zero element in X. The functional $||x||_{\beta}$ is called a β -norm on X.

Definition 1.2 ([1]). Suppose X is a real space. $\|\cdot\|_1, \|\cdot\|_2$ are two norms on X. Then $\|\cdot\|_2$ is not weaker than $\|\cdot\|_1$ is that: for the arbitrary $\{x_n\} \subset X, x_0 \in X$, we have

$$|x_n - x_0||_2 \to 0 \Rightarrow ||x_n - x_0||_1 \to 0 \qquad (n \to \infty).$$

We say norm $\|\cdot\|_1$ and norm $\|\cdot\|_2$ are equivalent if norm $\|\cdot\|_1$ is not weaker than norm $\|\cdot\|_2$, and norm $\|\cdot\|_2$ is not weaker than norm $\|\cdot\|_1$.

There is also an equivalent conditions of the equivalence of two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on X.

Theorem 1.3 ([1]). Suppose X is a real space. $\|\cdot\|_1, \|\cdot\|_2$ are two norms on X. Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if there exist two constants a, b > 0, such that

$$a\|x\|_{2} \le \|x\|_{1} \le b\|x\|_{2} \qquad (\forall x \in X)$$

The equivalence of β -norms has not a clear definition, and we do not know if there are two similar equivalent definitions of the equivalence of two β -norms

on a β -normed space just like the equivalence of norms on a normed space. Also we do not know if all the β -norms on a finite dimensional β -normed space are equivalent.

In this paper, we use the equivalence of two norms on a general normed space to give a clear definition of equivalence of two β -norms, by giving a counter example, we prove we can not use the inequation of β -norms like the inequation in Theorem 1.3 to define the equivalence of two β -norms. We also prove all the β -norms on a finite dimensional β -normed space are equivalent.

Definition 1.4. Let X be a real or complex linear space, and $\|\cdot\|_{\beta_1}, \|\cdot\|_{\beta_2}$ are two β -norms on X. We say $\|\cdot\|_{\beta_2}$ is not weaker than $\|\cdot\|_{\beta_1}$ is that: for the arbitrary $\{x_n\} \subset X, x_0 \in X$, we have

$$\|x_n - x_0\|_{\beta_2} \to 0 \Rightarrow \|x_n - x_0\|_{\beta_1} \to 0 \qquad (n \to \infty)$$

We say β -norm $\|\cdot\|_{\beta_1}$ and β -norm $\|\cdot\|_{\beta_2}$ are equivalent if β -norm $\|\cdot\|_{\beta_1}$ is not weaker than β -norm $\|\cdot\|_{\beta_2}$, and β -norm $\|\cdot\|_{\beta_2}$ is not weaker than β -norm $\|\cdot\|_{\beta_1}$.

Definition 1.5 ([3], [2]). Suppose E and E_1 are two topology linear spaces. T is a mapping from E to E_1 . M is an arbitrary bounded subset in E. We say T is bounded if TM is bounded in E_1 . We say T is strongly bounded if there exists a $\rho > 0$, such that $||Tx|| \le \rho ||x||, \forall x \in E$.

For the sake of convenience, from now on, we use X to denote an arbitrary n-dimensional linear space which can be given different β -norms, $0 < \beta \leq 1, n \in \mathbb{N}$.

2. Any β -norm is equivalent to a new β -norm on X

In this part, we prove that any finite dimensional β -normed space X, can be given a new β -norm, any other β -norm on X is equivalent to the new β -norm.

Lemma 2.1. Let $(X, ||x||_{\beta})$ be an n-dimensional β -normed space, then X can be given a new β -norm $||x||^{\beta}$ for $\forall x \in X$.

Proof. Suppose e_1, e_2, \dots, e_n is a basis of X, let $||x||^{\beta} = (\sum_{i=1}^n |\xi_i|^2)^{\frac{\beta}{2}}, \forall x = \sum_{i=1}^n \xi_i e_i \in X$. It is easy to know that $||x||^{\beta} \ge 0$, and $||x||^{\beta} = 0$ if and only if $x = \theta, ||\alpha x|| = |\alpha|^{\beta} ||x||^{\beta}$, to prove $||x||^{\beta}$ is a β -norm, we only need to show $||x+y||^{\beta} \le ||x||^{\beta} + ||x||^{\beta}$.

In fact,
$$||x|| = (\sum_{i=1}^{n} |\xi|^2)^{\frac{1}{2}}$$
 is a norm on X , so $||x+y|| \le ||x|| + ||y||$. Then
 $||x+y||^{\beta} \le (||x|| + ||y||)^{\beta} \le ||x||^{\beta} + ||y||^{\beta}.$

So $||x||^{\beta}$ is a β -norm, $(X, ||x||^{\beta})$ is a new β -normed space.

Remark 2.2. In fact, any linear space can be endowed with a norm (see [4], page 35). Here, we can say any finite dimensional linear space can be given a new β -norm.

Theorem 2.3. Suppose $\|\cdot\|_{\beta}$ is an arbitrary β -norm on X, then $\|\cdot\|_{\beta}$ is equivalent to the β -norm given in Lemma 2.1.

Proof. We suppose X is a real linear space, when X is complex, the proof is similar.

Suppose e_1, e_2, \dots, e_n is a basis of X. For any $x = \sum_{i=1}^n \xi_i e_i \in X$, define a mapping $T: X \mapsto \mathbb{R}^n, T: x \mapsto (\xi_1, \xi_2, \dots, \xi_n)$. Then T is a linear isomorphic mapping from X to \mathbb{R}^n .

$$\begin{aligned} \|x\|_{\beta} &= \|\sum_{i=1}^{n} \xi_{i} e_{i}\|_{\beta} \leq \sum_{i=1}^{n} |\xi_{i}|^{\beta} \|e_{i}\|_{\beta} \\ &\leq (\sum_{i=1}^{n} |\xi_{i}|^{2})^{\frac{\beta}{2}} (\sum_{i=1}^{n} \|e_{i}\|_{\beta}^{\frac{2}{2-\beta}})^{\frac{2-\beta}{2}} \end{aligned}$$

Let $c = (\sum_{i=1}^n \|e_i\|_{\beta}^{\frac{2}{2-\beta}})^{\frac{2-\beta}{2}}$. Then $\|x\|_{\beta} = \|\sum_{i=1}^n \xi_i e_i\|_{\beta} \le c(\sum_{i=1}^n |\xi_i|^2)^{\frac{\beta}{2}}$. On the other hand, let A be the sphere of \mathbb{R}^n , that is

$$A = \{a = (\xi_1, \xi_2, \cdots, \xi_n) \in \mathbb{R}^n, (\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}} = 1\}.$$

For any $a = (\xi_1, \xi_2, \cdots, \xi_n) \in A$, there exists a $x = \sum_{i=1}^n \xi_i e_i \in X$, define a mapping $f : \mathbb{R}^n \mapsto \mathbb{R}^+ \cup \{0\}$,

$$f(a) = \|\sum_{i=1}^{n} \xi_i e_i\|_{\beta} = \|x\|_{\beta}.$$

Then f is continuous. In fact, for any sequence $\{a_m\}, m \in \mathbb{N}, a_m \to a(m \to \infty)$, there exists $\{x_m\}$ and x in $X(m \in \mathbb{N})$, such that $a_m = Tx_m, a = Tx$, and

$$|f(a_m) - f(a)| = |||x_m||_{\beta} - ||x||_{\beta}| \le ||x_m - x||_{\beta} \le c(\sum_{i=1}^n |\xi_i^{(m)} - \xi_i|^2)^{\frac{\beta}{2}}.$$

Where $a_m = (\xi_1^{(m)}, \xi_2^{(m)}, \cdots, \xi_n^{(m)}), a = (\xi_1, \xi_2, \cdots, \xi_n), n, m \in \mathbb{N}.$

Since in $\mathbb{R}^n, a_m \to a$ if and only if $\xi_i^{(m)} \to \xi_i, m \to \infty, i = 1, 2, \cdots, n$, we have $|f(a_m) - f(a)| \to 0$, then f is continuous. Again, $A \in \mathbb{R}^n$ is a bounded, closed set, then A is compact. Since continuous functional can get maximum and minimum, there exist $a_0 = Tx_0$ and $b_0 = Ty_0$ in A, such that

$$f(a_0) = \min\{f(a) | a \in A\}, f(b_0) = \max\{f(a) | a \in A\}.$$

Let $c_1 = f(a_0), c_2 = f(b_0)$, then $f(a_0) = ||x_0||_{\beta} > 0, f(b_0) = ||y_0||_{\beta} > 0$, for any $x = \sum_{i=1}^n \xi_i e_i \in X$, and $x \neq \theta$, we have $\frac{Tx}{||Tx||} \in A$, where $||Tx|| = (\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}}$. Thus

$$c_1 = \min\{f(a)|a \in A\} \le \left\|\frac{x}{\|Tx\|}\right\|_{\beta} = f(\frac{Tx}{\|Tx\|}) \le \max\{f(a)|a \in A\} = c_2.$$

That is

$$c_1 \left(\sum_{i=1}^n |\xi_i|^2\right)^{\frac{\beta}{2}} \le \|x\|_{\beta} \le c_2 \left(\sum_{i=1}^n |\xi_i|^2\right)^{\frac{\beta}{2}} \qquad (x \neq \theta).$$

The above inequation is also right when $x = \theta$. Thus

$$c_1(\sum_{i=1}^n |\xi_i|^2)^{\frac{\beta}{2}} \le ||x||_{\beta} \le c_2(\sum_{i=1}^n |\xi_i|^2)^{\frac{\beta}{2}} \qquad (x = \sum_{i=1}^n \xi_i e_i \in X).$$

For the arbitrary $\{x_m\} \subset X, x_0 \in X, m \in \mathbb{N}$, it is obvious to see that

$$|x_m - x_0||^{\beta} \to 0 \Leftrightarrow ||x_m - x_0||_{\beta} \to 0 \qquad (n \to \infty)$$

By Definition 1.4 and the arbitrariness of the β -norm $\|\cdot\|_{\beta}$, we can get any β -norm $\|\cdot\|_{\beta}$ on X is equivalent to the β -norm $\|\cdot\|^{\beta}$ given in Lemma 2.1. \Box

3. Any two β -norms on X are equivalent

In this part, we give one of our main theorems.

Theorem 3.1. Let $||x||_{\beta_1}$, $||x||_{\beta_2}$ be two different β -norms on X, where $0 < \beta_1, \beta_2 \leq 1$ and $\beta_1 \neq \beta_2$. Then $||x||_{\beta_1}$ and $||x||_{\beta_2}$ are equivalent.

Proof. Let e_1, e_2, \dots, e_n be a basis of X. By Theorem 2.3, for $\|\cdot\|_{\beta_1}, \|\cdot\|_{\beta_2}$, there exist four constants $l_1, l_2, d_1, d_2 > 0$, such that

$$l_1(\sum_{i=1}^n |\xi_i|^2)^{\frac{\beta_1}{2}} \le ||x||_{\beta_1} \le l_2(\sum_{i=1}^n |\xi_i|^2)^{\frac{\beta_1}{2}},$$
(3.1)

and

$$d_1\left(\sum_{i=1}^n |\xi_i|^2\right)^{\frac{\beta_2}{2}} \le \|x\|_{\beta_2} \le d_2\left(\sum_{i=1}^n |\xi_i|^2\right)^{\frac{\beta_2}{2}},\tag{3.2}$$

for $\forall x = \sum_{i=1}^{n} \xi_i e_i \in X$.

For the arbitrary $\{x_m\} \subset X, x_0 \in X, m \in \mathbb{N}$, define a mapping $T: X \mapsto \mathbb{R}^n, T: x \mapsto (\xi_1, \xi_2, \cdots, \xi_n)$. Suppose $Tx_m = (\xi_1^{(m)}, \xi_2^{(m)}, \cdots, \xi_n^{(m)}), Tx_0 = (\xi_1^{(0)}, \xi_2^{(0)}, \cdots, \xi_n^{(0)})$. If $||x_m - x_0||_{\beta_1} \to 0 (m \to \infty)$, then for any $\varepsilon > 0$, there exists a $M \in \mathbb{N}$, such that when $m > M, m \in \mathbb{N}$, we have

$$\|x_m - x_0\|_{\beta_1} < \varepsilon. \tag{3.3}$$

By (3.1), we can get

$$l_1(\sum_{i=1}^n |\xi_i^{(m)} - \xi_i^{(0)}|)^{\frac{\beta_1}{2}} \le ||x_m - x_0||_{\beta_1} \le l_2(\sum_{i=1}^n |\xi_i^{(m)} - \xi_i^{(0)}|)^{\frac{\beta_1}{2}}.$$
 (3.4)

By (3.3), (3.4), we can get for any m > M, $l_1(\sum_{i=1}^n |\xi_i^{(m)} - \xi_i^{(0)}|)^{\frac{\beta_1}{2}} < \varepsilon$, then

$$\xi_i^{(m)} \to \xi_i^{(0)} \qquad (1 \le i \le n, m \to \infty). \tag{3.5}$$

By the right side of (3.2) and (3.5), we can get

$$||x_m - x_0||_{\beta_2} \to 0 \qquad (m \to \infty)$$

By Definition 1.4, β -norm $\|\cdot\|_{\beta_1}$ is not weaker than β -norm $\|\cdot\|_{\beta_2}$. Similarly, we can get: β -norm $\|\cdot\|_{\beta_2}$ is not weaker than β -norm $\|\cdot\|_{\beta_1}$. That is $\|\cdot\|_{\beta_1}$ and $\|\cdot\|_{\beta_2}$ are equivalent. Hence our proof is complete.

Theorem 3.2. If there exist two constants a, b > 0, such that

$$a\|x\|_{\beta_1} \le \|x\|_{\beta_2} \le b\|x\|_{\beta_1} \qquad (\forall x \in X),$$
(*)

then $\|\cdot\|_{\beta_1}$ and $\|\cdot\|_{\beta_2}$ are equivalent. But if $\|\cdot\|_{\beta_1}$ and $\|\cdot\|_{\beta_2}$ are equivalent, there is no need of the existence of a, b satisfying (*).

Proof. If there exist a, b satisfying (*), then the Cauchy sequences in $(X, \|\cdot\|_{\beta_1})$ and $(X, \|\cdot\|_{\beta_2})$ are same. It is easy to see $\|\cdot\|_{\beta_1}$ and $\|\cdot\|_{\beta_2}$ are equivalent. The rest proof of this theorem will be finished by a counter example.

In fact, suppose X is a one-dimensional real linear space. Especially, suppose $X = \mathbb{R}$. For $\forall \xi \in \mathbb{R}$, define

$$||x||_{\beta_1} = |\xi|^{\beta_1}, ||x||_{\beta_2} = |\xi|^{\beta_2}.$$

Then $\|\cdot\|_{\beta_1}$ and $\|\cdot\|_{\beta_2}$ are two different β -norms on X, $\|\cdot\|_{\beta_1}$ is equivalent to $\|\cdot\|_{\beta_2}$. But there is obviously no existence of two constants a, b, such that

$$a \|x\|_{\beta_1} \le \|x\|_{\beta_2} \le b \|x\|_{\beta_1} \quad (\forall x \in X).$$

The equivalence of norms on a finite dimensional space

4. Some corollaries

In this part, we show that some properties which a finite dimensional normed space shares are also shared by a finite dimensional β -normed space.

Corollary 4.1. Any finite dimensional β -normed space X is complete, therefor any finite dimensional subspace of a β -normed space is closed.

Proof. Let e_1, e_2, \dots, e_n be a basis of X. If $\{x_m\}$ is a cauchy sequence in X, by the theorem 2.3 and follow the signals of Theorem 2.3, we have: $T\{x_m\}$ is a cauchy sequence in \mathbb{R}^n . Since $(\mathbb{R}^n, ||x||)$ is complete, where $||x|| = (\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}}$ for $\forall x = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$, then there exists an a = Tx in \mathbb{R}^n , such that $T(\{x_m\}) \to a = Tx$, then $x_m \to x \in X(m \to \infty)$, so X is complete.

Since X is complete, it must be closed. So any finite dimensional subspace of a β -normed space is closed.

Corollary 4.2. Linear operators on a finite dimensional β -normed space are bounded.

Proof. Suppose $(X, \|\cdot\|_{\beta_1}), (Y, \|\cdot\|_{\beta_2})$ are two β -normed spaces, dim $(X) = n, e_1, e_2, \cdots, e_n$ is a basis of $X, T : X \to Y$ is a linear operator. For any $x = \sum_{i=1}^n \xi_i e_i \in X$, then

$$\begin{aligned} \|Tx\|_{\beta_{2}} &= \|\sum_{i=1}^{n} \xi_{i} Te_{i}\|_{\beta_{2}} \leq \sum_{i=1}^{n} |\xi_{i}|^{\beta_{2}} \|Te_{i}\|_{\beta_{2}}, \\ &\leq (\sum_{i=1}^{n} \|Te_{i}\|_{\beta_{2}}^{\frac{2}{2-\beta_{2}}})^{\frac{2-\beta_{2}}{2}} (\sum_{i=1}^{n} |\xi_{i}|^{2})^{\frac{\beta_{2}}{2}}, \\ &\leq (\sum_{i=1}^{n} \|Te_{i}\|_{\beta_{2}}^{\frac{2}{2-\beta_{2}}})^{\frac{2-\beta_{2}}{2}} \frac{(\sum_{i=1}^{n} |\xi_{i}|^{2})^{\frac{\beta_{2}}{2}}}{(\sum_{i=1}^{n} |\xi_{i}|^{2})^{\frac{\beta_{1}}{2}}} (\sum_{i=1}^{n} |\xi_{i}|^{2})^{\frac{\beta_{1}}{2}} \quad (x \neq \theta). \end{aligned}$$

By Theorem 2.3, there exists a constant $c_1 > 0$, such that

$$c_1(\sum_{i=1}^n |\xi_i|^2)^{\frac{\beta_1}{2}} \le ||x||_{\beta_1}.$$

Let

$$r = \frac{\left(\sum_{i=1}^{n} \|Te_i\|_{\beta_2}^{\frac{2}{2-\beta_2}}\right)^{\frac{2-\beta_2}{2}} \left(\sum_{i=1}^{n} |\xi_i|^2\right)^{\frac{\beta_2}{2}}}{c_1\left(\sum_{i=1}^{n} |\xi_i|^2\right)^{\frac{\beta_1}{2}}}.$$

Then

$$|Tx||_{\beta_2} \le rc_1 \left(\sum_{i=1}^n |\xi_i|^2\right)^{\frac{\beta_2}{2}} \le r||x||_{\beta_1} \qquad (x \ne \theta).$$
(4.1)

(4.1) also holds when $x = \theta$. So

$$||Tx||_{\beta_2} \le r ||x||_{\beta_1} \qquad (\forall x = \sum_{i=1}^n \xi_i e_i \in X)$$

If $\varepsilon > 0$, then there is a positive $\delta = \frac{\varepsilon}{r} > 0$, such that when $||x - \theta||_{\beta_1} < \delta$, then

$$||Tx - T\theta||_{\beta_2} \le r ||x||_{\beta_1} < \varepsilon.$$

So T is continuous at θ .

T is continuous at θ , then there is an open ball V centered at θ , such that $||Tx||_{\beta_2} < 1$, whenever $x \in V$. For each bounded subset B of X, there is a positive t_B , such that $B \subset t_B V$, and so $||Tx||_{\beta_2} < t_B^{\beta_2}$ if $x \in B$. Thus T is bounded. Hence, our proof is complete.

Remark 4.3. Linear operators on a finite dimensional β -normed space may not be strongly bounded.

Example 4.4. Suppose $(l_{(n)}^{\beta_1}), (l_{(n)}^{\beta_2}), 0 < \beta_1 < \beta_2 < 1$ are two n-dimensional β -normed space, then $(l_{(n)}^{\beta_1}) \subset (l_{(n)}^{\beta_2})$. Let a linear operator I:

$$(l_{(n)}^{\beta_1}) \mapsto (l_{(n)}^{\beta_2}) : Ix = x \qquad (\forall x \in (l_{(n)}^{\beta_1}).$$

We claim T is bounded, but not strongly bounded.

In fact, suppose K is a bounded set in $(l_{(n)}^{\beta_1})$, for each $x = (\xi_1, \xi_2, \dots, \xi_n) \in K$, $||x||_{\beta_1} \leq M_1$, where $M_1 > 0$ is a constant, then $\|\frac{x}{(M_1)^{\frac{1}{\beta_1}}}\|_{\beta_1} \leq 1$. So $|\frac{\xi_i}{(M_1)^{\frac{1}{\beta_1}}}| \leq 1, 1 \leq i \leq n$. Since $\beta_1 < \beta_2$, then $\|\frac{x}{(M_1)^{\frac{1}{\beta_1}}}\|_{\beta_2} \leq 1$. That is $\|x\|_{\beta_2} \leq (M_1)^{\frac{\beta_2}{\beta_1}}$. So I is bounded.

But I is not strongly bounded. In fact, if there exists a $\rho > 0$, such that

$$\|x\|_{\beta_2} = \|Ix\|_{\beta_2} \le \rho \|x\|_{\beta_1} \quad (\forall x = (\xi_1, \xi_2, \cdots, \xi_n) \in (l_{(n)}^{\beta_1})).$$

That is $\sum_{k=1}^{n} |\xi_k|^{\beta_2} \leq \rho \sum_{k=1}^{n} |\xi_k|^{\beta_1}$. But if we let $x_m = (m, 0, 0, \dots, 0) \in (l_{(n)}^{\beta_1}), m \in \mathbb{N}$, we can get

$$m^{\beta_2-\beta_1} = \frac{m^{\beta_2}}{m^{\beta_1}} \le \rho \qquad (\forall m \in \mathbb{N}).$$

Notice that, $\beta_2 - \beta_1 > 0$, so the above inequation is obviously not exist. So *I* is not strongly bounded.

5. An application of the equivalence of norms

Banach-Mazur distance is one of the most basic conceptions in Banach local theories. It can denote how closed the two isomorphic Banach spaces are. Suppose X is an n-dimensional real Banach space, an estimation about $d(X, l_{(n)}^1)$ is given in [5], [7] : $d(X, l_{(n)}^1) \leq n$. Another classic estimation given by T.John [6] in 1948 is: $d(X, l_{(n)}^2) \leq \sqrt{n}$. Here, we will use the equivalence of norms on a finite dimensional normed space to give an exact method to calculate $d(X, \mathbb{R}^n)$, not an estimation about $d(X, \mathbb{R}^n)$, where \mathbb{R}^n is an Euclid space with a norm $||x|| = (\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}}$ for $\forall x = (\xi_1, \xi_2, \cdots, \xi_n) \in \mathbb{R}^n$. At last, we give an estimation about d(X, Y), where X, Y are two n-dimensional real normed spaces.

Definition 5.1 ([5]). Given two Banach spaces E, F and the isomorphic mapping T from E to F. The Banach-Mazur distance between them is defined by $d(X,Y) = \inf\{||T|| ||T^{-1}||, T : E \mapsto F\}.$

Theorem 5.2. Suppose $(X, \|\cdot\|_X)$ is an n-dimensional normed space with a basis e_1, e_2, \dots, e_n . \mathbb{R}^n is an n-dimensional real Euclid space with a norm $\|x\| = (\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}}$ for $\forall x = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$. Then for any isomorphic mapping T from \mathbb{R}^n to X, we have

 $d(X, \mathbb{R}^n) = \inf\{\|T\| \| T^{-1}\|, T : \mathbb{R}^n \mapsto X\} = c_1^{-1}c_2.$

Where $d(X, \mathbb{R}^n)$ denotes the Banach-Mazur distance between \mathbb{R}^n and X. And $c_1 = \min\{\|\sum_{i=1}^n \xi_i e_i\|_X\}, c_2 = \max\{\|\sum_{i=1}^n \xi_i e_i\|_X\}$ for $(\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}} = 1.$

Proof. Since two finite linear spaces are isomorphic, we can suppose T is an arbitrary isomorphic mapping from \mathbb{R}^n to X, where $Tx = \sum_{i=1}^n \eta_i e_i$ for $\forall x = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$. Among these isomorphic mappings, we denote the isomorphic T_0 as $T_0 x = \sum_{i=1}^n \xi_i e_i$. Since X is a special β -normed space, by Theorem 2.3, there exist two constants c_1, c_2 , such that

$$c_1(\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}} \le \|\sum_{i=1}^n \xi_i e_i\|_X \le c_2(\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}}.$$

Meantime, by

$$||T_0|| = \sup\{||T_0x||_X, ||x|| = 1\},\$$

and

$$c_2 = \max\{\|\sum_{i=1}^n \xi_i e_i\|_X | (\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}} = 1\},\$$

we can see $||T_0|| = c_2$. On the other hand, for $\forall y = T_0 x$,

$$\begin{aligned} \|T_0^{-1}\| &= \inf\{\rho, \|T_0^{-1}y\| \le \rho \|y\|_X\} \\ &= \inf\{\rho, \|y\|_X \ge \frac{1}{\rho} \|T_0^{-1}y\|\} \\ &= \inf\{\frac{1}{k}, k\|T_0^{-1}y\| \le \|y\|_X\}. \end{aligned}$$
(5.1)

By Theorem 2.3, for $\forall x \in \mathbb{R}^n$, there is a $c_1 = \min\{\|\sum_{i=1}^n \xi_i e_i\|_X\}$, where $(\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}} = 1$, such that $\|T_0 x\|_X \ge c_1 \|x\|$. Then we have

$$c_1 = \sup\{l : \|T_0 x\|_X \ge l\|x\|\}.$$
(5.2)

Otherwise, if $c_1 \neq \sup\{l : ||T_0x||_X \geq l||x||\}$, there exists a $c_0 > c_1$, such that $||T_0x||_X \geq c_0||x||$, then $||T_0x||_X \geq c_0$ for $\forall x \in \mathbb{R}^n, ||x|| = 1$, which is a contradiction with $c_1 = \min\{||T_0x||_X \text{ for } \forall x \in \mathbb{R}^n, ||x|| = 1\}, c_1 < c_0$. By (5.1) and (5.2), we can get $c_1^{-1} = ||T_0^{-1}||$, and

$$d(X, \mathbb{R}^n) = \inf\{\|T\| \| T^{-1}\|, T : \mathbb{R}^n \mapsto X\} \le \|T_0\| T_0^{-1}\| = c_1^{-1}c_2.$$
(5.3)

Next, we will prove $d(X, \mathbb{R}^n) \ge c_1^{-1}c_2$. In fact, for the arbitrary isomorphic mapping T and $x = (\xi_1, \xi_2, \cdots, \xi_n) \in \mathbb{R}^n, Tx = \sum_{i=1}^n \eta_i e_i$, since

$$||x|| = ||T^{-1}Tx|| \le ||T^{-1}|| ||Tx||,$$

we have $||T^{-1}||^{-1}||x|| \le ||Tx||_X$, so

$$||T^{-1}||^{-1}||x|| \le ||Tx||_X \le ||T|| ||x||.$$
(5.4)

By Theorem 2.3, there exist $c_1, c_2 > 0$, such that

$$c_1 \left(\sum_{i=1}^n |\eta_i|^2\right)^{\frac{1}{2}} \le \|\sum_{i=1}^n \eta_i e_i\|_X \le c_2 \left(\sum_{i=1}^n |\eta_i|^2\right)^{\frac{1}{2}}.$$
(5.5)

By (5.5), when $x \neq \theta$, we can get

$$c_{1}\left(\sum_{i=1}^{n}|\eta_{i}|^{2}\right)^{\frac{1}{2}} = c_{1}\frac{\left(\sum_{i=1}^{n}|\eta_{i}|^{2}\right)^{\frac{1}{2}}}{\left(\sum_{i=1}^{n}|\xi_{i}|^{2}\right)^{\frac{1}{2}}}\left(\sum_{i=1}^{n}|\xi_{i}|^{2}\right)^{\frac{1}{2}}$$

$$\leq \|\sum_{i=1}^{n}\eta_{i}e_{i}\|_{X} \qquad (5.6)$$

$$\leq c_{2}\left(\sum_{i=1}^{n}|\eta_{i}|^{2}\right)^{\frac{1}{2}} = c_{2}\frac{\left(\sum_{i=1}^{n}|\eta_{i}|^{2}\right)^{\frac{1}{2}}}{\left(\sum_{i=1}^{n}|\xi_{i}|^{2}\right)^{\frac{1}{2}}}\left(\sum_{i=1}^{n}|\xi_{i}|^{2}\right)^{\frac{1}{2}}.$$

By the proof of Theorem 2.3 and T is isomorphic, there exist x_1 and x_2 in \mathbb{R}^n , such that $||Tx_1||_X = c_1, ||Tx_2||_X = c_2$, by (5.4) and (5.6), we can get

$$c_{1}\frac{(\sum_{i=1}^{n}|\eta_{i}|^{2})^{\frac{1}{2}}}{(\sum_{i=1}^{n}|\xi_{i}|^{2})^{\frac{1}{2}}} \ge \|T^{-1}\|^{-1}, \quad c_{2}\frac{(\sum_{i=1}^{n}|\eta_{i}|^{2})^{\frac{1}{2}}}{(\sum_{i=1}^{n}|\xi_{i}|^{2})^{\frac{1}{2}}} \le \|T\|.$$
(5.7)

By (5.7), we can get $||T|| ||T^{-1}|| \ge c_1^{-1}c_2$. Then

$$d(X, \mathbb{R}^n) = \inf\{\|T\| \| T^{-1} \| | T : \mathbb{R}^n \mapsto X\} \ge c_1^{-1} c_2.$$
(5.8)

By (5.3) and (5.8), we can get
$$d(X, \mathbb{R}^n) = c_1^{-1} c_2$$
.

Theorem 5.3. Suppose $(X_1, \|\cdot\|_1), (X_2, \|\cdot\|_2)$ are two n-dimensional real normed spaces. Then the Banach-Mazur distance $d(X_1, X_2) \leq d_1^{-1} d_2 l_1^{-1} l_2$. Where $d_1 = \min\{\|\sum_{i=1}^n \xi_i e_i\|_1\}, d_2 = \max\{\|\sum_{i=1}^n \xi_i e_i\|_1\}, l_1 = \min\{\|\sum_{i=1}^n \xi_i e_i\|_2\}, l_2 = \max\{\|\sum_{i=1}^n \xi_i e_i\|_2\}$ for $\forall x = (\xi_1, \xi_2, \cdots, \xi_n) \in \mathbb{R}^n, \|x\| = 1$.

Proof. By theorem 2.3, there exist four constants d_1, d_2, l_1, l_2 , such that

$$d_1(\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}} \le ||x||_1 \le d_2(\sum_{i=1}^n |\xi_i|^2)^{\frac{1}{2}}$$

and

$$l_1 \left(\sum_{i=1}^n |\xi_i|^2\right)^{\frac{1}{2}} \le ||x||_2 \le l_2 \left(\sum_{i=1}^n |\xi_i|^2\right)^{\frac{1}{2}}$$

for $\forall x = \sum_{i=1}^{n} \xi_i e_i \in X$. By Theorem 5.2, $d(X_1, \mathbb{R}^n) = d_1^{-1} d_2, d(X_2, \mathbb{R}^n) = l_1^{-1} l_2$. Since for three isomorphic Banach spaces X, Y, Z, the Banach-Mazur distances satisfying $d(X, Z) \leq d(X, Y) d(Y, Z)$, then we can get $d(X_1, X_2) \leq d_1^{-1} d_2 l_1^{-1} l_2$. Hence, our proof is complete.

Remark 5.4. Suppose X, Y are two n-dimensional real normed spaces. Theorem 5.2 gives a new method to calculate $d(X, \mathbb{R}^n)$. It improves the calculation of $d(X, \mathbb{R}^n) = \inf\{||T|| ||T^{-1}|||T : \mathbb{R}^n \mapsto X\}$ by $d(X, \mathbb{R}^n) = ||T_0|| ||T_0^{-1}||$. It is also helpful to estimate d(X, Y). And, people can change the $d(X, \mathbb{R}^n)$ by renorming.

Acknowledgment. I would like to appreciate Professor Ding Guanggui for his great encouragement and help. I also extend my thanks to the referee for his diligent reading of my manuscript.

References

- T. Z. Xu, Foundation of applied functional analysis, Beijing Science Press, Beijing, 2001, 97–100.
- [2] G. G. Ding, New introduction of functional analysis, Beijing Science Press, Beijing 2008, 1–90.
- [3] R. E. Megginson, An introduction to Banach space theory, Springer, Verlag, 1973, 25–26.
- [4] L. Wang, Counter examples in functional analysis, Beijing High Education Press, 1990, 34–35.
- [5] J. F. Zhao, The structure theories of Banach spaces, Wuhan University Press, Wuhan, 1991, 376–378.
- [6] J. John, Extremum problem with inequalities as subsidiary conditions, Courant. Anniversary. Volume. Interscience, (1948), 187–204.
- [7] V. G. Davis, V. D. Milman and N. Tomczak-Jaegermann, The distance between certain n-dimensional Banach spaces, Israel. J. Math. 39 (1981), 1–15.