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Abstract. We introduce the concept of the equivalence of β-norms on a linear space which

can be given different β-norms completely. Then for every n-dimensional β-normed space X,

by using the norm of X: ‖x‖ = (
n∑
i=1

|ξi|2)
1
2 (∀x =

n∑
i=1

xiei ∈ X), we get a new β-normed space

(X, ‖x‖β), and get a conclusion that any β-norm on a finite dimensional β-normed space is

equivalent to ‖x‖β . Further more, we prove that all of the β-norms on a finite dimensional

linear space are equivalent. At last, we give an application of norm equivalence: Suppose

X,Y are two n-dimensional real spaces, then the Banach-Mazur distance d(X,Rn) = c−1
1 c2,

where c1, c2 are two constants concerned with the norm of X. We also give an estimation of

d(X,Y ).

1. Preliminaries

Suppose X is an n-dimensional space(n ∈ N), e1, e2, · · · , en is a basis of X,
‖·‖1, ‖·‖2 are two different norms on X, it is well known of the following results
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in [1] : there exist two constants c1, c2 > 0, such that for ∀x =
n∑
i=1

xiei ∈ X,

we have

c1(
n∑
i=1

|ξi|2)
1
2 ≤ ‖x‖i ≤ c2(

n∑
i=1

|ξi|2)
1
2 (i = 1, 2).

There also exist two constants a, b > 0, such that for ∀x =
n∑
i=1

xiei ∈ X, we

have

a‖x‖2 ≤ ‖x‖1 ≤ b‖x‖2.
Motivated by above results, we will discuss if there are similar results in

β-normed spaces and discuss the equivalence of the two β-norms on any finite
dimensional β-normed space. At last, we will discuss the applications of norm
equivalence. Firstly, let us give some definitions.

Definition 1.1 ([2]). Suppose β is a fixed number 0 < β ≤ 1, X is a linear
space on K, where K is real or complex, and ‖·‖β : X 7→ R+∪0 is a functional.
Then (X, ‖ · ‖β) is called a β-normed space if

(1) ‖x‖β ≥ 0, ‖x‖β = 0⇔ x = θ;
(2) ‖x+ y‖β ≤ ‖x‖β + ‖y‖β;

(3) ‖αx‖β = |α|β‖x‖β,

for all α ∈ K and x, y, z ∈ X, where θ is a zero element in X, The functional
‖x‖β is called a β-norm on X.

Definition 1.2 ([1]). Suppose X is a real space. ‖ · ‖1, ‖ · ‖2 are two norms
on X. Then ‖ · ‖2 is not weaker than ‖ · ‖1 is that: for the arbitrary {xn} ⊂
X,x0 ∈ X, we have

‖xn − x0‖2 → 0⇒ ‖xn − x0‖1 → 0 (n→∞).

We say norm ‖ · ‖1 and norm ‖ · ‖2 are equivalent if norm ‖ · ‖1 is not weaker
than norm ‖ · ‖2, and norm ‖ · ‖2 is not weaker than norm ‖ · ‖1 .

There is also an equivalent conditions of the equivalence of two norms ‖ · ‖1
and ‖ · ‖2 on X.

Theorem 1.3 ([1]). Suppose X is a real space. ‖ · ‖1, ‖ · ‖2 are two norms on
X. Then ‖ · ‖1 and ‖ · ‖2 are equivalent if and only if there exist two constants
a, b > 0, such that

a‖x‖2 ≤ ‖x‖1 ≤ b‖x‖2 (∀x ∈ X).

The equivalence of β-norms has not a clear definition, and we do not know if
there are two similar equivalent definitions of the equivalence of two β-norms
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on a β-normed space just like the equivalence of norms on a normed space.
Also we do not know if all the β-norms on a finite dimensional β-normed space
are equivalent.

In this paper, we use the equivalence of two norms on a general normed
space to give a clear definition of equivalence of two β-norms, by giving a
counter example, we prove we can not use the inequation of β-norms like the
inequation in Theorem 1.3 to define the equivalence of two β-norms. We also
prove all the β-norms on a finite dimensional β-normed space are equivalent.

Definition 1.4. Let X be a real or complex linear space , and ‖ · ‖β1 , ‖ · ‖β2
are two β-norms on X. We say ‖ · ‖β2 is not weaker than ‖ · ‖β1 is that: for
the arbitrary {xn} ⊂ X,x0 ∈ X, we have

‖xn − x0‖β2 → 0⇒ ‖xn − x0‖β1 → 0 (n→∞).

We say β-norm ‖·‖β1 and β-norm ‖·‖β2 are equivalent if β-norm ‖·‖β1 is not
weaker than β-norm ‖·‖β2, and β-norm ‖·‖β2 is not weaker than β-norm ‖·‖β1.

Definition 1.5 ([3], [2]). Suppose E and E1 are two topology linear spaces. T
is a mapping from E to E1. M is an arbitrary bounded subset in E. We say
T is bounded if TM is bounded in E1. We say T is strongly bounded if there
exists a ρ > 0, such that ‖Tx‖ ≤ ρ‖x‖, ∀x ∈ E.

For the sake of convenience, from now on, we use X to denote an arbitrary
n-dimensional linear space which can be given different β-norms, 0 < β ≤
1, n ∈ N.

2. Any β-norm is equivalent to a new β-norm on X

In this part, we prove that any finite dimensional β-normed space X, can be
given a new β-norm, any other β-norm on X is equivalent to the new β-norm.

Lemma 2.1. Let (X, ‖x‖β) be an n-dimensional β-normed space, then X can

be given a new β-norm ‖x‖β for ∀x ∈ X.

Proof. Suppose e1, e2, · · · , en is a basis of X, let ‖x‖β = (
n∑
i=1
|ξi|2)

β
2 ,∀x =

n∑
i=1

ξiei ∈ X. It is easy to know that ‖x‖β ≥ 0, and ‖x‖β = 0 if and only if

x = θ, ‖αx‖ = |α|β‖x‖β, to prove ‖x‖β is a β-norm, we only need to show
‖x+ y‖β ≤ ‖x‖β + ‖x‖β.
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In fact, ‖x‖ = (
n∑
i=1
|ξ|2)

1
2 is a norm on X, so ‖x+ y‖ ≤ ‖x‖+ ‖y‖. Then

‖x+ y‖β ≤ (‖x‖+ ‖y‖)β ≤ ‖x‖β + ‖y‖β.

So ‖x‖β is a β-norm, (X, ‖x‖β) is a new β-normed space. �

Remark 2.2. In fact, any linear space can be endowed with a norm (see [4],
page 35). Here, we can say any finite dimensional linear space can be given a
new β-norm.

Theorem 2.3. Suppose ‖ · ‖β is an arbitrary β-norm on X, then ‖ · ‖β is
equivalent to the β-norm given in Lemma 2.1.

Proof. We suppose X is a real linear space, when X is complex, the proof is
similar.

Suppose e1, e2, · · · , en is a basis of X. For any x =
n∑
i=1

ξiei ∈ X, define a

mapping T : X 7→ Rn, T : x 7→ (ξ1, ξ2, · · · , ξn). Then T is a linear isomorphic
mapping from X to Rn.

‖x‖β = ‖
n∑
i=1

ξiei‖β ≤
n∑
i=1
|ξi|β‖ei‖β

≤ (
n∑
i=1
|ξi|2)

β
2 (

n∑
i=1
‖ei‖

2
2−β
β )

2−β
2 .

Let c = (
n∑
i=1
‖ei‖

2
2−β
β )

2−β
2 . Then ‖x‖β = ‖

n∑
i=1

ξiei‖β ≤ c(
n∑
i=1
|ξi|2)

β
2 .

On the other hand, let A be the sphere of Rn, that is

A = {a = (ξ1, ξ2, · · · , ξn) ∈ Rn, (
n∑
i=1

|ξi|2)
1
2 = 1}.

For any a = (ξ1, ξ2, · · · , ξn) ∈ A, there exists a x =
n∑
i=1

ξiei ∈ X, define a

mapping f : Rn 7→ R+ ∪ {0},

f(a) = ‖
n∑
i=1

ξiei‖β = ‖x‖β.

Then f is continuous. In fact, for any sequence {am},m ∈ N, am → a(m →
∞), there exists {xm} and x in X(m ∈ N), such that am = Txm, a = Tx, and

|f(am)− f(a)| = |‖xm‖β − ‖x‖β| ≤ ‖xm − x‖β ≤ c(
n∑
i=1

|ξ(m)
i − ξi|2)

β
2 .

Where am = (ξ
(m)
1 , ξ

(m)
2 , · · · , ξ(m)

n ), a = (ξ1, ξ2, · · · , ξn), n,m ∈ N.
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Since in Rn, am → a if and only if ξ
(m)
i → ξi,m → ∞, i = 1, 2, · · · , n, we

have |f(am)− f(a)| → 0, then f is continuous. Again, A ∈ Rn is a bounded,
closed set, then A is compact. Since continuous functional can get maximum
and minimum, there exist a0 = Tx0 and b0 = Ty0 in A, such that

f(a0) = min{f(a)|a ∈ A}, f(b0) = max{f(a)|a ∈ A}.
Let c1 = f(a0), c2 = f(b0), then f(a0) = ‖x0‖β > 0, f(b0) = ‖y0‖β > 0, for

any x =
n∑
i=1

ξiei ∈ X, and x 6= θ, we have Tx
‖Tx‖ ∈ A, where ‖Tx‖ = (

n∑
i=1
|ξi|2)

1
2 .

Thus

c1 = min{f(a)|a ∈ A} ≤ ‖ x

‖Tx‖
‖β = f(

Tx

‖Tx‖
) ≤ max{f(a)|a ∈ A} = c2.

That is

c1(
n∑
i=1

|ξi|2)
β
2 ≤ ‖x‖β ≤ c2(

n∑
i=1

|ξi|2)
β
2 (x 6= θ).

The above inequation is also right when x = θ. Thus

c1(

n∑
i=1

|ξi|2)
β
2 ≤ ‖x‖β ≤ c2(

n∑
i=1

|ξi|2)
β
2 (x =

n∑
i=1

ξiei ∈ X).

For the arbitrary {xm} ⊂ X,x0 ∈ X,m ∈ N, it is obvious to see that

‖xm − x0‖β → 0⇔ ‖xm − x0‖β → 0 (n→∞).

By Definition 1.4 and the arbitrariness of the β-norm ‖ · ‖β, we can get any

β-norm ‖ · ‖β on X is equivalent to the β-norm ‖ · ‖β given in Lemma 2.1. �

3. Any two β-norms on X are equivalent

In this part, we give one of our main theorems.

Theorem 3.1. Let ‖x‖β1 , ‖x‖β2 be two different β-norms on X, where 0 <
β1, β2 ≤ 1 and β1 6= β2. Then ‖x‖β1 and ‖x‖β2 are equivalent.

Proof. Let e1, e2, · · · , en be a basis of X. By Theorem 2.3, for ‖ · ‖β1 , ‖ · ‖β2 ,
there exist four constants l1, l2, d1, d2 > 0, such that

l1(
n∑
i=1

|ξi|2)
β1
2 ≤ ‖x‖β1 ≤ l2(

n∑
i=1

|ξi|2)
β1
2 , (3.1)

and

d1(

n∑
i=1

|ξi|2)
β2
2 ≤ ‖x‖β2 ≤ d2(

n∑
i=1

|ξi|2)
β2
2 , (3.2)
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for ∀x =
n∑
i=1

ξiei ∈ X.

For the arbitrary {xm} ⊂ X,x0 ∈ X,m ∈ N, define a mapping T : X 7→
Rn, T : x 7→ (ξ1, ξ2, · · · , ξn). Suppose Txm = (ξ

(m)
1 , ξ

(m)
2 , · · · , ξ(m)

n ), Tx0 =

(ξ
(0)
1 , ξ

(0)
2 , · · · , ξ(0)n ). If ‖xm − x0‖β1 → 0(m → ∞), then for any ε > 0, there

exists a M ∈ N, such that when m > M,m ∈ N, we have

‖xm − x0‖β1 < ε. (3.3)

By (3.1), we can get

l1(

n∑
i=1

|ξ(m)
i − ξ(0)i |)

β1
2 ≤ ‖xm − x0‖β1 ≤ l2(

n∑
i=1

|ξ(m)
i − ξ(0)i |)

β1
2 . (3.4)

By (3.3), (3.4), we can get for any m > M, l1(
n∑
i=1
|ξ(m)
i − ξ(0)i |)

β1
2 < ε, then

ξ
(m)
i → ξ

(0)
i (1 ≤ i ≤ n,m→∞). (3.5)

By the right side of (3.2) and (3.5), we can get

‖xm − x0‖β2 → 0 (m→∞).

By Definition 1.4, β-norm ‖ · ‖β1 is not weaker than β-norm ‖ · ‖β2 . Similarly,
we can get: β-norm ‖ · ‖β2 is not weaker than β-norm ‖ · ‖β1 . That is ‖ · ‖β1
and ‖ · ‖β2 are equivalent. Hence our proof is complete. �

Theorem 3.2. If there exist two constants a, b > 0, such that

a‖x‖β1 ≤ ‖x‖β2 ≤ b‖x‖β1 (∀x ∈ X), (∗)

then ‖ · ‖β1 and ‖ · ‖β2 are equivalent. But if ‖ · ‖β1 and ‖ · ‖β2 are equivalent,
there is no need of the existence of a, b satisfying (∗).

Proof. If there exist a, b satisfying (∗), then the Cauchy sequences in (X, ‖·‖β1)
and (X, ‖ · ‖β2) are same. It is easy to see ‖ · ‖β1 and ‖ · ‖β2 are equivalent.
The rest proof of this theorem will be finished by a counter example.

In fact, suppose X is a one-dimensional real linear space. Especially, sup-
pose X = R. For ∀ξ ∈ R, define

‖x‖β1 = |ξ|β1 , ‖x‖β2 = |ξ|β2 .

Then ‖ · ‖β1 and ‖ · ‖β2 are two different β-norms on X, ‖ · ‖β1 is equivalent to
‖ · ‖β2 . But there is obviously no existence of two constants a, b, such that

a‖x‖β1 ≤ ‖x‖β2 ≤ b‖x‖β1 (∀x ∈ X).

�
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4. Some corollaries

In this part, we show that some properties which a finite dimensional
normed space shares are also shared by a finite dimensional β-normed space.

Corollary 4.1. Any finite dimensional β-normed space X is complete, there-
for any finite dimensional subspace of a β-normed space is closed.

Proof. Let e1, e2, · · · , en be a basis of X. If {xm} is a cauchy sequence in X,
by the theorem 2.3 and follow the signals of Theorem 2.3, we have: T{xm} is

a cauchy sequence in Rn. Since (Rn, ‖x‖) is complete, where ‖x‖ = (
n∑
i=1
|ξi|2)

1
2

for ∀x = (ξ1, ξ2, · · · , ξn) ∈ Rn, then there exists an a = Tx in Rn, such that
T ({xm})→ a = Tx, then xm → x ∈ X(m→∞), so X is complete.

Since X is complete, it must be closed. So any finite dimensional subspace
of a β-normed space is closed. �

Corollary 4.2. Linear operators on a finite dimensional β-normed space are
bounded.

Proof. Suppose (X, ‖ · ‖β1), (Y, ‖ · ‖β2) are two β-normed spaces, dim(X) =
n, e1, e2, · · · , en is a basis of X, T : X → Y is a linear operator. For any

x =
n∑
i=1

ξiei ∈ X, then

‖Tx‖β2 = ‖
n∑
i=1

ξiTei‖β2 ≤
n∑
i=1
|ξi|β2‖Tei‖β2 ,

≤ (
n∑
i=1
‖Tei‖

2
2−β2
β2

)
2−β2

2 (
n∑
i=1
|ξi|2)

β2
2 ,

≤ (
n∑
i=1
‖Tei‖

2
2−β2
β2

)
2−β2

2

(
n∑
i=1
|ξi|2)

β2
2

(
n∑
i=1
|ξi|2)

β1
2

(
n∑
i=1
|ξi|2)

β1
2 (x 6= θ).

By Theorem 2.3, there exists a constant c1 > 0, such that

c1(
n∑
i=1

|ξi|2)
β1
2 ≤ ‖x‖β1 .

Let

r =

(
n∑
i=1
‖Tei‖

2
2−β2
β2

)
2−β2

2 (
n∑
i=1
|ξi|2)

β2
2

c1(
n∑
i=1
|ξi|2)

β1
2

.

Then

‖Tx‖β2 ≤ rc1(
n∑
i=1

|ξi|2)
β2
2 ≤ r‖x‖β1 (x 6= θ). (4.1)
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(4.1) also holds when x = θ. So

‖Tx‖β2 ≤ r‖x‖β1 (∀x =
n∑
i=1

ξiei ∈ X)

If ε > 0, then there is a positive δ = ε
r > 0, such that when ‖x− θ‖β1 < δ,

then

‖Tx− Tθ‖β2 ≤ r‖x‖β1 < ε.

So T is continuous at θ.
T is continuous at θ, then there is an open ball V centered at θ, such that

‖Tx‖β2 < 1, whenever x ∈ V . For each bounded subset B of X, there is a

positive tB, such that B ⊂ tBV , and so ‖Tx‖β2 < tβ2B if x ∈ B. Thus T is
bounded. Hence, our proof is complete. �

Remark 4.3. Linear operators on a finite dimensional β-normed space may
not be strongly bounded.

Example 4.4. Suppose (lβ1(n)), (l
β2
(n)), 0 < β1 < β2 < 1 are two n-dimensional

β-normed space, then (lβ1(n)) ⊂ (lβ2(n)). Let a linear operator I:

(lβ1(n)) 7→ (lβ2(n)) : Ix = x (∀x ∈ (lβ1(n)).

We claim T is bounded, but not strongly bounded.

In fact, suppose K is a bounded set in (lβ1(n)), for each x = (ξ1, ξ2, · · · , ξn) ∈
K , ‖x‖β1 ≤ M1, where M1 > 0 is a constant, then ‖ x

(M1)
1
β1

‖β1 ≤ 1. So

| ξi

(M1)
1
β1

| ≤ 1, 1 ≤ i ≤ n. Since β1 < β2, then ‖ x

(M1)
1
β1

‖β2 ≤ 1. That is

‖x‖β2 ≤ (M1)
β2
β1 . So I is bounded.

But I is not strongly bounded. In fact, if there exists a ρ > 0, such that

‖x‖β2 = ‖Ix‖β2 ≤ ρ‖x‖β1 (∀x = (ξ1, ξ2, · · · , ξn) ∈ (lβ1(n))).

That is
n∑
k=1

|ξk|β2 ≤ ρ
n∑
k=1

|ξk|β1 . But if we let xm = (m, 0, 0, · · · , 0) ∈ (lβ1(n)),m ∈

N, we can get

mβ2−β1 =
mβ2

mβ1
≤ ρ (∀m ∈ N).

Notice that, β2 − β1 > 0, so the above inequation is obviously not exist. So I
is not strongly bounded.



The equivalence of norms on a finite dimensional space 339

5. An application of the equivalence of norms

Banach-Mazur distance is one of the most basic conceptions in Banach
local theories. It can denote how closed the two isomorphic Banach spaces
are. Suppose X is an n-dimensional real Banach space, an estimation about
d(X, l1(n)) is given in [5], [7] : d(X, l1(n)) ≤ n. Another classic estimation given

by T.John [6] in 1948 is: d(X, l2(n)) ≤
√
n. Here, we will use the equivalence

of norms on a finite dimensional normed space to give an exact method to
calculate d(X,Rn), not an estimation about d(X,Rn), where Rn is an Euclid

space with a norm ‖x‖ = (
n∑
i=1
|ξi|2)

1
2 for ∀x = (ξ1, ξ2, · · · , ξn) ∈ Rn. At last,

we give an estimation about d(X,Y ), where X,Y are two n-dimensional real
normed spaces.
Definition 5.1 ([5]). Given two Banach spaces E, F and the isomorphic
mapping T from E to F . The Banach-Mazur distance between them is defined
by d(X,Y ) = inf{‖T‖‖T−1‖, T : E 7→ F}.

Theorem 5.2. Suppose (X, ‖ · ‖X) is an n-dimensional normed space with
a basis e1, e2, · · · , en. Rn is an n-dimensional real Euclid space with a norm

‖x‖ = (
n∑
i=1
|ξi|2)

1
2 for ∀x = (ξ1, ξ2, · · · , ξn) ∈ Rn. Then for any isomorphic

mapping T from Rn to X, we have

d(X,Rn) = inf{‖T‖‖T−1‖, T : Rn 7→ X} = c−11 c2.

Where d(X,Rn) denotes the Banach-Mazur distance between Rn and X. And

c1 = min{‖
n∑
i=1

ξiei‖X}, c2 = max{‖
n∑
i=1

ξiei‖X} for (
n∑
i=1
|ξi|2)

1
2 = 1.

Proof. Since two finite linear spaces are isomorphic, we can suppose T is

an arbitrary isomorphic mapping from Rn to X, where Tx =
n∑
i=1

ηiei for

∀x = (ξ1, ξ2, · · · , ξn) ∈ Rn. Among these isomorphic mappings, we denote

the isomorphic T0 as T0x =
n∑
i=1

ξiei. Since X is a special β-normed space, by

Theorem 2.3, there exist two constants c1, c2, such that

c1(

n∑
i=1

|ξi|2)
1
2 ≤ ‖

n∑
i=1

ξiei‖X ≤ c2(
n∑
i=1

|ξi|2)
1
2 .

Meantime, by
‖T0‖ = sup{‖T0x‖X , ‖x‖ = 1},

and

c2 = max{‖
n∑
i=1

ξiei‖X |(
n∑
i=1

|ξi|2)
1
2 = 1},
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we can see ‖T0‖ = c2. On the other hand, for ∀y = T0x,

‖T−10 ‖ = inf{ρ, ‖T−10 y‖ ≤ ρ‖y‖X}
= inf{ρ, ‖y‖X ≥ 1

ρ‖T
−1
0 y‖}

= inf{ 1k , k‖T
−1
0 y‖ ≤ ‖y‖X}.

(5.1)

By Theorem 2.3, for ∀x ∈ Rn, there is a c1 = min{‖
n∑
i=1

ξiei‖X}, where

(
n∑
i=1
|ξi|2)

1
2 = 1, such that ‖T0x‖X ≥ c1‖x‖. Then we have

c1 = sup{l : ‖T0x‖X ≥ l‖x‖}. (5.2)

Otherwise, if c1 6= sup{l : ‖T0x‖X ≥ l‖x‖}, there exists a c0 > c1, such
that ‖T0x‖X ≥ c0‖x‖, then ‖T0x‖X ≥ c0 for ∀x ∈ Rn, ‖x‖ = 1, which is a
contradiction with c1 = min{‖T0x‖X for ∀x ∈ Rn, ‖x‖ = 1}, c1 < c0. By (5.1)
and (5.2), we can get c−11 = ‖T−10 ‖, and

d(X,Rn) = inf{‖T‖‖T−1‖, T : Rn 7→ X} ≤ ‖T0‖T−10 ‖ = c−11 c2. (5.3)

Next, we will prove d(X,Rn) ≥ c−11 c2. In fact, for the arbitrary isomorphic

mapping T and x = (ξ1, ξ2, · · · , ξn) ∈ Rn, Tx =
n∑
i=1

ηiei, since

‖x‖ = ‖T−1Tx‖ ≤ ‖T−1‖‖Tx‖,

we have ‖T−1‖−1‖x‖ ≤ ‖Tx‖X , so

‖T−1‖−1‖x‖ ≤ ‖Tx‖X ≤ ‖T‖‖x‖. (5.4)

By Theorem 2.3, there exist c1, c2 > 0, such that

c1(

n∑
i=1

|ηi|2)
1
2 ≤ ‖

n∑
i=1

ηiei‖X ≤ c2(
n∑
i=1

|ηi|2)
1
2 . (5.5)

By (5.5), when x 6= θ, we can get

c1(
n∑
i=1
|ηi|2)

1
2 = c1

(
n∑
i=1
|ηi|2)

1
2

(
n∑
i=1
|ξi|2)

1
2

(
n∑
i=1
|ξi|2)

1
2

≤ ‖
n∑
i=1

ηiei‖X

≤ c2(
n∑
i=1
|ηi|2)

1
2 = c2

(
n∑
i=1
|ηi|2)

1
2

(
n∑
i=1
|ξi|2)

1
2

(
n∑
i=1
|ξi|2)

1
2 .

(5.6)
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By the proof of Theorem 2.3 and T is isomorphic, there exist x1 and x2 in Rn,
such that ‖Tx1‖X = c1, ‖Tx2‖X = c2, by (5.4) and (5.6), we can get

c1

(
n∑
i=1
|ηi|2)

1
2

(
n∑
i=1
|ξi|2)

1
2

≥ ‖T−1‖−1, c2

(
n∑
i=1
|ηi|2)

1
2

(
n∑
i=1
|ξi|2)

1
2

≤ ‖T‖. (5.7)

By (5.7), we can get ‖T‖‖T−1‖ ≥ c−11 c2. Then

d(X,Rn) = inf{‖T‖‖T−1‖|T : Rn 7→ X} ≥ c−11 c2. (5.8)

By (5.3) and (5.8), we can get d(X,Rn) = c−11 c2. �

Theorem 5.3. Suppose (X1, ‖ · ‖1), (X2, ‖ · ‖2) are two n-dimensional real
normed spaces. Then the Banach-Mazur distance d(X1, X2) ≤ d−11 d2l

−1
1 l2.

Where d1 = min{‖
n∑
i=1

ξiei‖1}, d2 = max{‖
n∑
i=1

ξiei‖1}, l1 = min{‖
n∑
i=1

ξiei‖2}, l2 =

max{‖
n∑
i=1

ξiei‖2} for ∀x = (ξ1, ξ2, · · · , ξn) ∈ Rn, ‖x‖ = 1.

Proof. By theorem 2.3, there exist four constants d1, d2, l1, l2, such that

d1(
n∑
i=1

|ξi|2)
1
2 ≤ ‖x‖1 ≤ d2(

n∑
i=1

|ξi|2)
1
2 ,

and

l1(

n∑
i=1

|ξi|2)
1
2 ≤ ‖x‖2 ≤ l2(

n∑
i=1

|ξi|2)
1
2 ,

for ∀x =
n∑
i=1

ξiei ∈ X. By Theorem 5.2, d(X1,Rn) = d−11 d2, d(X2,Rn) = l−11 l2.

Since for three isomorphic Banach spaces X,Y, Z, the Banach-Mazur distances
satisfying d(X,Z) ≤ d(X,Y )d(Y,Z), then we can get d(X1, X2) ≤ d−11 d2l

−1
1 l2.

Hence, our proof is complete. �

Remark 5.4. Suppose X,Y are two n-dimensional real normed spaces. Theo-
rem 5.2 gives a new method to calculate d(X,Rn). It improves the calculation
of d(X,Rn) = inf{‖T‖‖T−1‖|T : Rn 7→ X} by d(X,Rn) = ‖T0‖‖T−10 ‖. It
is also helpful to estimate d(X,Y ). And, people can change the d(X,Rn) by
renorming.
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