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Abstract. In 2012, Yang and Pu [Indian J. Pure Appl. Math., 43(2) (2012), 129–144]

proved an Browder type fixed point theorem on Hadamard manifolds with strongly geodesic

convexity. In this paper, we show that their main results can be obtained from the one in the

more general spaces. As applications, we claim that their maximal element theorems, section

theorems, Ky Fan type minimax inequality, and equilibrium theorem about non-cooperative

games on Hadamard manifold are already obtained in some sense.

1. Introduction

The KKM theorem due to Knaster, Kuratowski, and Mazurkiewicz in 1929
is a versatile tool in Nonlinear Analysis and the area associated with it has
been rapidly developed. In 1992, the area was called the KKM theory by Park
who began, in 2006, to extend it to abstract convex spaces. See [9]-[15] and
the references therein.

In 1990, Reich and Shafrir [17] introduced hyperbolic spaces in order to
try to develop a theory of nonexpansive iterations in more general infinite-
dimensional manifolds than normed vector spaces. This class of metric spaces
contains all normed vector spaces and Hadamard manifolds, as well as the
Hilbert ball and the Cartesian product of Hilbert balls. Since 2008, Park found
that any hyperbolic spaces are G-convex spaces [9] and also particular cases
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of c-spaces [10]-[13]. Actually, in 2010, Park indicated but not concretely that
most of key results in the KKM theory can be applied to hyperbolic spaces;
see [13], [14].

On the other hand, a number of authors studied some KKM theoretic re-
sults on Hadamard manifolds. For example, Nemeth [4] introduced and stud-
ied variational inequalities on Hadamard manifolds, and Zhou and Huang [19]
introduced a KKM type theorem on Hadamard manifolds with some applica-
tions to a mixed variational inequality and a Fan-Browder fixed point theorem.
Moreover, in 2012, Colao, Lopez, Marino, and Martin-Marquez [1] developed
an equilibrium theory in Hadamard manifolds. Further, Yang and Pu [18]
proved a Fan-Browder type fixed point theorem with strongly geodesic con-
vexity on Hadamard manifolds. It is clear that such results are closely related
to the KKM theory on hyperbolic spaces.

In fact, Park [16] showed that three key results of [1] can be extended to
hyperbolic spaces and are particular ones for abstract convex spaces in the
sense of his in [12], [13]. Similarly, most of main theorems in the KKM theory
on abstract convex spaces can be applied to hyperbolic spaces and Hadamard
manifolds. In this paper, we show that the main result of [18], [19] also can
be obtained from the one in abstract convex spaces.

Section 2 devotes to review some preliminary facts on our abstract convex
spaces as in [12], [13]. In Section 3, we are concerned with definitions of
Hadamard manifolds and other examples of hyperbolic spaces and we show
that any of such spaces are KKM spaces, which means that most results in
[12], [13] are applicable to them. Section 4 deals with a KKM type theorem
on Hadamard manifolds. In Sections 5 and 6, From a Fan-Browder type
alternative on abstract convex spaces, we show that the Fan-Browder type
fixed point theorem and the maximal element theorem of Yang and Pu can be
considered as corollaries of Park’s result. A minimax inequality on Hadamard
manifolds and the existence of Nash equilibria can be also deduced from a
general version on abstract convex spaces. This will be shown in section 7 and
8.

2. Abstract convex spaces

We follow Park’s works [12], [13] and the references therein.

Definition 2.1. An abstract convex space (E,D; Γ) consists of a topological
space E, a nonempty set D, and a multimap Γ : 〈D〉 ( E with nonempty
values ΓA := Γ(A) for A ∈ 〈D〉, where 〈D〉 is the set of all nonempty finite
subsets of D.
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For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for
any N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD

′ ⊂ X.
When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X;

in other words, X is Γ-convex relative to D′ := X ∩ D. In case E = D, let
(E; Γ) := (E,E; Γ).

Definition 2.2. Let (E,D; Γ) be an abstract convex space. If a multimap
G : D( E satisfies

ΓA ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map.

Definition 2.3. The partial KKM principle for an abstract convex space
(E,D; Γ) is the statement that, for any closed-valued KKM map G : D( E,
the family {G(y)}y∈D has the finite intersection property. The KKM principle
is the statement that the same property also holds for any open-valued KKM
map.

An abstract convex space is called a (partial) KKM space if it satisfies the
(partial) KKM principle, respectively.

Example 2.4. The following are typical examples of KKM spaces. For details,
see [13] and the references therein.

(1) An abstract convex space (X,D; Γ) is called an H-space by Park if
Γ = {ΓA} is a family of contractible (or, more generally, ω-connected)
subsets of X indexed by A ∈ 〈D〉 such that ΓA ⊂ ΓB whenever A ⊂
B ∈ 〈D〉. If D = X, (X; Γ) is called a c-space by Horvath.

(2) A generalized convex space or a G-convex space (X,D; Γ) is an abstract
convex space such that for each A ∈ 〈D〉 with the cardinality |A| =
n + 1, there exists a continuous function φA : ∆n → Γ(A) such that
J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J).

Here, ∆n is the standard n-simplex with vertices {ei}ni=0, and ∆J

the face of ∆n corresponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an}
and J = {ai0 , ai1 , . . . , aik} ⊂ A, then ∆J = co{ei0 , ei1 , . . . , eik}.

Now we have the following diagram for triples (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Convex space =⇒ H-space
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=⇒ G-convex space =⇒ φA-space =⇒ KKM space
=⇒ Partial KKM space =⇒ Abstract convex space.

For the basic results on the KKM theory, the readers can refer [12], [13],
[15] and the references therein.

3. Hadamard manifolds and hyperbolic spaces

In this section, we follow Park [16].

In 1990, Reich and Shafrir [17] introduced hyperbolic spaces in order to
try to develop a theory of nonexpansive iterations in more general infinite-
dimensional manifolds than normed vector spaces:

Definition 3.1. ([17]) Let (X, ρ) be a metric space and R the real line. We
say that a map c : R→ X is a metric embedding of R into X if

ρ(c(s), c(t)) = |s− t|

for all real s and t. The image of a metric embedding is called a metric line.
The image of a real interval [a, b] := {t ∈ R | a ≤ t ≤ b} under such a map is
called a metric segment.

Assume that (X, ρ) contains a family M of metric lines, such that for each
pair of distinct points x and y in X there is a unique metric line in M which
passes through x and y. This metric line determines a unique metric segment
denoted by [x, y] joining x and y. For each 0 ≤ t ≤ 1 there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point is denoted by (1− t)x⊕ ty.

We say that X, or more precisely (X, ρ,M), is a hyperbolic space if

ρ

(
1

2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z

)
≤ 1

2
ρ(y, z)

for all x, y and z in X.

Example 3.2. ([17]) The following are examples of hyperbolic spaces:

(1) All normed vector spaces.
(2) All Hadamard manifoldds, that is, all finite-dimensional connected,

simply connected, complete Riemannian manifolds of constant (non-
positive sectional) curvature.

(3) The Hilbert ball equipped with the hyperbolic metric.
(4) Arbitrary product of hyperbolic spaces.
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In the class of hyperbolic spaces, the concept of convexity can be defined
as follows:

Definition 3.3. ([17]) A subset C of a hyperbolic space X is said to be
convex if, for each pair of points x and y in C, the metric segment [x, y] is also
contained in C. The closed convex hull of a subset D of X is the intersection
of all closed convex subsets of X which contains D.

In the class of Hadamard manifolds, the authors [4], [18], [19] define more
special concepts of convexity as follows:

Definition 3.4. A set K of an Hadamard manifold M is said to be geodesic
convex if for any p, q ∈ K, the geodesic joining p to q is contained in K, that
is, for any p, q ∈ K, expp(t exp−1

p q) ∈ K for all t ∈ [0, 1].
A set K of an Hadamard manifold M is said to be strongly geodesic convex if

for any given o ∈M and for any p, q ∈ K, expo((1−t) exp−1
o p+t exp−1

o q) ∈ K
for all t ∈ [0, 1].

Since any geodesic is a metric segment and the point o can be given by p,
a strongly geodesic convex set in an Hadamard manifold is a geodesic convex
set hence a convex set in a hyperbolic space.

In previous works of Park, he noted that any hyperbolic spaces are G-
convex spaces [9] and also particular cases of c-spaces [12]-[15]. This can be
strengthened as follows:

Definition 3.5. The convex hull coD of a subset D of a hyperbolic space X
is the intersection of all convex subsets of X which contains D.

Lemma 3.6. Any convex subset Y of a hyperbolic space X = (X, ρ,M) can
be made into a c-space (X; Γ) and hence a KKM space.

Proof. For any A ∈ 〈Y 〉, let ΓA = Γ(A) = coA. Then it is easily seen to be
contractible. Therefore (X; Γ) is a c-space in the sense of Horvath and hence,
a KKM space by Park’s KKM theory.

We have the following:

Convex subset of an Hadamard manifold
=⇒ Convex subset of a hyperbolic space
=⇒ c-space =⇒ H-space.

In view of Lemma 3.5, all results in [14], [15] hold for any convex subset of
a hyperbolic spaces. In the following sections, we give some examples of this
fact in [1]. �
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4. The KKM theorem on hyperbolic spaces

Some key results in [1], [18], [19] can be extended to hyperbolic spaces
instead of Hadamard manifolds by applying Park’s KKM theory of abstract
convex spaces in [14], [15].

The following is given as Theorem 3 of [15]:

Theorem 4.1. (Generalized partial KKM principle) Let (E,D; Γ) be a partial
KKM space and G : D( E a map such that

(1) G is closed-valued;
(2) G is a KKM map (that is, ΓA ⊂ G(A) for all A ∈ 〈D〉); and
(3) there exists a nonempty compact subset K of E such that

K =
⋂
{G(z) | z ∈M}

for some M ∈ 〈D〉.
Then K ∩

⋂
{G(z) | z ∈ D} 6= ∅.

Since any Hadamard manifold is a hyperbolic space which is a partial KKM
space, Theorem 4.1 is applicable to hyperbolic spaces or Hadamrd manifolds.
Hence, we immediately have the following form of the KKM theorem:

Theorem 4.2. Let M be a hyperbolic space and K ⊂M a convex subset. Let
G : K ( K be a multimap such that, for each x ∈ K, G(x) is closed. Suppose
that

(i) there exists x0 ∈ K such that G(x0) is compact;
(ii) ∀ x1, . . . , xm ∈ K, co {x1, . . . , xm} ⊂

⋃m
i=1G(xi).

Then
⋂

x∈K G(x) 6= ∅.

Remark 4.3. (1) In Theorem 3.1 of [19], Theorem 4.2 for Hadamard mani-
folds with a KKM map G : K (M and compact K was proved. They could
deduce only the finite intersection property of map-values of G.
(2) In Theorem 3.2 of [19], Theorem 4.2 for Hadamard manifolds with a KKM
map G : K ( M and compact K was proved. Here, the compactness is
redundant.
(3) In Lemma 3.1 of [1], Theorem 4.2 for Hadamard manifolds was provided
with almost two page proof.

5. Fan-Browder type theorems on hyperbolic spaces

In Park’s previous works [9], [10], [13], he obtained some characterizations of
(partial) KKM spaces and one of them is closely related to the Fan-Browder



Remarks on the KKM theory of Hadamard manifolds and hyperbolic spaces 585

fixed point theorem. We need the following for an abstract convex space
(E,D; Γ):

The Fan-Browder fixed point property. For any maps S : E ( D and
T : E ( E satisfying

(1) S−(x) is open for each x ∈ E;
(2) for each x ∈ E, coΓS(x) ⊂ T (x); and
(3) E = S−(M) =

⋃
y∈M S−(y) for some M ∈ 〈D〉,

T has a point x̄ ∈ E such that x̄ ∈ T (x̄).

The (partial) KKM principle implies the preceding property as follows:

Theorem 5.1. A partial KKM space (E,D; Γ) satisfies the Fan-Browder fixed
point property.

Proof. Let (E,D; Γ) be a partial KKM space and S : E ( D, T : E ( E
be maps satisfying (1)-(3). Suppose that x /∈ T (x) for all x ∈ E. Define a
closed-valued map F : D ( E by F (y) := E \ S−(y) for each y ∈ D. Since
E = S−(M) and⋂

y∈M
F (y) =

⋂
y∈M

(E \ S−(y)) = E \
⋃
y∈M

S−(y) = ∅,

{F (y)}y∈D does not have the finite intersection property. Hence F is not a
KKM map. Therefore, Γ(N) 6⊂ F (N) for some N ∈ 〈D〉. Let x0 ∈ Γ(N) \
F (N). Then x0 ∈ coΓN and x0 /∈ F (N) =

⋃
y∈N (E \ S−(y)). Hence x0 ∈

S−(y) or y ∈ S(x0) for all y ∈ N , that is, N ⊂ S(x0). Then

x0 ∈ coΓ(N) ⊂ coΓS(x0) ⊂ T (x0).

This contradicts the non-existence of fixed points of T . �

Theorem 5.2. Let (X; Γ) be a nonempty compact partial KKM space. Sup-
pose that F : X ( X and H : X ( X are two set-valued maps with the
following conditions:

(i) for any x ∈ X, coΓH(x) ⊂ F (x);
(ii) for any x ∈ X, there exists y ∈ X such that x ∈ intH−1(y).

Then there exists x∗ ∈ X such that x∗ ∈ F (x∗).

Proof. Let S− =intH−, T = F and apply the above theorem. �

Corollary 5.3. Let X be a nonempty convex compact subset of a hyperbolic
space M . Suppose that F : X ( X and H : X ( X are two set-valued maps
with the following conditions:
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(i) for any x ∈ X, coH(x) ⊂ F (x);
(ii) for any x ∈ X, H−1(y) is open in X.

Then there exists x∗ ∈ X such that x∗ ∈ F (x∗).

Corollary 5.4. Let X be a nonempty convex compact subset of a hyperbolic
space M . Suppose that F : X ( X is a set-valued map with the following
conditions:

(i) for any x ∈ X, F (x) is nonempty convex in X;
(ii) for any x ∈ X, F−1(y) is open in X.

Then there exists x∗ ∈ X such that x∗ ∈ F (x∗).

Remark 5.5. (1) In Theorem 4.2 of [19], Corollary 5.4 for Hadamard mani-
folds was proved.
(2) In Theorem 3.1 and Corollary 3.1-2 of [18], Theorem 5.2 and Corollary
5.3-4 for Hadamard manifolds with strongly geodesic convexity of F (x) were
proved.

6. Maximal element theorems on hyperbolic spaces

The Fan-Browder type fixed point theorem have an alternative result. We
need the following result which prove the existence of maximal element on
abstract convex space (E,D; Γ):

Theorem 6.1. Let (X; Γ) be a compact partial KKM space. Suppose that
S : X ( X and T : X ( X are two set-valued mappings with the following
conditions:

(i) x /∈ coΓT (x) for all x ∈ X; and
(ii) if S(x) 6= ∅, then there exists y ∈ X such that x ∈ intT−1(y).

Then there exists x0 ∈ X such that S(x0) = ∅.

Proof. Suppose the contrary that S(x) 6= ∅ for all x ∈ X. Then by Theorem
5.2, there exists x∗ ∈ X such that x∗ /∈ coΓT (x∗) which contradicts the first
condition. �

Corollary 6.2. Let X be a nonempty convex compact subset of hyperbolic
space M . Suppose that A : X ( X and B : X ( X are two set-valued
mappings with the following conditions:

(i) for each x ∈ X, x /∈ GcoB(x);
(ii) if A(x) 6= ∅, then there exists y ∈ X such that x ∈ intB−1(y).

Then there exists x∗ ∈ X such that A(x∗) = ∅.
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Corollary 6.3. Let X be a nonempty convex compact subset of hyperbolic
space M . Suppose that A : X ( X and B : X ( X are two set-valued
mappings with the following conditions:

(i) for each x ∈ X, A(x) ⊂ B(x);
(ii) for each x ∈ X, x /∈ GcoB(x);

(iii) for each y ∈ X, B−1(y) is open in X.

Then there exists x∗ ∈ X such that A(x∗) = ∅.

Corollary 6.4. Let X be a nonempty convex compact subset of hyperbolic
space M . Suppose that A : X ( X is a set-valued mapping with the following
conditions:

(i) for any x ∈ X, x /∈ GcoA(x);
(ii) if A(x) 6= ∅, then there exists y ∈ X such that x ∈ intA−1(y).

Then there exists x∗ ∈ X such that A(x∗) = ∅.

Remark 6.5. In Theorem 3.2 and Corollary 3.3-4 of [18], Corollary 6.2-4 for
Hadamard manifolds with strongly geodesic convexity of X were proved.

7. A minimax inequality on hyperbolic spaces

Let X =
∏n

i=1Xi, X−i = X1×· · ·×Xi−1×Xi+1×· · ·×Xn and Γ =
∏n

i=1 Γi

be the componentwise multimap. For A ⊂ X, xi ∈ Xi, x−i ∈ X−i, define A(xi)
and A(x−i) as follows:

A(xi) := {x−i ∈ X−i|(xi, x−i) ∈ A}, A(x−i) := {xi ∈ Xi|(xi, x−i) ∈ A}.

The following section theorem of von Neumann-Fan type already proved
by Park (XXII) of [15] using collective fixed point theorem. We give another
proof using Fan-Browder type fixed point theorem.

Theorem 7.1. (Section theorem) Let {(Xi; Γi)}ni=1 be a family of compact
abstract convex spaces such that (X; Γ) = (

∏n
i=1Xi; Γ) satisfies the partial

KKM principle and, for each i, let Ai and Bi are subsets of X satisfying the
following:

(i) for each y ∈ X, Bi(y) := {x ∈ X | (x−i, yi) ∈ Bi} is open; and
(ii) for each x ∈ X, ∅ 6= coΓBi(x) ⊂ Ai(x) := {y ∈ X | (x−i, yi) ∈ Ai}.

Then we have
⋂n

i=1Ai 6= ∅.



588 W. Lee

Proof. Define maps T, S : X ( X by T (x) :=
⋂n

i=1Ai(x) and S(x) :=⋂n
i=1Bi(x) for x ∈ X. From (ii), we have

coΓS(x) = coΓ

(
n⋂

i=1

Bi(x)

)
⊂

n⋂
i=1

coΓBi(x) ⊂
n⋂

i=1

Ai(x) = T (x)

for each x ∈ X. For each x ∈ E and each i, there exists a y(i) ∈ Bi(x) by

(ii), or (x−i, y
(i)
i ] ∈ Bi. Hence, we have (y

(1)
1 , . . . , y

(n)
n ) ∈

⋂n
i=1Bi(x). This

shows S(x) 6= ∅. Moreover, S−(y) =
⋂n

i=1Bi(y) is open for each y ∈ E by
(i). Since X is compact, it is covered by a finite number of S−(y)’s. Hence,
all the requirements of Theorem 5.2 are satisfied. Therefore, there exists an
x0 ∈ T (x0) =

⋂n
i=1Ai(x

0), that is, x0 ∈ Ai for all i. �

Corollary 7.2. For each i = 1, 2, · · · , n, let Xi be a nonempty convex compact
subset of hyperbolic spaces Mi . Let A1, · · · , An and B1, · · · , Bn be 2n subsets
of X such that

(i) for each i and any x−i ∈ X−i, GcoBi(x−i) ⊂ Ai(x−i);
(ii) for each i and any x−i ∈ X−i, there exists yi ∈ Xi such that

x−i ∈ intBi(yi).

Then
⋂n

i=1Ai 6= ∅.

Remark 7.3. (1) Theorem 7.1 generalizes historically well-known intersection
theorems due to von Neumann, Fan, Bielawski, Kirk et al., and Park; see [7],
[9].
(2) In Theorem 3.5 of [18], Corollary 7.2 for Hadamard manifolds with strongly
geodesic convexity of M were proved.

Theorem 7.4. (Minimax inequality) Let (X; Γ) be a nonempty compact par-
tial KKM space, and let f : X ×X → R be a real-valued function such that

(i) for each x ∈ X, y 7→ f(x, y) is quasi-concave on X;
(ii) for each y ∈ X, x 7→ f(x, y) is lower semicontinuous on X;

(iii) f(x, x) ≤ 0 for all x ∈ X.

Then there exists x∗ ∈ X such that f(x∗, y) ≤ 0 for all y ∈ X.

Proof. By F (x) := {y ∈ X|f(x, y) > 0}, we can define convex set-valued map
F : X ( X.

Suppose for any x ∈ X, there is y ∈ X such that f(x, y) > 0. This implies
that F (x) is non-empty. The condition (ii) shows F−(y) is open for all y ∈ X.
Using Theorem 5.2 with H = F , we can find a fixed point x∗ of F , that is, a
point satisfying f(x∗, x∗) > 0 which contradicts condition (iii). Therefore, for
some x∗ ∈ X, we have f(x∗, y) ≤ 0 for all x ∈ X. �
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Corollary 7.5. Let X be a nonempty convex compact subset of hyperbolic
space M , and let f : X ×X → R be a real-valued function such that

(i) for each x ∈ X, y 7→ f(x, y) is quasi-concave on X;
(ii) for each y ∈ X, x 7→ f(x, y) is lower semicontinuous on X;

(iii) f(x, x) ≤ 0 for all x ∈ X.

Then there exists x∗ ∈ X such that f(x∗, y) ≤ 0 for all y ∈ X.

Remark 7.6. In Theorem 3.6 of [18], Corollary 7.5 for Hadamard manifolds
with strongly geodesic convexity of M were proved.

8. Nash equilibrium points on hyperbolic spaces

In [14], Park proved the following generalized Nash equilibrium theorem
using the preceding section theorem. We give its proof for the completeness.

Theorem 8.1. (Generalized Nash equilibrium theorem) Let {(Xi; Γi)}ni=1 be
a family of compact abstract convex spaces such that (X; Γ) = (

∏n
i=1Xi; Γ)

satisfies the partial KKM principle and, for each i, let fi, gi : X = X−i×Xi →
R be real functions such that

(i) gi(x) ≤ fi(x) for each x ∈ X;
(ii) for each xi ∈ Xi, xi 7→ fi(x−i, xi) is quasiconcave on Xi;

(iii) for each xi ∈ Xi, xi 7→ gi(x−i, xi) is u.s.c. on Xi; and
(iv) for each xi ∈ Xi, x

i 7→ gi(x−i, xi) is l.s.c. on Xi.

Then there exists a point x̂ ∈ X such that

fi(x̂) ≥ max
yi∈Xi

gi(x̂−i, yi) for all i.

Proof. For any ε > 0, we define

Aε,i =

{
x ∈ X | fi(x) > max

yi∈Xi

gi(x−i, yi)− ε
}
,

Bε,i =

{
x ∈ X | gi(x) > max

yi∈Xi

gi(x−i, yi)− ε
}

for each i. Then

(1) for each x−i ∈ X−i, Bε,i(x
i) ⊂ Aε,i(x

i);
(2) for each x−i ∈ X−i, Aε,i(x−i) is Γi-convex;
(3) for each x−i ∈ X−i, Bε,i(xi) 6= ∅ since xi 7→ gi(x−i, xi) is u.s.c. on the

compact space Xi; and
(4) for each xi ∈ Xi, Bε,i(xi) is open since xi 7→ gi(x−i, xi) is l.s.c. on Xi.
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Therefore, by applying Theorem 7.1, we have

n⋂
i=1

Aε,i 6= ∅ for every ε > 0.

SinceX is compact, there exists an x̂ ∈ X such that fi(x̂) ≥ maxyi∈Xi gi(x̂−i, yi)
for all i. �

The n-person non-cooperative game G{I,Xi, fi} on partial KKM spaces con-
sists of

(1) I = {1, 2, · · · , n} is the set of players;
(2) for each i ∈ I, the nonempty strategy set Xi of the ith player is a

partial KKM space; and
(3) for each i ∈ I, the payoff function fi :

∏
i∈I Xi → R of the ith player.

A point x∗ = (x∗i, x
∗
−i) ∈ X =

∏
i∈I Xi is called a Nash equilibrium point

if for each i ∈ I, fi(x
∗
i, x
∗
−i) = maxui∈Xi fi(ui, x

∗
−i).

This concept is a natural extension of the local maxima (for the case n = 1,
f = f1) and of the saddle points (for the case n = 2, f1 = −f , f2 = f).

From Theorem 8.1, we obtain the following form of the Nash equilibrium
theorem for abstract convex spaces:

Theorem 8.2. Let G{I,Xi, fi} be a n-person non-cooperative game on partial
KKM spaces satisfying:

(i) for each i ∈ I, Xi is compact;
(ii) for each i ∈ I, fi is upper semicontinuous on X;

(iii) for each i ∈ I and each fixed ui ∈ Xi, fi(ui, ·) is lower semicontinuous
on Xi; and

(iv) for each i ∈ I and each fixed u−i ∈ X−i, fi(·, u−i) is quasi-concave on
Xi.

Then there exists at least one Nash equilibrium point x∗ ∈ X.

Remark 8.3. (1) Theorem 8.1 is also proved in (XXIV) of [15] using a Fan
type analytic alternative.
(2) For G-convex spaces, Theorem 5 and Corollary 5.1 hold for not-necessarily
finite family; see [6].
(3) Theorem 8.2 generalizes well-known equilibrium theorems due to Nash,
Fan, Bielawski, Kirk et al., and Park; see [2], [3], [13], [14] and references
therein.
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Corollary 8.4. Let G{I,Xi, fi} be a n-person non-cooperative game on hy-
perbolic spaces satisfying:

(i) for each i ∈ I, Xi is convex compact subset of a hyperbolic space Mi;
(ii) for each i ∈ I, fi is upper semicontinuous on X;

(iii) for each i ∈ I and each fixed ui ∈ Xi, fi(ui, ·) is lower semicontinuous
on X−i; and

(iv) for each i ∈ I and each fixed u−i ∈ X−i, fi(·, u−i) is quasi-concave on
Xi.

Then there exists at least one Nash equilibrium point x∗ ∈ X.

Theorem 8.5. Let G{I,Xi, fi} be a n-person non-cooperative game on partial
KKM spaces satisfying:

(i) for each i ∈ I, Xi is compact;
(ii) for each i ∈ I,

∑n
i=1 fi is upper semicontinuous on X;

(iii) for each y ∈ X, x 7→
∑n

i=1 fi(yi, x−i) is lower semicontinuous on X;
and

(iv) for each x ∈ X, y 7→
∑n

i=1 fi(yi, x−i) is quasi-concave on X.

Then there exists at least one Nash equilibrium point x∗ ∈ X.

Proof. We define a function φ : X ×X → R by

φ(x, y) =
n∑

i=1

[fi(yi, x−i)− fi(xi, x−i)].

Then we can verify that

(1) for each x ∈ X, y 7→ φ(x, y) is quasi-concave on X by condition (iv);
(2) for each y ∈ X, x 7→ φ(x, y) is lower semicontinuous onX by conditions

(ii) and (iii); and
(3) φ(x, x) ≤ 0 for all x ∈ X.

By minimax inequality [Theorem 7.4], there exists an x∗ ∈ X such that
φ(x∗, y) ≤ 0 for all y ∈ X. For each i ∈ I and any ui ∈ Xi, this inequal-
ity for y = (ui, x

∗
−i) ∈ X shows

fi(x
∗
i, x
∗
−i) = max

ui∈Xi

fi(ui, x
∗
−i)

for all i ∈ I. Therefore x∗ is a Nash equilibrium. �

Corollary 8.6. Let G{I,Xi, fi} be a n-person non-cooperative game on hy-
perbolic spaces satisfying:

(i) for each i ∈ I, Xi is strongly geodesic convex compact subset of a
hyperbolic space Mi;

(ii) for each i ∈ I,
∑n

i=1 fi is upper semicontinuous on X;
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(iii) for each y ∈ X, x 7→
∑n

i=1 fi(yi, x−i) is lower semicontinuous on X;
and

(iv) for each x ∈ X, y 7→
∑n

i=1 fi(yi, x−i) is quasi-concave on X.

Then there exists at least one Nash equilibrium point x∗ ∈ X.

Remark 8.7. (1) In Theorem 3.12 of [1], Corollary 8.3 for Hadamard mani-
folds was proved.
(2) In Theorem 4.1-2 of [18], Corollary 8.3 and 8.5 for Hadamard manifolds
with strongly geodesic convexity of M were proved.
(3) Since every finite sum of u.s.c. or l.s.c. or quasi-concave maps also u.s.c. or
l.s.c. or quasi-concave respectively, we can prove Theorem 8.2 using Theorem
8.4.

9. The Nemeth fixed point theorem on hyperbolic spaces

As is well-known, Park introduced a large number of generalized fixed point
theorems. We follow one of them in Park [11]:

Definition 9.1. An abstract convex uniform space (E,D; Γ;U) is an abstract
convex space with a basis U of a uniform structure of E.

The following gives a particular subclass or subsets of abstract convex uni-
form spaces.

Definition 9.2. An abstract convex uniform space (E ⊃ D; Γ;U) is called an
LΓ-space if D is dense in E and, for each U ∈ U , the U -neighborhood

U [A] := {x ∈ E | A ∩ U [x] 6= ∅}
around a given Γ-convex subset A ⊂ E is Γ-convex.

Theorem 9.3. ([11], Corollary 4.5.) Let (X ⊃ D; Γ;U) be a Hausdorff KKM
LΓ-space and T : X ( X a compact u.s.c. map with nonempty closed Γ-convex
values. Then T has a fixed point.

Corollary 9.4. Let K be a nonempty compact and convex subset of a hy-
perbolic space M . Then every continuous function f : K → K has a fixed
point.

Proof. In any hyperbolic spaces in the sense of Reich-Shafrir are metric spaces
with a metric ρ. Since ρ-balls are ρ-convex, hyperbolic spaces and their ρ-
convex subsets are locally convex in this sense. �

Corollary 9.5. ([4], Lemma 1) Let K be a nonempty compact and geodesic
convex subset of an Hadamard manifold M . Then every continuous function
f : K → K has a fixed point.
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Remark 9.6. This is applied to show a variational inequality on Hadamard
manifolds in [4].
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