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Abstract. We present a local convergence analysis of a ninth order Newton-type method

in order to approximate a locally unique solution of a nonlinear equation in a Banach space

setting. We only use hypotheses on the first Fréchet-derivative. The local convergence

analysis in [7, 11, 12, 24] used hypotheses up to the second Fréchet derivative although

only the first derivative appears in this method. Hence, the application of the methods is

extended under less computational cost. This work also provides computable convergence

ball and computable error bounds. Numerical examples are also provided in this study.

1. Introduction

In this study, we are concerned with the problem of approximating a locally
unique solution x∗ of the nonlinear equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y. Using mathematical mod-
eling, many problems in computational sciences and other disciplines can be
expressed as a nonlinear equation (1.1) [2, 5, 12, 22]. Closed form solutions of
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these nonlinear equations exist only for few special cases which may not be of
much practical value. Therefore solutions of these nonlinear equations (1.1)
are approximated by iterative methods. In particular, the practice of Numer-
ical Functional Analysis for approximating solutions iteratively is essentially
connected to Newton-like methods [1]-[24]. The study about convergence mat-
ter of iterative procedures is usually based on two types: semi-local and local
convergence analysis. The semi-local convergence matter is, based on the in-
formation around an initial point, to give conditions ensuring the convergence
of the iterative procedure; while the local one is, based on the information
around a solution, to find estimates of the radii of convergence balls. There
exist many studies which deal with the local and semi-local convergence anal-
ysis of Newton-like methods such as [1]-[24].

We study the local convergence analysis of methods defined for each n =
0, 1, 2, · · · by

yn = xn − F ′(xn)−1F (xn),

xn+1 = yn − F ′(xn)−1F (yn), (1.2)

yn = xn − F ′(xn)−1F (xn),

zn = yn − F ′(xn)−1F (yn),

xn+1 = xn −
[

1

6
F ′(xn) +

2

3
F ′
(
xn + zn

2

)
+

1

6
F ′(xn)

]−1
F (xn), (1.3)

and

yn = xn − F ′(xn)−1F (xn),

zn = yn − F ′(xn)−1F (yn),

wn = zn − F ′(zn)−1F (zn),

xn+1 = wn − F ′(zn)−1F (wn), (1.4)

where x0 is an initial point. Methods (1.2), (1.3) and (1.4) are based on
quadrature and Adomian decomposition formulae and have convergence order
3 [2, 5], 4 [11, 12] and 9 [24], respectively when X = Y = Rm. Moreover, the
convergence of the first two methods was shown under hypotheses reaching
up to the third Fréchet derivative of operator F whereas the convergence
of method (1.4) was shown under hypotheses up to ninth Fréchet derivative
(although only the first Fréchet derivative appears in these methods). The
hypotheses on the Fréchet derivatives limit the applicability of these methods.
As a motivational example, let us define function F on X = [−1

2 ,
5
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0,
0, x = 0.
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We have that

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

and

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously, function F ′′′ is unbounded on D. Notice also that the proofs
of convergence use Taylor expansions. In the present study, we study the
local convergence of these methods using hypotheses only on the first Fréchet
derivative taking advantage of the Lipschitz continuity of the first Fréchet -
derivative. This way, we expand the applicability of these methods.Notice also
that our results are presented in the more general setting of a Banach space.

The rest of the paper is organized as follows. In Section 2 and Section 3 we
present, respectively the local convergence of method (1.4) and method (1.3).
The convergence of method (1.2) is presented in Section 3 as a special case of
method (1.3). Finally the numerical examples are presented in the concluding
Section 4.

2. Local convergence analysis

We present the local convergence analysis of method (1.4) in this section.
Let L0 > 0, L > 0, M ≥ 1 be given parameters. It is convenient for the local
convergence analysis that follows to introduce some functions and parameters.
Define function g1 on the interval [0, 1

L0
) by

g1(t) =
Lt

2(1− L0t)

and parameter

r1 =
2

2L0 + L
<

1

L0
. (2.1)

Then, we have that g1(r1) = 1 and 0 ≤ g1(t) < 1 for each t ∈ [0, r1). Moreover,
define functions g2 and h2 on the interval [0, 1

L0
) by

g2(t) =

(
1 +

M

1− L0t

)
g1(t)

and

h2(t) = g2(t)− 1.

We have that h2(0) = −1 < 0 and h2(r1) = g1(r1) + M
1−L0r1

g1(r1) − 1 =
M

1−L0r1
> 0, since g1(r1) = 1 and 1−L0r1 > 0. It follows from the intermediate

value theorem that function h2 has zeros in the interval (0, r1). Denote by r2
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the smallest such zero. Furthermore, define functions g3 and h3 on the interval
[0, 1

L0
) by

g3(t) =
Lg2(t)

2t

2(1− L0t)

and
h3(t) = g3(t)− 1.

We have that h3(0) = −1 < 0 and h3(t) → +∞ as t → 1
L0

−
. It follows

that function h3 has zeros in the interval (0, 1
L0

) denoted by r3. Notice that

h3(r2) = Lr2
2(1−L0r2)

− 1 < 0, since r2 < r1 and g2(r2) = 1, so that r2 < r3.

Finally, define functions g4 and h4 on the interval [0, 1
L0

) by

g4(t) =

(
1 +

M

1− L0t

)
g3(t)

and
h4(t) = g4(t)− 1.

We have that h4(0) = −1 < 0 and h4(r3) = M
1−L0r3

> 0, as since M ≥ 1 and
1 − L0r3 > 0. Denote by r the smallest zero of function h4 on the interval
[0, r3). Then, for each t ∈ [0, r)

0 ≤ g1(t) < 1, (2.2)

0 ≤ g2(t) < 1, (2.3)

0 ≤ g3(r) < 1 (2.4)

and
0 ≤ g4(t) < 1. (2.5)

Let U(v, ρ) and U(v, ρ) denote the open and closed ball in X, respectively,
with center v ∈ X and of radius ρ > 0.

Next, we present the local convergence analysis of method (1.4) using the
preceeding notation.

Theorem 2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Suppose that there exist x∗ ∈ D, L0 > 0, L > 0 and M ≥ 1 such that for each
x, y ∈ D

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X), (2.6)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖, (2.7)

‖F ′(x∗)−1(F (x)− F (y))‖ ≤ L‖x− y‖, (2.8)

‖F ′(x∗)−1F ′(x)‖ ≤M (2.9)

and
Ū(x∗, r) ⊆ D, (2.10)
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where r is defined above Theorem 2.1. Then, the sequence {xn} generated by
method (1.4) for x0 ∈ U(x∗, r)− {x∗} is well defined, remains in U(x∗, r) for
each n = 0, 1, 2, · · · and converges to x∗. Moreover, the following estimates
hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (2.11)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.12)

‖wn − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ (2.13)

and

‖xn+1 − x∗‖ ≤ g4(‖xn − x∗‖)‖xn − x∗‖, (2.14)

where the “g” functions are defined above Theorem 2.1. Furthermore, if there
exists T ∈ [r, 2

L0
) such that Ū(x∗, T ) ⊂ D, then the limit point x∗ is the only

solution of equation F (x) = 0 in Ū(x∗, T ).

Proof. We shall show estimates (2.11)–(2.14) using mathematical induction.
Using (2.1), (2.7) and the hypothesis x0 ∈ U(x∗, r)− {x∗} we get that

‖F ′(x∗)−1(F (x0)− F (x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (2.15)

It follows from (2.15) and the Banach Lemma on invertible operators [2, 5, 17]
that F ′(x0)

−1 ∈ L(Y,X) and

‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− L0‖x0 − x∗‖
<

1

1− L0r
. (2.16)

Hence, y0 and z0 are well defined by method (1.4) for n = 0. (2.1), (2.2), (2.8)
and (2.16) that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F (x0)‖

≤ ‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)−1

×[F ′(x∗ + θ(x0 − x∗))− F ′(x0)(x0 − x∗)]‖dθ

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (2.17)

which shows (2.11) for n = 0 and y0 ∈ U(x∗, r). Notice that for each θ ∈ [0, 1]
‖x∗ + θ(x0 − x∗)‖ = θ‖x0 − x∗‖ < r. That is x∗ + θ(x0 − x∗) ∈ U(x∗, r). We
can write

F (x0) = F (x0)− F (x∗) =

∫ 1

0
F ′(x∗ + θ(x0 − x∗))dθ. (2.18)



600 I. K. Argyros and S. George

Then, using (2.9) and (2.17) we get that

‖F ′(x∗)−1F (x0)‖ =

∥∥∥∥∫ 1

0
F ′(x∗ + θ(x0 − x∗))dθ

∥∥∥∥
≤ M‖x0 − x∗‖ (2.19)

and

‖F ′(x∗)−1F (y0)‖ ≤M‖y0 − x∗‖. (2.20)

Using second substep of method (1.4), (2.3), (2.16), (2.17) and (2.20) we have
in turn that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (y0)‖

≤ ‖y0 − x∗‖+
M‖y0 − x∗‖

1− L0‖x0 − x∗‖

≤
(

1 +
M

1− L0‖x0 − x∗‖

)
‖y0 − x∗‖

≤
(

1 +
M

1− L0‖x0 − x∗‖

)
g1(‖x0 − x∗‖)‖x0 − x∗‖

= g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (2.21)

which shows (2.12) for n = 0 and z0 ∈ U(x∗, r). Then, as in (2.16) we also
have by (2.3) that

‖F ′(z0)−1F ′(x∗)‖ ≤
1

1− L0‖z0 − x∗‖

≤ 1

1− L0g2(‖x0 − x∗‖)‖x0 − x∗‖

≤ 1

1− L0‖x0 − x∗‖
. (2.22)

Hence, w0 and x1 are well defined by method (1.4) for n = 0. Then, by using
(2.4), (2.21) and (2.22) as in (2.17) we get that

‖w0 − x∗‖ ≤
L‖z0 − x∗‖2

2(1− L0‖z0 − x∗‖)

≤ Lg2(‖x0 − x∗‖)2‖x0 − x∗‖2

2(1− L0g2(‖x0 − x∗‖)‖x0 − x∗‖)
≤ g3(‖x0 − x∗‖)‖x0 − x∗‖
< ‖x0 − x∗‖ < r, (2.23)
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which shows (2.13) for n = 0 and w0 ∈ U(x∗, r). Then, using (2.1), (2.5),
(2.20) (for y0 = w0), (2.22) and (2.23) we obtain that

‖x1 − x∗‖ ≤ ‖w0 − x∗‖+
M‖w0 − x∗‖

1− L0‖z0 − x∗‖

≤
(

1 +
M

1− L0g2(‖x0 − x∗‖)‖x0 − x∗‖

)
‖w0 − x∗‖

≤
(

1 +
M

1− L0g2(‖x0 − x∗‖)‖x0 − x∗‖

)
g3(‖x0 − x∗‖)‖x0 − x∗‖

≤ g4(‖x0 − x∗‖)‖x0 − x∗‖ < r, (2.24)

which shows (2.14) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, z0,
w0, x1 by xk, yk, zk, wk, xk+1 in the preceding estimates we arrive at (2.11)-
(2.14). Then, from the estimate ‖xk+1− x∗‖ < ‖xk − x∗‖ < r, we deduce that
limk→∞ xk = x∗ and xk+1 ∈ U(x∗, r).

Finally, to show the uniqueness part, let Q =
∫ 1
0 F

′(y∗ + t(x∗ − y∗))dt for

some y∗ ∈ Ū(x∗, T ) with F (y∗) = 0. Using (2.10), we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤
∫ 1

0
L0‖y∗ + t(x∗ − y∗)− x∗‖dt

≤
∫ 1

0
(1− t)‖x∗ − y∗‖dt

≤ L0

2
T < 1. (2.25)

It follows from (2.25) that Q is invertible. Then, from the identity 0 = F (x∗)−
F (y∗) = Q(x∗ − y∗), we deduce that x∗ = y∗. �

Remark 2.2. (1) In view of (2.7) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + L0‖x− x∗‖

condition (2.9) can be dropped and be replaced by

M(t) = 1 + L0t

or
M(t) = M = 2,

since t ∈ [0, 1
L0

). Moreover, condition (2.8) can be replaced by the condition

‖F ′(x∗)−1(F ′(x∗ + θ(x− x∗))− F ′(x))‖
≤ L̄(1− θ)‖x− x∗‖



602 I. K. Argyros and S. George

for each x, y ∈ D, some L̄ ∈ (0, L] and θ ∈ [0, 1].
(2) The results obtained here can be used for operators F satisfying au-
tonomous differential equations [2, 5] of the form

F ′(x) = T (F (x)),

where T is a continuous operator. Then, since F ′(x∗) = T (F (x∗)) = T (0), we
can apply the results without actually knowing x∗. For example, let F (x) =
ex − 1. Then, we can choose: T (x) = x+ 1.
(3) The local results obtained here can be used for projection methods such as
the Arnoldi’s method, the generalized minimum residual method (GMRES),
the generalized conjugate method(GCR) for combined Newton/finite projec-
tion methods and in connection to the mesh independence principle can be
used to develop the cheapest and most efficient mesh refinement strategies
[2, 5].
(4) The parameter r1 given by (2.1) was shown by us to be the convergence
radius of Newton’s method [2, 6]

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · · (2.26)

under the conditions (2.6)– (2.8). It follows from the definition that the con-
vergence radius r of method (1.4) cannot be larger than the convergence radius
r1 of the second order Newton’s method (2.26). As already noted in [2, 5] r1
is at least as large as the convergence ball given by Rheinboldt [21]

rR =
2

3L
.

In particular, for L0 < L we have that

rR < r1

and
rR
r1
→ 1

3
as

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than Rheinboldt’s.
The same value for rR was given by Traub [22].
(5) It is worth noticing that method (1.4) is not changing when we use the
conditions of Theorem 2.1 instead of the stronger conditions used in [7, 11,
12, 24]. Moreover, we can compute the computational order of convergence
(COC) [2, 5, 13] defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.
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This way we obtain in practice the order of convergence.

3. Local convergence of method (1.3)

We present the local convergence analysis of method (1.3) in this section.
We define functions g1, g2, h2 and parameters r1 and r2 as in Section 2. Then,
define functions p and hp on the interval [0, 1

L0
) by

p(t) =
L0

2
(1 + g2(t))t

and

hp(t) = p(t)− 1.

Then, hp(0) = −1 < 0 and hp(t)→ +∞ as t→ 1
L0

−
. Hence, function hp has a

minimal zero in the interval (0, 1
L0

) denoted by rp. Moreover, define functions

g3 and h3 on the interval [0, 1
L0

) by

g3(t) = g1(t) +
LM(1 + g2(t))t

2(1− L0t)(1− p(t))

and

h3(t) = g3(t)− 1.

Then, again we have that h3(0) = −1 < 0 and h3(t) → +∞ as t → r−p .
Denote by r3 the smallest zero of function h3 in the interval (0, rp). Notice

that h1(r1) = M
1−L0r1

> 0, since g1(r1) = 1 and 1− L0r1 > 0. Hence, we have
that r2 < r1. Set

r = min{r2, r3}. (3.1)

Then, we have that for each t ∈ [0, r)

0 ≤ g1(t) < 1,

0 ≤ g2(t) < 1, (3.2)

0 ≤ g3(t) < 1. (3.3)

Next, we present the local convergence analysis of method (1.3) in an anal-
ogous way to method (1.4) using the preceeding notation.

Theorem 3.1. Suppose that the hypotheses of Theorem 2.1 are satisfied but
r is defined by (3.1). Then, the conclusions of Theorem 2.1 hold with method
(1.3) replacing method (1.4).
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Proof. According to the proof of Theorem 2.1 we only need to show using
mathematical induction that

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ < r. (3.4)

We have by (2.8) and (2.12) that∥∥∥∥F ′(x∗)−1 [1

6
F ′(x0) +

2

3
F ′
(
x0 + z0

2

)
+

1

6
F ′(z0)− F ′(x0)

]∥∥∥∥
≤ 4

6

∥∥∥∥F ′(x∗)−1(F ′(x0 + z0
2

)
− F ′(x0)

)∥∥∥∥
+

1

6
‖F ′(x∗)−1(F ′(z0)− F ′(x0))‖

≤ 2

3
L

∥∥∥∥x0 + z0
2

− x0
∥∥∥∥+

1

6
‖z0 − x0‖ =

L

2
‖x0 − z0‖

≤ L

2
(‖x0 − x∗‖+ ‖z0 − x∗‖)

≤ L

2
(1 + g2(‖x0 − x∗‖))‖x0 − x∗‖. (3.5)

Moreover, we get by (2.7), (2.12) and (3.2) that∥∥∥∥F ′(x∗)−1 [1

6
F ′(x0) +

2

3
F ′
(
x0 + z0

2

)
+

1

6
F ′(z0)− F ′(x∗)

]∥∥∥∥
≤ 1

6
‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖

+
2

3

∥∥∥∥F ′(x∗)−1(F ′(x0 + z0
2

)
− F ′(x∗)

)
+

1

6
‖F ′(x∗)−1(F ′(z0)− F ′(x∗))‖

≤ L0

6
‖x0 − x∗‖+

4

6
L0

∥∥∥∥x0 + z0
2

− x∗
∥∥∥∥+

L0

6
‖x0 − x∗‖

≤ L0

6
‖x0 − x∗‖+

1

3
(‖x0 − x∗‖+ ‖z0 − x∗‖) +

L0

6
‖z0 − x∗‖

=
L0

2
(‖x0 − x∗‖+ ‖z0 − x∗‖)

≤ L0

2
(1 + g2(‖x0 − x∗‖))‖x0 − x∗‖

= p(‖x0 − x∗‖) < 1. (3.6)

If follows from (3.6) that 1
6F
′(x0) + 2

3F
′(x0+z0

2 ) + 1
6F
′(z0) is invertible and
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∥∥∥∥∥
(

1

6
F ′(x0) +

2

3
F ′
(
x0 + z0

2

)
+

1

6
F ′(z0)

)−1
F ′(x∗)

∥∥∥∥∥
≤ 1

1− p(‖x0 − x∗‖)
. (3.7)

Hence, x1 is well defined by the last substep of method (1.3) for n = 0. Then,
using (2.11), (2.16), (2.19), (4.1), (3.5), (3.7) and the third substep of method
(1.3) for n = 0, we get in turn that

x1 − x∗

= x0 − x∗ − F ′(x0)−1F (x0) + F ′(x0)
−1F (x0)

−
(

1

6
F ′(x0) +

2

3
F ′
(
x0 + z0

2

)
+

1

6
F ′(z0)

)−1
F (x0)

= y0−x∗+

[
F ′(x0)

−1−
(

1

6
F ′(x0)+

2

3
F ′
(
x0 + z0

2

)
+

1

6
F ′(z0)

)−1]
F (x0),

so,

‖x1 − x∗‖
≤ ‖y0 − x∗‖+ ‖F ′(x0)−1F ′(x∗)‖

×

∥∥∥∥∥
(

1

6
F ′(x0) +

2

3
F ′
(
x0 + z0

2

)
+

1

6
F ′(z0)

)−1
F ′(x∗)

∥∥∥∥∥
×
∥∥∥∥F ′(x∗)−1 [1

6
F ′(x0) +

2

3
F ′
(
x0 + z0

2

)
+

1

6
F ′(z0)− F ′(x0)

]∥∥∥∥
×‖F ′(x∗)−1F (x0)‖
≤ g1(‖x0 − x∗‖)‖x0 − x∗‖

+
LM(1 + g2(‖x0 − x∗‖))‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)(1− p(‖x0 − x∗‖))
= g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (3.4) for n = 0 and x1 ∈ U(x∗, r). The rest of the proof follows
as the proof of Theorem 2.1. �

Remark 3.2. (a) Comments for method (1.3) can follow immediately as
in Remark 2.2.

(b) In order to present the corresponding results for method (1.2), we
simply restrict to the definition of functions g1, g2 and parameters r1
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and r2. Moreover, we define

r = r2. (3.8)

Hence, in view of the proof of Theorem 3.1, we arrive at

Theorem 3.3. Suppose that the hypotheses of Theorem 3.1 are satisfied but
with r defined by (3.8). Then, the conclusions of Theorem 3.1 hold (except
(2.13)) but with method (1.2) replacing method (1.3).

4. Numerical examples

We present numerical examples in this section.

Example 4.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define function
F on D for w = (x, y, z)T by

F (w) =

(
ex − 1,

e− 1

2
y2 + y, z

)T

.

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that we get L0 = e − 1, L = e,M = 2. The parameters are given in
Table 1

Table 1. Comparison Table

method (1.4) method (1.3) method (1.2)
r1 = 0.3249 r1 = 0.3249 r1 = 0.3249
r2 = 0.1486 r2 = 0.1486 r2 = 0.1486
r3 = 0.0014 r3 = 0.1000
r = 0.0003 r = 0.1000 r = 0.1486

Table 1

Example 4.2. Returning back to the motivational example at the introduc-
tion of this study, we have L0 = L = 146.6629073, M = 2. The parameters
are given in Table 2
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Table 2. Comparison Table

method (1.4) method (1.3) method (1.2)
r1 = 0.0045 r1 = 0.0045 r1 = 0.0045
r2 = 0.0023 r2 = 0.0023 r2 = 0.0023
r3 = 0.0637 r3 = 0.0015
r = 0.0204 r = 0.0015 r = 0.0023

Table 2

Example 4.3. Let X = Y = C[0, 1], the space of continuous functions defined
on [0, 1] and be equipped with the max norm. Let D = U(0, 1). Define function
F on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0
xθϕ(θ)3dθ. (4.1)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = 15,M = 2. The parameters are given
in Table 3

Table 3. Comparison Table

method (1.4) method (1.3) method (1.2)
r1 = 0.0667 r1 = 0.0667 r1 = 0.0667
r2 = 0.0292 r2 = 0.0292 r2 = 0.0292
r3 = 0.7405 r3 = 0.0196
r = 0.3167 r = 0.0196 r = 0.0292

Table 3
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