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Abstract. This paper deals with the long-time behavior of a semilinear wave equation with

nonlinear boundary dissipation. By estimating energy function, we prove that the fractal

dimension of the global attractor for the dynamical system is finite.

1. Introduction

Let Ω ⊂ R3 be a bounded connected open set with a smooth boundary Γ.
The exterior normal on Γ is denoted by ν. We consider the following equation

utt −∆u + εut + f(u) = 0 in Q = [0,∞)× Ω (1.1)

subject to the boundary condition

∂νu + u = −g(ut) in Σ = [0,∞)× Γ (1.2)

and the initial condition:

u(0) = u0 and ut(0) = u1.

Here f and g are nonlinear functions subject to the following assumption,0 ≤
ε ¿ 1 is a small parameter.

Assumption 1. (H1) f ∈ C2(R) such that |f ′′(s)| ≤ c(1+ |s|1−δ) for all s ∈ R
and for some c > 0 and δ > 0.
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(H2) lim
|s|→∞

s−1f(s) > −λ, where λ is the best constant in the Poincare type

inequality:
∫
Ω |∇u|2dx +

∫
Γ |u|2dS ≥ λ

∫
Ω |u|2dx.

(g) g ∈ C1(R) is an increasing function, g(0) = 0 and there exist two posi-
tive constants m1 and m2 such that m1 ≤ g′(s) ≤ m2 for all |s| ≥ 1.

This problem of long time behavior of solutions to (1.1)-(1.2) was the sub-
ject of a recent paper [2]. In [2] it was shown, in particular,that all finite
energy solutions are attracted by a global compact attractor,whose structure
is determined by the unstable manifolds emanating from stationary solutions.

Fereisel[4] dealt either with one-dimensional wave equations or with equa-
tions subjected to severe restrictions (linear bound) imposed on the semilinear
terms [8]. Most recently, there has been a renewed interest in this problem
and positive results for semilinear wave equations in dimension higher than
one with interior dissipation have been established by Prazak [7].

Igor Chueshov [1] has shown under the Assumption 1.1 the fractal dimension
the global attractor of the (1.1) is finite when ε = 0. His methods can be
extended to 0 < ε ≤ 1. In this paper we will use the methods to study the
(1.1). Our main results read as follows:

Theorem 1. Under the Assumption 1.1 with g′(0) > 0, the fractal dimension,
the global attractor of the dynamical system (1.1) is finite when 0 < ε < ε0

where ε0 is a constant.

In order to describe the decay rates to equilibrium, we introduce a concave,
strictly increasing, continuous function h : R+ → R+ which captures the
behavior of g(s) at the origin possessing the properties

h(0) = 0 and s2 + g2(s) ≤ h(sg(s)) for |s| ≤ 1.

Given function h we define

H0(s) = h

(
s

c3

)
, G0(s) = c1(I + H0)−1(c2s), Q(s) = s− (I + G0)−1(s)

where c1 and c2 are positive constants depending on m1, m2 and c3 is propor-
tional to the measure of Γ× (0, T ).

2. Proof of Theorem 1

We recall that the fractal dimension dimfM of a compact set M can be
defined by the formula [3]

dimfM = lim sup
ε→0

lnN(M, ε)
ln(1/ε)

,
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where N(M, ε) is the minimal number of closed sets of diameter 2ε which
cover M .

Throughout the paper we shall use the energy functional

E(w(t)) =
1
2

∫

Ω
|∇w(t)|2 +

1
2

∫

Ω
|wt(t)|2 +

1
2

∫

Γ
|w(t)|2 (2.1)

≡ 1
2
‖ (w(t), wt(t)) ‖2

F ,

which corresponds to a linear version (f ≡ 0 and g ≡ 0,ε ≡ 0) of problem (1.1)
and (1.2), F ≡ H1(Ω) × L2(Ω) which is often referred to as the finite energy
space.

The key inequality in our considerations is the following inequality.

Lemma 1. Let u(t) and v(t) be two solutions to (1.1) possessing the properties

‖ (u(t), ut(t)) ‖2
F≤ R and ‖ (v(t), vt(t)) ‖2

F≤ R for all t ≥ 0,

with some constant R > 0. Denote z(t) ≡ u(t) − v(t). Then ,under the
Assumption 1 and g′(0) > 0 ,there exist positive constants C1, C2 and β such
that

E(z(t)) ≤ C1e
−βtE(z(0)) + C2

∫ t

0
e−β(t−s) ‖ z(s) ‖2

L2(Ω) ds (2.2)

for all t ≥ 0.

Remark. Since the global attractor(we write A) is an invariant set we know
that the solutions (u(t), ut(t)) and (v(t), vt(t)) corresponding to the initial data
(u0, u1), (v0, v1) ∈ A will stay in A. Moreover, (2.2) implies that

E(z(t)) ≤ C1e
−βtE(z(0)) +

C2

β
max
s∈[0,t]

‖ z(s) ‖2
L2(Ω) ds for all t ≥ 0.

This inequality will be crucial in the proof of the theorem.
To prove Lemma 1 we need the following observability inequality which is

valid without the restriction g′(0) > 0.

Lemma 2. Let T > T0 ≡ 4(r+ 1√
λ
), where r is the radius of a minimal ball in

Rn containing Ω and λ is the constant from (H2).Assume that two solutions
u(t) and v(t) to problem (1.1) possess the property

‖ (u(t), ut(t)) ‖F≤ R and ‖ (v(t), vt(t)) ‖F≤ R for all t ∈ [0, T ]

with some constant R > 0. Then, under the Assumption 1 there exist positive
constants C1(T ) and C2(R, T ) such that for z(t) ≡ u(t) − v(t) we have the
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relations

E(z(T )) +
∫ T

0
E(z(t))dt ≤ C2

∫ T

0
‖ z ‖2

L2(Ω) dt

+C1(I + H0)
(∫ T

0
〈g(ut(t))− g(vt(t)), zt(t)〉 dt

)
, (2.3)

where H0(s) = Th(s/T ) and h(s) is defined in the beginning. If g′(0) > 0,
then (2.3)hold with H0(s) ≡ s and

E(z(T )) ≤ C1(E(z(0))−E(z(T ))) + C2

∫ T

0
‖ z ‖2

L2(Ω) dt. (2.4)

Proof. We will denote different constant by Ci pointing out their dependence
on the parameters when it becomes important.

Our starting point is the following identity:
1
2

∫

QT

(|zt|2 + |∇z|2) = −
∫

QT

(f(u)− f(v))(h̃ · ∇z + z)

−
∫

Ω
zt(h̃ · ∇z + z)|T0 −

∫

QT

εzt(h̃ · ∇z + z) +
∫

∑
T

[
∂νz(h̃ · ∇z + z)

+
1
2
((h̃ · ν)(|zt|2 − |∇z|2)

]
, (2.5)

where h̃ = x − x0 for some x0 ∈ R3 and QT = (0, T ) × Ω and
∑

T =
(0, T )× Γ.Here T is a positive constant which will be determined later in the
proof. We choose x0 ∈ R3 such that sup

x∈Ω
|h̃(x)| = r, where r is the radius of a

minimal ball in R3 containing Ω.
In the following we will transform (2.5) to an energy inequality.
At first we estimate the second term in (2.5). By

f(u)− f(v) = (u− v)
∫ 1

0
f ′(su + (1− s)v)ds = z

∫ 1

0
f ′(su + (1− s)v)ds,

the Hölder’s inequality, and the embedding Hs(Ω) ⊂ Lp(Ω) for s = 3
2 − 3

p and
p ≥ 2, we can get that

‖ f(u(t))− f(v(t)) ‖L2(Ω)≤ C(R, Ω, c, δ)· ‖ z(t) ‖
L

6
1+δ (Ω)

, t ∈ [0, T ], (2.6)

for some δ > 0 and

−
∫

Ω
(f(u(t))− f(v(t)))h̃ · ∇z(t)

≤ C(ε)r2 ‖ f(u(t))− f(v(t)) ‖2
L2(Ω) +ε ‖ ∇z(t) ‖L2(Ω),
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for any ε > 0.By Hölder’s inequality, and the embedding Hs(Ω) ⊂ Lp(Ω) for
s = 3

2 − 3
p and p ≥ 2,

−
∫

Ω
(f(u(t))− f(v(t)))h̃ · z ≤ C(R, Ω, c, δ) ‖ z(t) ‖

L
6

1+δ (Ω)
, t ∈ [0, T ],

So we can conclude

−
∫

QT

(f(u(t))− f(v(t)))h̃ · z ≤ C

∫ T

0
‖ z(t) ‖

L
6

1+δ (Ω)
dt.

It is easy to see that | ∫Ω zt(h̃ · ∇z + z)| ≤ (r + 1√
λ
)E(z(t)).

Hence, according to (2.5) and the definition of the energy functional (2.2)
yield
∫ T

0
E(z(t))dt ≤ C1(r)

(
‖ zt ‖2

L2(
∑

T ) + ‖ ∇z ‖2
L2(

∑
T ) + ‖ z ‖2

L2(
∑

T )

)

+
(
r + 1√

λ

)
[E(z(T )) + E(z(0))] +

(
r + 1√

λ

)
ε
∫ T
0 E(z(t))dt

+ C2(r,R, ε)
∫ T
0 ‖ z(t) ‖2

L
6

1+δ (Ω)
dt +

∫ T
0 ‖ ∇z ‖2

L2(Ω) dt. (2.7)

Multiplying the differential equation for z by zt and integrating by parts
result in the following energy identity

E(z(t)) +
∫ t

s
〈g(ut(τ))− g(vt(τ)), zt(τ)〉 dτ + ε

∫ t

s
(zt(τ), zt(τ))dτ

+
∫ t

s
〈f(u(τ))− f(v(τ)), zt(τ)〉 dτ = E(z(s)) for 0 ≤ s ≤ t. (2.8)

Since the second term and the third on the left side are non-negative, we can
also write

E(z(t)) ≤ E(z(s))−
∫ t

s
〈f(u(τ))− f(v(τ)), zt(τ)〉 dτ for 0 ≤ s ≤ t. (2.9)

Therefore using (2.6), the embedding H1(Ω) ⊂ L6(Ω) ⊂ L
6

1+δ (Ω) and Grown-
wall’s lemma we obtain from (2.9) that

E(z(t)) ≤ E(z(s)) · eaR(t−s) for all 0 ≤ s ≤ t, (2.10)

where the constant aR > 0 depends on Ω, c and δ.By (g) ,without loss of
generality, we can suppose that 0 ≤ g′(s) ≤ m2 for all s ∈ R. Therefore we
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derive from (2.9),(2.8) and (g) we have the following result

E(z(s)) ≤ E(z(t)) + m2

∫ t

s

∫

Γ
|zt(τ)|2dτ

+
∫ t

s
(2ε ‖ zt(τ) ‖2

L2(Ω) +C(ε, R) ‖ z(τ) ‖2

L
6

1+δ (Ω)
)dτ,(2.11)

for any ε > 0 and for all 0 ≤ s ≤ t. In a same way from (2.8) we have
∫ t

s
〈 g(ut(τ))− g(vt(τ)), zt(τ)〉 dτ ≤ E(z(s))−E(z(t))

+
∫ t

s
(2ε ‖ zt(τ) ‖2

L2(Ω) +C(ε,R) ‖ z(τ) ‖2

L
6

1+δ (Ω)
)dτ, (2.12)

for any ε > 0 and for all 0 ≤ s ≤ t.
The estimate of the tangential derivative ∇τz on

∑
T is given in Lemma 7.2

in Lasiecka and Iriggiani (1992) below [6].For 0 < α < T/2 and η ∈ (0, 1/2)
there exists a constant C = C(α, η, T,Ω) such that
∫ T−α

α

∫

Γ
|∇τz(t)|2dt ≤ C

(
‖ ∂νz ‖2

L2(
∑

T ) + ‖ zt ‖2
L2(

∑
T ) + ‖ z ‖2

H
1

2+η (QT )

+ ‖ f(u)− f(v) ‖2

H
− 1

2+η (QT )

)
.

By (2.6) the last term on the right-hand side can be estimated in the following

‖ f(u)− f(v) ‖2

H
− 1

2+η (QT )

≤ C ‖ f(u)− f(v) ‖2
L2(QT )≤ C(R)

∫ T

0
‖ z(t) ‖2

L
6

1+δ (Ω)
dt (2.13)

We derive from (2.11)

E(z(α)) + E(z(T − α)) ≤ 2E(z(T )) + 2m2 ‖ zt ‖2
L2(

∑
T ) +4ε ‖ zt ‖2

L2(QT )

+C(ε,R)
∫ T

0
‖ z(τ) ‖2

L
6

1+δ (Ω)
dτ (2.14)

and

E(z(α)) + E(z(T − α)) ≤ 2αE(z(T )) + 2αm2 ‖ zt ‖2
L2(

∑
T )

+ 4αε ‖ zt ‖2
L2(QT ) +αC(ε, R)

∫ T

0
‖ z(τ) ‖2

L
6

1+δ (Ω)
dτ (2.15)

for any α ∈ (0, T/2).Therefore using estimate (2.7) for the interval (α, T −
α) and also relation (2.13) we obtain (after redefining ε) and setting c0 =
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2
(
α + r + 1

λ

)
,

∫ T

0
E(z(t))dt ≤ C1{‖ zt ‖2

L2(
∑

T ) + ‖ ∂νz ‖2
L2(

∑
T ) + ‖ z ‖2

L2(
∑

T )}

+ C2(ε, R)
{∫ T

0
‖ z(t) ‖2

L
6

(1+δ) (Ω)
dt+ ‖ z(t) ‖2

H
2

(2+η) (QT )

}

+ ε

∫ T

0
(‖ zt(t) ‖2

L2(Ω) + ‖ ∇z(t) ‖2
L2(Ω))dt + c0E(z(T )). (2.16)

Integrating now inequality (2.9) with t = T with respect to s over the interval
[0, T ] and using (2.6) yields

TE(z(T )) ≤
∫ T

0
E(z(s))ds + ε ‖ zt ‖2

L2(QT ) +C(R, T, ε)
∫ T

0
‖ z(t) ‖2

L
6

1+δ (Ω)
dt.

Hence,choosing ε small enough, from (2.16) we obtain that

TE(z(T )) +
1
2

∫ T

0
E(z(t))dt

≤ C1

(
‖ zt ‖2

L2(
∑

T ) + ‖ ∂νz ‖2
L2(

∑
T ) + ‖ z ‖2

L2(
∑

T )

)

+2c0E(z(T )) + C2

{∫ T

0
‖ z(t) ‖2

L
6

1+δ (Ω)
dt+ ‖ z ‖2

H
1

2+η (QT )

}
.

Therefore for any T > T0 ≡ 4
(
r + 1√

λ

)
we can choose appropriate α and

obtain an estimate of the form

TE(z(T )) +
∫ T

0
E(z(t))dt

≤ C1(T )
(
‖ zt ‖2

L2(
∑

T ) + ‖ ∂νz ‖2
L2(

∑
T ) + ‖ z ‖2

L2(
∑

T )

)

+C2(R, T )
{∫ T

0
‖ z(t) ‖2

L
6

1+δ (Ω)
dt+ ‖ z ‖2

H
1

2+η (QT )

}
. (2.17)

For the boundary terms we can get the result from the proof of [1].Since

∂νz + z = −g(ut) + g(vt) = −zt

∫ 1

0
g′(sut + (1− s)vt)ds,

using the inequality 0 ≤ g′ ≤ m2 we have

‖ zt ‖2
L2(

∑
T ) + ‖ ∂νz ‖2

L2(
∑

T )≤ (1 + 2m2
2) ‖ zt ‖2

L2(
∑

T ) +2 ‖ z ‖2
L2(

∑
T ) .
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By Assumption (g) we can get

‖ zt ‖2
L2(

∑
T ) + ‖ ∂νz ‖2

L2(
∑

T )

≤ C0

∫ T

0
〈g(zt), zt〉 dt + C1

∫
∑∗

T

|zt|2dsdt + 2 ‖ z ‖2
L2(

∑
T ),

where
∑∗

T = {(x, t) ∈ ∑
T : |zt(x, t)| ≤ 1}.Since s2 ≤ h(g(s)) for |s| ≤ 1,using

Jensen’s inequality we obtain that

‖ zt ‖2
L2(

∑
T ) + ‖ ∂νz ‖2

L2(
∑

T )≤ C

∫ T

0
(I + h)(〈g(zt), zt〉)dt + 2 ‖ z ‖2

L2(
∑

T )

≤ C · (I + H0)
(∫ T

0
〈g(zt), zt〉 dt

)
+ 2 ‖ z ‖2

L2(
∑

T ) . (2.18)

Therefore (2.18) and (2.17) yield

E(z(T )) +
∫ T

0
E(z(t))dt

≤ C1(I + H0)
(∫ T

0
〈g(ut(t))− g(vt(t)), zt〉 dt

)
+ C2A(z), (2.19)

where C1 = C1(T ), C2 = C2(R, T ) and A(z) is an abbreviation for a collection
of lower-order terms, that is,

A(z) =
∫ T

0
‖ z(t) ‖2

L
6

1+δ (Ω)
dt+ ‖ z ‖2

H
1

2+η (QT )
+ ‖ z ‖2

L2(
∑

T ) .

From (2.12) and (2.19) we also have

E(z(T )) +
∫ T

0
E(z(t))dt ≤ C1(I + H0)(E(z(0))− E(z(T ))) + C2A(z),(2.20)

In the following we will estimate A(z).By the trace theorem we obtain that
‖ z(t) ‖2

L2(
∑

T )≤ C ‖ z(t) ‖2

H
1

2+η (Ω)
. The interpolation together with the

embedding H1− δ
2 (Ω) ⊂ L

6
1+δ (Ω) give us that

‖ z ‖2

H
1
2+η(QT )

≤ 2ε ‖ z ‖2
H1(QT ) +C(ε) ‖ z ‖2

L2(QT )

≤ cε

∫ T

0
E(z(t))dt + C(ε) ‖ z ‖2

L2(QT ),

∫ T

0
‖ z(t) ‖2

L
6

1+δ (Ω)
dt ≤ C

∫ T

0
‖ z(t) ‖2

H1− δ
2 (Ω)

dt

≤ ε

∫ T

0
E(z(t))dt + C(ε) ‖ z ‖2

L2(QT ) .
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Thus we can draw the following estimate

A(z) ≤ ε

∫ T

0
E(z(t))dt + C(ε) ‖ z ‖2

L2(QT ), (2.21)

with arbitrary ε > 0 .Hence,(2.19) and (2.20) yield the desired relation.
In the case g′(0) > 0 we have h(s) = c0s and therefore (2.3) holds with

H(s) = s. Similarly, (2.20) and (2.21) imply (2.4). ¤

Proof of Lemma 2. Under the hypotheses and g′(0) > 0 it implies from
(2.4) that

E(z(nT )) ≤ C1

1 + C1
E(z((n− 1)T )) +

C2

1 + C1

∫ nT

(n−1)T
‖ z ‖2

L2(Ω) dt, (2.22)

(n = 1, 2, · · · ) for fixed T > T0. We can prove by induction that

E(z(nT )) ≤ γnE(z(0)) +
C2

1 + C1

n∑

k=1

γn−k

∫ kT

(k−1)T
‖ z ‖2

L2(Ω) dt (2.23)

for all positive integers n, where γ = C1/(1 + C1).It follows from (2.10) that

E(z(t)) ≤ E(z(nT )) · eaRT for all nT ≤ (n− 1)T, n = 0, 1, 2, · · · . (2.24)

Set β = 1
T ln 1

γ . It is clear that γn−k ≤ 1
γ2 exp−β(t− τ) for t ≤ (n + 1)T and

τ ≥ (k − 1)T . Therefore (2.2) follows from (2.23) and (2.24).
In order to prove the theorem, we need the following theorem 2 [1]:

Theorem 2. Let X be a separable Hilbert space and A be a bounded closed
set in X. Assume that there exists a mapping V : A 7→ X such that

(1) A ⊂ V A.
(2)V is Lipschitz on A , i.e, there exists L > 0 such that

‖ V a1 − V a2 ‖≤ L ‖ a1 − a2 ‖ for all a1, a2 ∈ A.

(3)There exist compact seminorms n1(x) and n2(x) on X such that

‖ V a1 − V a2 ‖≤ η ‖ a1 − a2 ‖ +K · [n1(a1 − a2) + n2(V a1 − V a2)],
for all a1, a2 ∈ A, where 0 < η < 1 and K > 0 are constants.

Then A is a compact set in X of a finite fractal dimension with the estimate
for the following dimension

dimfA ≤ d · ln
(

1 +
4(1 + L)

α

)
·
[
ln

1

η + δ + αK̃

]−1

.
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In a special case when the seminorms ni have the form ni(v) =‖ Piv ‖, where
P1 and P2 are finite-dimensional orthoprojections , we have that

dimfA ≤ (dimP1 + dimP2 · ln
(

1 +
8(1 + L)

√
2K

1− η

)
·
[
ln

2
1 + η

]−1

.

Proof of Theorem 1. Set the space X = F × H1(QT ) equipped with the
norm

‖ U ‖X=‖ ∇u0 ‖2
L2(Ω) + ‖ u0 ‖2

L2(Γ) + ‖ u1 ‖2
L2(Ω) +

∫ T

0
E(v(t))dt,

where U = (u0, u1, v),T > 0 is a constant to be determined later. On the
space X we define a seminorm

nT (U) = max
0≤t≤T

‖ v(t) ‖L2(Ω),

then nT (U) is a compact seminorm on X by the compactness of the imbedding
[9].Consider in the space X the set

AT = {U ≡ (u0, u1, u(t)for t ∈ [0, T ]) : (u0, u1) ⊂ A},
where u(t) is the solution to (1.1) with initial data u(0) = u0, ut(0) = u1 and
A is an attractor. We define the operator VT : A 7→ X by the formula

VT : (u0, u1, u(t)) 7→ (u(T ), ut(T ), u(T + t)) = (s(T )(u0, u1), u(T + t)).

We shall show that all conditions of Theorem 2 are satisfied. For (1),this
follows from the invariance property of the attractor A which is equivalent to
VTAT = AT . As for (2),VT is Lipschitz continuous on AT . In order to show
this statement we will work with two solutions u(t) and v(t) to the problem
(1.1).We set U1 = (u0, u1, u(t)), U2 = (v0, v1, v(t)) and z(t) = u(t) − v(t) and
observe that

1
2
‖ U1 − U2 ‖2

X= E(z(0)) +
∫ T

0
E(z(t))dt, and

1
2
‖ VT U1 − VT U2 ‖2

X= E(z(T )) +
∫ 2T

T
E(z(t))dt,

(2.25)

From (2.10),we can get
∫ 2T

T
E(z(s))ds ≤ eaRT

∫ T

0
E(z(s))ds.

We have the Lipschitz property of VT with L = eaRT/2 when we combine the
above ineqality and formula (2.10).
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Integrating the inequality in the Remark over the interval [T, 2T ] obtain
∫ 2T

T
E(z(t))dt ≤ C1e

−βT E(z(0)) + C2T max
0≤τ≤2T

‖ z(τ) ‖2
L2(Ω), (2.26)

where C1 and C2 do not depend on T . Combining the last inequality and the
inequality in Remark, we can get

E(z(T ) +
∫ 2T

T
E(z(t))dt ≤ C1e

−βT E(z(0)) + C2 max
0≤τ≤2T

‖ z(τ) ‖2
L2(Ω) .(2.27)

Since

max
0≤τ≤2T

‖ z(τ) ‖2
L2(Ω)≤ max

0≤τ≤T
‖ z(τ) ‖2

L2(Ω) + max
0≤τ≤T

‖ z(τ + T ) ‖2
L2(Ω),

accounting for the definitions of Vt and the norms in X, relation (2.27) can be
written in the following form

‖ VT U1 − VT U2 ‖2
X≤ ηT ‖ U1 − U2 ‖2

X +K · [ηT (U1 − U2) + ηT (VT U1 − VT U2)]

for all U1, U2 ∈ AT , where ηT = C1e
−βT . We can select T large enough such

that ηT < 1.
Hence, all the assumption of Theorem 2 are satisfied. It implies that AT is

a compact set in X of finite fractal dimension. Let P : X → F be the operator
defined by the fromula

P : (u0, U1, v(t)) → (u0, u1).

Since A = PAT and P is obviously Lipschitz continuous, we have that

dimF
fracA = dimX

fracAT < ∞
where dimY

frac stands for fractal dimension of a set in the space Y .
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