Nonlinear Functional Analysis and Applications Vol. 14, No. 2 (2009), pp. 195-206

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2009 Kyungnam University Press

FINITE DIMENSIONALITY OF THE ATTRACTOR FOR A SEMILINEAR WAVE EQUATION WITH NONLINEAR BOUNDARY DISSIPATION

Wei Xu

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, PR China e-mail: sdssxwfd@163.com

Abstract. This paper deals with the long-time behavior of a semilinear wave equation with nonlinear boundary dissipation. By estimating energy function, we prove that the fractal dimension of the global attractor for the dynamical system is finite.

1. INTRODUCTION

Let $\Omega \subset \mathbb{R}^3$ be a bounded connected open set with a smooth boundary Γ . The exterior normal on Γ is denoted by ν . We consider the following equation

$$u_{tt} - \Delta u + \varepsilon u_t + f(u) = 0 \quad in \ Q = [0, \infty) \times \Omega \tag{1.1}$$

subject to the boundary condition

$$\partial_{\nu} u + u = -g(u_t) \quad in \ \Sigma = [0, \infty) \times \Gamma$$
 (1.2)

and the initial condition:

$$u(0) = u_0$$
 and $u_t(0) = u_1$.

Here f and g are nonlinear functions subject to the following assumption, $0 \le \varepsilon \ll 1$ is a small parameter.

Assumption 1. (H1) $f \in C^2(R)$ such that $|f''(s)| \leq c(1+|s|^{1-\delta})$ for all $s \in R$ and for some c > 0 and $\delta > 0$.

 $^{^0\}mathrm{Received}$ December 4, 2007. Revised January 15, 2009.

 $^{^02000}$ Mathematics Subject Classification: 35A15, 35Q20, 35Q55.

⁰Keywords: wave equation; boundary dissipation; attractors; energy function.

⁰Project supported by the Science and Technology plan project Foundation of University of Shandong Province(J09LA04), and the Foundation of Qufu Normal University(JG-2209030).

(H2) $\lim_{|s|\to\infty} s^{-1}f(s) > -\lambda$, where λ is the best constant in the Poincare type inequality: $\int_{\Omega} |\nabla u|^2 dx + \int_{\Gamma} |u|^2 dS \ge \lambda \int_{\Omega} |u|^2 dx$.

(g) $g \in C^1(R)$ is an increasing function, g(0) = 0 and there exist two positive constants m_1 and m_2 such that $m_1 \leq g'(s) \leq m_2$ for all $|s| \geq 1$.

This problem of long time behavior of solutions to (1.1)-(1.2) was the subject of a recent paper [2]. In [2] it was shown, in particular, that all finite energy solutions are attracted by a global compact attractor, whose structure is determined by the unstable manifolds emanating from stationary solutions.

Fereisel[4] dealt either with one-dimensional wave equations or with equations subjected to severe restrictions (linear bound) imposed on the semilinear terms [8]. Most recently, there has been a renewed interest in this problem and positive results for semilinear wave equations in dimension higher than one with interior dissipation have been established by Prazak [7].

Igor Chueshov [1] has shown under the Assumption 1.1 the fractal dimension the global attractor of the (1.1) is finite when $\varepsilon = 0$. His methods can be extended to $0 < \varepsilon \leq 1$. In this paper we will use the methods to study the (1.1). Our main results read as follows:

Theorem 1. Under the Assumption 1.1 with g'(0) > 0, the fractal dimension, the global attractor of the dynamical system (1.1) is finite when $0 < \varepsilon < \varepsilon_0$ where ε_0 is a constant.

In order to describe the decay rates to equilibrium, we introduce a concave, strictly increasing, continuous function $h : \mathbb{R}^+ \to \mathbb{R}^+$ which captures the behavior of g(s) at the origin possessing the properties

$$h(0) = 0$$
 and $s^2 + g^2(s) \le h(sg(s))$ for $|s| \le 1$.

Given function h we define

$$H_0(s) = h\left(\frac{s}{c_3}\right), \ G_0(s) = c_1(I + H_0)^{-1}(c_2s), \ Q(s) = s - (I + G_0)^{-1}(s)$$

where c_1 and c_2 are positive constants depending on m_1 , m_2 and c_3 is proportional to the measure of $\Gamma \times (0, T)$.

2. Proof of Theorem 1

We recall that the fractal dimension $\dim_f M$ of a compact set M can be defined by the formula [3]

$$\dim_f M = \limsup_{\varepsilon \to 0} \frac{\ln N(M, \varepsilon)}{\ln(1/\varepsilon)},$$

where $N(M, \varepsilon)$ is the minimal number of closed sets of diameter 2ε which cover M.

Throughout the paper we shall use the energy functional

$$E(w(t)) = \frac{1}{2} \int_{\Omega} |\nabla w(t)|^2 + \frac{1}{2} \int_{\Omega} |w_t(t)|^2 + \frac{1}{2} \int_{\Gamma} |w(t)|^2 \qquad (2.1)$$

$$\equiv \frac{1}{2} \| (w(t), w_t(t)) \|_{\mathcal{F}}^2,$$

which corresponds to a linear version $(f \equiv 0 \text{ and } g \equiv 0, \varepsilon \equiv 0)$ of problem (1.1) and (1.2), $\mathcal{F} \equiv H^1(\Omega) \times L^2(\Omega)$ which is often referred to as the finite energy space.

The key inequality in our considerations is the following inequality.

Lemma 1. Let u(t) and v(t) be two solutions to (1.1) possessing the properties

$$\| (u(t), u_t(t)) \|_{\mathcal{F}}^2 \le R \text{ and } \| (v(t), v_t(t)) \|_{\mathcal{F}}^2 \le R \text{ for all } t \ge 0,$$

with some constant R > 0. Denote $z(t) \equiv u(t) - v(t)$. Then ,under the Assumption 1 and g'(0) > 0, there exist positive constants C_1, C_2 and β such that

$$E(z(t)) \le C_1 e^{-\beta t} E(z(0)) + C_2 \int_0^t e^{-\beta(t-s)} \| z(s) \|_{L^2(\Omega)}^2 ds \qquad (2.2)$$

for all $t \ge 0$.

Remark. Since the global attractor (we write \mathcal{A}) is an invariant set we know that the solutions $(u(t), u_t(t))$ and $(v(t), v_t(t))$ corresponding to the initial data $(u_0, u_1), (v_0, v_1) \in \mathcal{A}$ will stay in \mathcal{A} . Moreover, (2.2) implies that

$$E(z(t)) \le C_1 e^{-\beta t} E(z(0)) + \frac{C_2}{\beta} \max_{s \in [0,t]} \| z(s) \|_{L^2(\Omega)}^2 ds \text{ for all } t \ge 0.$$

This inequality will be crucial in the proof of the theorem.

To prove Lemma 1 we need the following observability inequality which is valid without the restriction g'(0) > 0.

Lemma 2. Let $T > T_0 \equiv 4(r + \frac{1}{\sqrt{\lambda}})$, where r is the radius of a minimal ball in \mathbb{R}^n containing Ω and λ is the constant from (H2). Assume that two solutions u(t) and v(t) to problem (1.1) possess the property

 $\| (u(t), u_t(t)) \|_{\mathcal{F}} \leq R$ and $\| (v(t), v_t(t)) \|_{\mathcal{F}} \leq R$ for all $t \in [0, T]$

with some constant R > 0. Then, under the Assumption 1 there exist positive constants $C_1(T)$ and $C_2(R,T)$ such that for $z(t) \equiv u(t) - v(t)$ we have the

relations

$$E(z(T)) + \int_0^T E(z(t))dt \le C_2 \int_0^T ||z||_{L^2(\Omega)}^2 dt + C_1(I + H_0) \left(\int_0^T \langle g(u_t(t)) - g(v_t(t)), z_t(t) \rangle dt \right),$$
(2.3)

where $H_0(s) = Th(s/T)$ and h(s) is defined in the beginning. If g'(0) > 0, then (2.3)hold with $H_0(s) \equiv s$ and

$$E(z(T)) \le C_1(E(z(0)) - E(z(T))) + C_2 \int_0^T ||z||_{L^2(\Omega)}^2 dt.$$
(2.4)

Proof. We will denote different constant by C_i pointing out their dependence on the parameters when it becomes important.

Our starting point is the following identity:

$$\frac{1}{2} \int_{Q_T} (|z_t|^2 + |\nabla z|^2) = -\int_{Q_T} (f(u) - f(v))(\widetilde{h} \cdot \nabla z + z)
- \int_{\Omega} z_t (\widetilde{h} \cdot \nabla z + z)|_0^T - \int_{Q_T} \varepsilon z_t (\widetilde{h} \cdot \nabla z + z) + \int_{\sum_T} \left[\partial_\nu z (\widetilde{h} \cdot \nabla z + z) \right]
+ \frac{1}{2} ((\widetilde{h} \cdot \nu)(|z_t|^2 - |\nabla z|^2)],$$
(2.5)

where $\tilde{h} = x - x_0$ for some $x_0 \in R^3$ and $Q_T = (0, T) \times \Omega$ and $\sum_T = (0, T) \times \Gamma$. Here T is a positive constant which will be determined later in the proof. We choose $x_0 \in R^3$ such that $\sup_{x \in \Omega} |\tilde{h}(x)| = r$, where r is the radius of a

minimal ball in \mathbb{R}^3 containing Ω .

In the following we will transform (2.5) to an energy inequality.

At first we estimate the second term in (2.5). By

$$f(u) - f(v) = (u - v) \int_0^1 f'(su + (1 - s)v) ds = z \int_0^1 f'(su + (1 - s)v) ds,$$

the Hölder's inequality, and the embedding $H^s(\Omega) \subset L^p(\Omega)$ for $s = \frac{3}{2} - \frac{3}{p}$ and $p \geq 2$, we can get that

$$\| f(u(t)) - f(v(t)) \|_{L^{2}(\Omega)} \le C(R, \Omega, c, \delta) \cdot \| z(t) \|_{L^{\frac{6}{1+\delta}}(\Omega)}, \ t \in [0, T],$$
(2.6)

for some $\delta > 0$ and

$$-\int_{\Omega} (f(u(t)) - f(v(t)))\widetilde{h} \cdot \nabla z(t)$$

$$\leq C(\varepsilon)r^{2} \parallel f(u(t)) - f(v(t)) \parallel^{2}_{L^{2}(\Omega)} + \varepsilon \parallel \nabla z(t) \parallel_{L^{2}(\Omega)}$$

for any $\varepsilon > 0.$ By Hölder's inequality, and the embedding $H^s(\Omega) \subset L^p(\Omega)$ for $s = \frac{3}{2} - \frac{3}{p}$ and $p \ge 2$,

$$-\int_{\Omega}(f(u(t))-f(v(t)))\widetilde{h}\cdot z \leq C(R,\Omega,c,\delta)\parallel z(t)\parallel_{L^{\frac{6}{1+\delta}}(\Omega)},\ t\in[0,T],$$

So we can conclude

$$-\int_{Q_T} (f(u(t)) - f(v(t)))\widetilde{h} \cdot z \le C \int_0^T \| z(t) \|_{L^{\frac{6}{1+\delta}}(\Omega)} dt$$

It is easy to see that $|\int_{\Omega} z_t(\tilde{h} \cdot \nabla z + z)| \leq (r + \frac{1}{\sqrt{\lambda}})E(z(t)).$ Hence, according to (2.5) and the definition of the energy functional (2.2) yield

$$\int_{0}^{T} E(z(t))dt \leq C_{1}(r) \left(\| z_{t} \|_{L^{2}(\Sigma_{T})}^{2} + \| \nabla z \|_{L^{2}(\Sigma_{T})}^{2} + \| z \|_{L^{2}(\Sigma_{T})}^{2} \right) \\
+ \left(r + \frac{1}{\sqrt{\lambda}} \right) \left[E(z(T)) + E(z(0)) \right] + \left(r + \frac{1}{\sqrt{\lambda}} \right) \varepsilon \int_{0}^{T} E(z(t)) dt \\
+ C_{2}(r, R, \varepsilon) \int_{0}^{T} \| z(t) \|_{L^{\frac{6}{1+\delta}}(\Omega)}^{2} dt + \int_{0}^{T} \| \nabla z \|_{L^{2}(\Omega)}^{2} dt. \quad (2.7)$$

Multiplying the differential equation for z by z_t and integrating by parts result in the following energy identity

$$E(z(t)) + \int_{s}^{t} \langle g(u_{t}(\tau)) - g(v_{t}(\tau)), z_{t}(\tau) \rangle d\tau + \varepsilon \int_{s}^{t} (z_{t}(\tau), z_{t}(\tau)) d\tau + \int_{s}^{t} \langle f(u(\tau)) - f(v(\tau)), z_{t}(\tau) \rangle d\tau = E(z(s)) \quad \text{for } 0 \le s \le t.$$
(2.8)

Since the second term and the third on the left side are non-negative, we can also write

$$E(z(t)) \le E(z(s)) - \int_s^t \langle f(u(\tau)) - f(v(\tau)), z_t(\tau) \rangle \, d\tau \quad for \ 0 \le s \le t.$$
 (2.9)

Therefore using (2.6), the embedding $H^1(\Omega) \subset L^6(\Omega) \subset L^{\frac{6}{1+\delta}}(\Omega)$ and Grownwall's lemma we obtain from (2.9) that

$$E(z(t)) \le E(z(s)) \cdot e^{a_R(t-s)} \quad \text{for all} \quad 0 \le s \le t,$$
(2.10)

where the constant $a_R > 0$ depends on Ω , c and δ .By (g), without loss of generality, we can suppose that $0 \leq g'(s) \leq m_2$ for all $s \in R$. Therefore we

derive from (2.9), (2.8) and (g) we have the following result

$$E(z(s)) \leq E(z(t)) + m_2 \int_s^t \int_{\Gamma} |z_t(\tau)|^2 d\tau + \int_s^t (2\varepsilon \| z_t(\tau) \|_{L^2(\Omega)}^2 + C(\varepsilon, R) \| z(\tau) \|_{L^{\frac{6}{1+\delta}}(\Omega)}^2) d\tau, (2.11)$$

for any $\varepsilon > 0$ and for all $0 \le s \le t$. In a same way from (2.8) we have

$$\int_{s}^{t} \langle g(u_{t}(\tau)) - g(v_{t}(\tau)), z_{t}(\tau) \rangle d\tau \leq E(z(s)) - E(z(t))$$

+
$$\int_{s}^{t} (2\varepsilon \parallel z_{t}(\tau) \parallel_{L^{2}(\Omega)}^{2} + C(\varepsilon, R) \parallel z(\tau) \parallel_{L^{\frac{6}{1+\delta}(\Omega)}}^{2}) d\tau, \quad (2.12)$$

for any $\varepsilon > 0$ and for all $0 \le s \le t$.

The estimate of the tangential derivative $\nabla_{\tau} z$ on \sum_{T} is given in Lemma 7.2 in Lasiecka and Iriggiani (1992) below [6].For $0 < \alpha < T/2$ and $\eta \in (0, 1/2)$ there exists a constant $C = C(\alpha, \eta, T, \Omega)$ such that

$$\int_{\alpha}^{T-\alpha} \int_{\Gamma} |\nabla_{\tau} z(t)|^2 dt \le C \left(\| \partial_{\nu} z \|_{L^2(\Sigma_T)}^2 + \| z_t \|_{L^2(\Sigma_T)}^2 + \| z \|_{H^{\frac{1}{2+\eta}}(Q_T)}^2 + \| f(u) - f(v) \|_{H^{-\frac{1}{2+\eta}}(Q_T)}^2 \right).$$

By (2.6) the last term on the right-hand side can be estimated in the following

$$\| f(u) - f(v) \|_{H^{-\frac{1}{2+\eta}}(Q_T)}^2 \leq C(R) \int_0^T \| z(t) \|_{L^{\frac{6}{1+\delta}}(\Omega)}^2 dt \quad (2.13)$$

We derive from (2.11)

$$E(z(\alpha)) + E(z(T - \alpha)) \leq 2E(z(T)) + 2m_2 || z_t ||_{L^2(\sum_T)}^2 + 4\varepsilon || z_t ||_{L^2(Q_T)}^2 + C(\varepsilon, R) \int_0^T || z(\tau) ||_{L^{\frac{6}{1+\delta}(\Omega)}}^2 d\tau$$
(2.14)

and

$$E(z(\alpha)) + E(z(T-\alpha)) \le 2\alpha E(z(T)) + 2\alpha m_2 || z_t ||_{L^2(\sum_T)}^2 + 4\alpha \varepsilon || z_t ||_{L^2(Q_T)}^2 + \alpha C(\varepsilon, R) \int_0^T || z(\tau) ||_{L^{\frac{6}{1+\delta}(\Omega)}}^2 d\tau (2.15)$$

for any $\alpha \in (0, T/2)$. Therefore using estimate (2.7) for the interval $(\alpha, T - \alpha)$ and also relation (2.13) we obtain (after redefining ε) and setting $c_0 =$

$$2 \left(\alpha + r + \frac{1}{\lambda} \right),$$

$$\int_{0}^{T} E(z(t)) dt \leq C_{1} \{ \| z_{t} \|_{L^{2}(\Sigma_{T})}^{2} + \| \partial_{\nu} z \|_{L^{2}(\Sigma_{T})}^{2} + \| z \|_{L^{2}(\Sigma_{T})}^{2} \}$$

$$+ C_{2}(\varepsilon, R) \left\{ \int_{0}^{T} \| z(t) \|_{L^{\frac{6}{(1+\delta)}}(\Omega)}^{2} dt + \| z(t) \|_{H^{\frac{2}{(2+\eta)}}(Q_{T})}^{2} \right\}$$

$$+ \varepsilon \int_{0}^{T} (\| z_{t}(t) \|_{L^{2}(\Omega)}^{2} + \| \nabla z(t) \|_{L^{2}(\Omega)}^{2}) dt + c_{0} E(z(T)). \quad (2.16)$$

Integrating now inequality (2.9) with t = T with respect to s over the interval [0, T] and using (2.6) yields

$$TE(z(T)) \le \int_0^T E(z(s))ds + \varepsilon \parallel z_t \parallel_{L^2(Q_T)}^2 + C(R, T, \varepsilon) \int_0^T \parallel z(t) \parallel_{L^{\frac{6}{1+\delta}}(\Omega)}^2 dt.$$

Hence, choosing ε small enough, from (2.16) we obtain that

$$TE(z(T)) + \frac{1}{2} \int_0^T E(z(t))dt$$

$$\leq C_1 \left(\| z_t \|_{L^2(\Sigma_T)}^2 + \| \partial_{\nu} z \|_{L^2(\Sigma_T)}^2 + \| z \|_{L^2(\Sigma_T)}^2 \right)$$

$$+ 2c_0 E(z(T)) + C_2 \left\{ \int_0^T \| z(t) \|_{L^{\frac{6}{1+\delta}}(\Omega)}^2 dt + \| z \|_{H^{\frac{1}{2+\eta}}(Q_T)}^2 \right\}$$

Therefore for any $T > T_0 \equiv 4\left(r + \frac{1}{\sqrt{\lambda}}\right)$ we can choose appropriate α and obtain an estimate of the form

$$TE(z(T)) + \int_{0}^{T} E(z(t))dt$$

$$\leq C_{1}(T) \left(\| z_{t} \|_{L^{2}(\sum_{T})}^{2} + \| \partial_{\nu} z \|_{L^{2}(\sum_{T})}^{2} + \| z \|_{L^{2}(\sum_{T})}^{2} \right)$$

$$+ C_{2}(R,T) \left\{ \int_{0}^{T} \| z(t) \|_{L^{\frac{6}{1+\delta}}(\Omega)}^{2} dt + \| z \|_{H^{\frac{1}{2+\eta}}(Q_{T})}^{2} \right\}.$$
(2.17)

For the boundary terms we can get the result from the proof of [1].Since

$$\partial_{\nu} z + z = -g(u_t) + g(v_t) = -z_t \int_0^1 g'(su_t + (1-s)v_t) ds,$$

using the inequality $0 \le g' \le m_2$ we have

$$\| z_t \|_{L^2(\Sigma_T)}^2 + \| \partial_{\nu} z \|_{L^2(\Sigma_T)}^2 \le (1 + 2m_2^2) \| z_t \|_{L^2(\Sigma_T)}^2 + 2 \| z \|_{L^2(\Sigma_T)}^2$$

By Assumption (g) we can get

$$\| z_t \|_{L^2(\sum_T)}^2 + \| \partial_{\nu} z \|_{L^2(\sum_T)}^2$$

$$\leq C_0 \int_0^T \langle g(z_t), z_t \rangle \, dt + C_1 \int_{\sum_T^*} |z_t|^2 ds dt + 2 \| z \|_{L^2(\sum_T)}^2,$$

where $\sum_T^* = \{(x,t) \in \sum_T : |z_t(x,t)| \le 1\}$. Since $s^2 \le h(g(s))$ for $|s| \le 1$, using Jensen's inequality we obtain that

$$\| z_t \|_{L^2(\Sigma_T)}^2 + \| \partial_{\nu} z \|_{L^2(\Sigma_T)}^2 \leq C \int_0^T (I+h)(\langle g(z_t), z_t \rangle) dt + 2 \| z \|_{L^2(\Sigma_T)}^2$$

$$\leq C \cdot (I+H_0) \left(\int_0^T \langle g(z_t), z_t \rangle dt \right) + 2 \| z \|_{L^2(\Sigma_T)}^2.$$
 (2.18)

Therefore (2.18) and (2.17) yield

$$E(z(T)) + \int_0^T E(z(t))dt$$

$$\leq C_1(I + H_0) \left(\int_0^T \langle g(u_t(t)) - g(v_t(t)), z_t \rangle dt \right) + C_2 A(z), \quad (2.19)$$

where $C_1 = C_1(T), C_2 = C_2(R, T)$ and A(z) is an abbreviation for a collection of lower-order terms, that is,

$$A(z) = \int_0^T \| z(t) \|_{L^{\frac{6}{1+\delta}}(\Omega)}^2 dt + \| z \|_{H^{\frac{1}{2+\eta}}(Q_T)}^2 + \| z \|_{L^2(\sum_T)}^2$$

From (2.12) and (2.19) we also have

$$E(z(T)) + \int_0^T E(z(t))dt \le C_1(I + H_0)(E(z(0)) - E(z(T))) + C_2A(z), (2.20)$$

In the following we will estimate A(z). By the trace theorem we obtain that $\| z(t) \|_{L^2(\sum_T)}^2 \leq C \| z(t) \|_{H^{\frac{1}{2+\eta}}(\Omega)}^2$. The interpolation together with the embedding $H^{1-\frac{\delta}{2}}(\Omega) \subset L^{\frac{6}{1+\delta}}(\Omega)$ give us that

$$\| z \|_{H^{\frac{1}{2}+\eta}(Q_{T})}^{2} \leq 2\varepsilon \| z \|_{H^{1}(Q_{T})}^{2} + C(\varepsilon) \| z \|_{L^{2}(Q_{T})}^{2}$$

$$\leq c\varepsilon \int_{0}^{T} E(z(t))dt + C(\varepsilon) \| z \|_{L^{2}(Q_{T})}^{2},$$

$$\int_{0}^{T} \| z(t) \|_{L^{\frac{6}{1+\delta}(\Omega)}}^{2} dt \leq C \int_{0}^{T} \| z(t) \|_{H^{1-\frac{\delta}{2}(\Omega)}}^{2} dt$$

$$\leq \varepsilon \int_{0}^{T} E(z(t))dt + C(\varepsilon) \| z \|_{L^{2}(Q_{T})}^{2}.$$

Thus we can draw the following estimate

$$A(z) \le \varepsilon \int_0^T E(z(t))dt + C(\varepsilon) \| z \|_{L^2(Q_T)}^2,$$
(2.21)

with arbitrary $\varepsilon > 0$. Hence, (2.19) and (2.20) yield the desired relation.

In the case g'(0) > 0 we have $h(s) = c_0 s$ and therefore (2.3) holds with H(s) = s. Similarly, (2.20) and (2.21) imply (2.4).

Proof of Lemma 2. Under the hypotheses and g'(0) > 0 it implies from (2.4) that

$$E(z(nT)) \le \frac{C_1}{1+C_1} E(z((n-1)T)) + \frac{C_2}{1+C_1} \int_{(n-1)T}^{nT} \|z\|_{L^2(\Omega)}^2 dt, \quad (2.22)$$

 $(n = 1, 2, \dots)$ for fixed $T > T_0$. We can prove by induction that

$$E(z(nT)) \le \gamma^{n} E(z(0)) + \frac{C_{2}}{1+C_{1}} \sum_{k=1}^{n} \gamma^{n-k} \int_{(k-1)T}^{kT} \|z\|_{L^{2}(\Omega)}^{2} dt \qquad (2.23)$$

for all positive integers n, where $\gamma = C_1/(1 + C_1)$. It follows from (2.10) that

$$E(z(t)) \le E(z(nT)) \cdot e^{a_R T}$$
 for all $nT \le (n-1)T$, $n = 0, 1, 2, \cdots$. (2.24)

Set $\beta = \frac{1}{T} \ln \frac{1}{\gamma}$. It is clear that $\gamma^{n-k} \leq \frac{1}{\gamma^2} \exp{-\beta(t-\tau)}$ for $t \leq (n+1)T$ and $\tau \geq (k-1)T$. Therefore (2.2) follows from (2.23) and (2.24).

In order to prove the theorem, we need the following theorem 2 [1]:

Theorem 2. Let X be a separable Hilbert space and A be a bounded closed set in X. Assume that there exists a mapping $V : A \mapsto X$ such that (1) $A \subset VA$.

(2)V is Lipschitz on A, i.e., there exists L > 0 such that

 $|| Va_1 - Va_2 || \le L || a_1 - a_2 ||$ for all $a_1, a_2 \in A$.

(3) There exist compact seminorms $n_1(x)$ and $n_2(x)$ on X such that

$$|| Va_1 - Va_2 || \le \eta || a_1 - a_2 || + K \cdot [n_1(a_1 - a_2) + n_2(Va_1 - Va_2)],$$

for all $a_1, a_2 \in A$, where $0 < \eta < 1$ and $K > 0$ are constants.

Then A is a compact set in X of a finite fractal dimension with the estimate for the following dimension

$${\rm dim}_f A \leq d \cdot \ln\left(1 + \frac{4(1+L)}{\alpha}\right) \cdot \left[\ln\frac{1}{\eta + \delta + \alpha \widetilde{K}}\right]^{-1}$$

In a special case when the seminorms n_i have the form $n_i(v) = ||P_iv||$, where P_1 and P_2 are finite-dimensional orthoprojections, we have that

$$\dim_f A \le (\dim P_1 + \dim P_2 \cdot \ln \left(1 + \frac{8(1+L)\sqrt{2}K}{1-\eta} \right) \cdot \left[\ln \frac{2}{1+\eta} \right]^{-1}$$

Proof of Theorem 1. Set the space $X = \mathcal{F} \times H_1(Q_T)$ equipped with the norm

$$|| U ||_{X} = || \nabla u_{0} ||_{L^{2}(\Omega)}^{2} + || u_{0} ||_{L^{2}(\Gamma)}^{2} + || u_{1} ||_{L^{2}(\Omega)}^{2} + \int_{0}^{T} E(v(t)) dt,$$

where $U = (u_0, u_1, v), T > 0$ is a constant to be determined later. On the space X we define a seminorm

$$n_T(U) = \max_{0 \le t \le T} \parallel v(t) \parallel_{L^2(\Omega)},$$

then $n_T(U)$ is a compact seminorm on X by the compactness of the imbedding [9].Consider in the space X the set

$$\mathcal{A}_T = \{ U \equiv (u_0, u_1, u(t) \text{ for } t \in [0, T]) : (u_0, u_1) \subset \mathcal{A} \},\$$

where u(t) is the solution to (1.1) with initial data $u(0) = u_0, u_t(0) = u_1$ and \mathcal{A} is an attractor. We define the operator $V_T : \mathcal{A} \mapsto X$ by the formula

$$V_T: (u_0, u_1, u(t)) \mapsto (u(T), u_t(T), u(T+t)) = (s(T)(u_0, u_1), u(T+t)).$$

We shall show that all conditions of Theorem 2 are satisfied. For (1), this follows from the invariance property of the attractor \mathcal{A} which is equivalent to $V_T \mathcal{A}_T = \mathcal{A}_T$. As for (2), V_T is Lipschitz continuous on \mathcal{A}_T . In order to show this statement we will work with two solutions u(t) and v(t) to the problem (1.1). We set $U_1 = (u_0, u_1, u(t)), U_2 = (v_0, v_1, v(t))$ and z(t) = u(t) - v(t) and observe that

$$\frac{1}{2} \| U_1 - U_2 \|_X^2 = E(z(0)) + \int_0^T E(z(t))dt, \text{ and}$$

$$\frac{1}{2} \| V_T U_1 - V_T U_2 \|_X^2 = E(z(T)) + \int_T^{2T} E(z(t))dt,$$
(2.25)

From (2.10), we can get

$$\int_{T}^{2T} E(z(s))ds \le e^{a_R T} \int_{0}^{T} E(z(s))ds.$$

We have the Lipschitz property of V_T with $L = e^{a_R T/2}$ when we combine the above inequality and formula (2.10).

Integrating the inequality in the Remark over the interval [T, 2T] obtain

$$\int_{T}^{2T} E(z(t))dt \le C_1 e^{-\beta T} E(z(0)) + C_2 T \max_{0 \le \tau \le 2T} \| z(\tau) \|_{L^2(\Omega)}^2, \qquad (2.26)$$

where C_1 and C_2 do not depend on T. Combining the last inequality and the inequality in Remark, we can get

$$E(z(T) + \int_{T}^{2T} E(z(t))dt \le C_1 e^{-\beta T} E(z(0)) + C_2 \max_{0 \le \tau \le 2T} \| z(\tau) \|_{L^2(\Omega)}^2 .(2.27)$$

Since

$$\max_{0 \le \tau \le 2T} \| z(\tau) \|_{L^{2}(\Omega)}^{2} \le \max_{0 \le \tau \le T} \| z(\tau) \|_{L^{2}(\Omega)}^{2} + \max_{0 \le \tau \le T} \| z(\tau+T) \|_{L^{2}(\Omega)}^{2},$$

accounting for the definitions of V_t and the norms in X, relation (2.27) can be written in the following form

 $||V_T U_1 - V_T U_2||_X^2 \leq \eta_T ||U_1 - U_2||_X^2 + K \cdot [\eta_T (U_1 - U_2) + \eta_T (V_T U_1 - V_T U_2)]$ for all $U_1, U_2 \in \mathcal{A}_T$, where $\eta_T = C_1 e^{-\beta T}$. We can select T large enough such that $\eta_T < 1$.

Hence, all the assumption of Theorem 2 are satisfied. It implies that \mathcal{A}_T is a compact set in X of finite fractal dimension. Let $\mathcal{P}: X \to \mathcal{F}$ be the operator defined by the fromula

$$\mathcal{P}: (u_0, U_1, v(t)) \to (u_0, u_1).$$

Since $\mathcal{A} = \mathcal{P}\mathcal{A}_T$ and \mathcal{P} is obviously Lipschitz continuous, we have that

$$\dim_{frac}^{\mathcal{F}} \mathcal{A} = \dim_{frac}^{X} \mathcal{A}_{T} < \infty$$

where \dim_{frac}^{Y} stands for fractal dimension of a set in the space Y.

References

- Igor Chueshov, Mattias Eller and Irena Lasiecka, Finite Dimesionality of the Attractor for a Semilinear Wave Equation with Nonlinear Boundary Dissipation, Communication in Partial Differential Equations, 29(2004), 1847-1876.
- [2] Igor Chueshov, M. Iller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Communication in Partial Differential Equations, 27(2002), 1901-1951.
- [3] Igor Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Kharkov: Acta. In: Russian. English translation: Kharkov: Acta, 2002. See also http://www.emis.de/monographs/chueshov/
- [4] E. Fereisel, Global attractors for semilinear damped wave equations with supercritical exponent, J. Diff. Equations, 116(1995)431-447.
- [5] I. Lasiecka, and Ruzmaikina, A.Finite dimensionality and regularity of attractors for a 2-D semilinear wave equation with nonlinear dissipation.
- [6] I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim., 25(1992),189-224.

- [7] D. Prazak, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping. Journal of Dynamics and Differential Equations, 14(2004), 763-776.
- [8] Z. Shengfan, Dimension of the global attractor for damped nonlinear wave equation, Proc. Amer. Math. Soc., 127(1999),3623-3631.
- [9] J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica Puraed Application, Serie 4 148(1987), 65-96.