Nonlinear Functional Analysis and Applications Vol. 14, No. 2 (2009), pp. 207–220

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2009 Kyungnam University Press

CHARACTERIZATION OF EFFICIENT SOLUTIONS FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS INVOLVING STRONG AND GENERALIZED STRONG E-CONVEXITY

Tarek Emam

Department of Mathematics, Faculty of Science (Suez) Suez Canal University, Seuz, Egypt. e-mail: drtemam@yahoo.com

Abstract. In this paper we shall interest with characterization of efficient solutions for special classes of problems. These classes consider strongly *E*-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.

1. INTRODUCTION

The concept of *E*-convexity of sets and functions was presented by Youness in [7, 8]. This concept was extended to a semi *E*-convexity by Chen in [4]. *E*-convexity notation considered only the convex combination of the images of points under *E*. The authors generalized this notion to the so called strong *E*convexity [10]. This generalization took into account the convex combination of points on the segment [Ex, x + Ex], and the points on the segment [Ey, y + Ey]. Strong *E*-convexity was extended to a quasi and pseudo strongly *E*convexity in [11].

In this paper, we formulate a multi-objective programming problem which it involves strongly *E*-convex functions. An efficient solution for considered problem is characterized by weighting, and ε -constraint approaches. In the

 $^{^0\}mathrm{Received}$ January 15, 2008. Revised May 27, 2008.

⁰2000 Mathematics Subject Classification: 90C25, 90C51, 90C29.

 $^{^0{\}rm Keywords}:$ Multi-objective optimization problems, strongly $E{\rm -convex},$ efficient solutions, properly efficient solutions.

end of the paper, we obtain sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution for this kind of problems.

Now let us summarize some definitions of strongly E-convex sets, strongly E-convex functions, generalized strongly E-convex functions; and some results about them.

Definition 1.1. [10] A set $M \subseteq \mathbb{R}^n$ is said to be a strongly *E*-convex set with respect to an operator $E: \mathbb{R}^n \to \mathbb{R}^n$ if $\lambda(\alpha x + Ex) + (1 - \lambda)(\alpha y + Ey) \in M$ for each $x, y \in M$, $0 \le \alpha \le 1$, and $0 \le \lambda \le 1$.

Every strongly *E*-convex set with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$ is an *E*-convex set when $\alpha = 0$. If $M \subseteq \mathbb{R}^n$ is strongly *E*-convex set, then $E(M) \subseteq M$. If M_1 and M_2 are a strongly *E*-convex sets, then $M_1 \bigcap M_2$ is a strongly *E*-convex set but $M_1 \bigcup M_2$ is not necessarily strongly *E*-convex set. If $E : \mathbb{R}^n \to \mathbb{R}^n$ is a linear map, and $M_1, M_2 \subseteq \mathbb{R}^n$ are strongly *E*-convex sets, then $M_1 + M_2$ is a strongly *E*-convex set.

Definition 1.2. [10] A real valued function $f: M \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be a strongly *E*-convex function on *M*, with respect to an operator $E: \mathbb{R}^n \to \mathbb{R}^n$, if *M* is a strongly *E*-convex set and, for each $x, y \in M$, $0 \le \alpha \le 1$, and $0 \le \lambda \le 1$,

$$f(\lambda(\alpha x + Ex) + (1 - \lambda)(\alpha y + Ey)) \le \lambda f(Ex) + (1 - \lambda)f(Ey).$$

If $f(\lambda(\alpha x + Ex) + (1 - \lambda)(\alpha y + Ey)) \ge \lambda f(Ex) + (1 - \lambda)f(Ey)$, then f is called a strongly E-concave function on M. If the inequality signs in the previous two inequalities are strict, then f is called sharp strongly E-convex and sharp strongly E-concave, respectively.

Every strongly *E*-convex function, with respect to an operator $E: \mathbb{R}^n \to \mathbb{R}^n$ is *E*-convex function when $\alpha = 0$. Let $E_0: \mathbb{R} \to \mathbb{R}$, and $E_0(f(x) + t) = f(Ex) + t$, for each nonnegative real number *t*, then a numerical function *f* defined on strongly *E*-convex set $M \subseteq \mathbb{R}^n$ is strongly *E*-convex if and only if its epi(f) is strongly $E \times E_0$ -convex on $M \times \mathbb{R}$. If $(f_i)_{i \in I}$ is a family of numerical functions, which are strongly *E*-convex and bounded from above, then the numerical function $f(x) = \sup_{i \in I} f_i(x)$ is a strongly *E*-convex on *M*. If $f: \mathbb{R}^n \to \mathbb{R}$ is a differentiable strongly *E*-convex function, then, for each

If $f: R^n \to R$ is a differentiable strongly *E*-convex function, then, for each $x, y \in M$, $(Ex - Ey)\nabla f(Ey) \leq f(Ex) - f(Ey)$. For more details about strongly *E*-convex sets and strongly *E*-convex functions, see [10, 11].

Definition 1.3. [11] A real valued function $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be quasi strongly *E*-convex function on *M*, with respect to an operator $E: \mathbb{R}^n \to \mathbb{R}^n$, if *M* is strongly *E*-convex set and, for each $x, y \in M$, $0 \le \alpha \le$

1, and $0 \leq \lambda \leq 1$,

 $f(\lambda(\alpha x + Ex) + (1 - \lambda)(\alpha y + Ey)) \le \max\{f(Ex), f(Ey)\}.$

If $f(\lambda(\alpha x + Ex) + (1 - \lambda)(\alpha y + Ey)) \ge \min\{f(Ex), f(Ey)\}$, then f is called a quasi strongly E-concave function on M. If the inequality signs in the previous two inequalities are strict, then f is called strictly quasi strongly E-convex and strictly quasi strongly E-concave respectively.

Every quasi strongly *E*-convex function, with respect to an operator E: $\mathbb{R}^n \to \mathbb{R}^n$ is a quasi *E*-convex function when $\alpha = 0$. If $f : \mathbb{R}^n \to \mathbb{R}$ is a strongly *E*-convex function on a strongly *E*-convex set $M \subseteq \mathbb{R}^n$, then f is a quasi strongly *E*-convex function on *M*. If $f : \mathbb{R}^n \to \mathbb{R}$ is a differentiable quasi strongly *E*-convex function at $y \in M$. Then $(Ex - Ey)\nabla f(Ey) \leq 0$, for each $x \in M$ [11].

Definition 1.4. [11] A real valued function $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be a pseudo strongly *E*-convex function on *M*, with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$, if *M* is strongly *E*-convex set and, there exists a strictly positive function $b : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that

$$f(Ex) < f(Ey) \Rightarrow f(\lambda(\alpha x + Ex) + (1 - \lambda)(\alpha y + Ey)) \le f(Ey) + \lambda(\lambda - 1)b(x, y)$$

for all $x, y \in M$, $0 \le \alpha \le 1$, and $0 \le \lambda \le 1$.

Every strongly *E*-convex function $f : \mathbb{R}^n \to \mathbb{R}$ on a strongly *E*-convex set *M* is pseudo strongly *E*-convex function on *M*. If $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable pseudo strongly *E*-convex function at $y \in M$, then, for each $x \in M$

 $f(Ex) < f(Ey) \ \Rightarrow \ (Ex - Ey) \nabla f(Ey) < 0,$

or

$$(Ex - Ey)\nabla f(Ey) \ge 0 \Rightarrow f(Ex) \ge f(Ey).$$

2. Preliminaries

Let $E: \mathbb{R}^n \to \mathbb{R}^n$ be a mapping, $f_j: \mathbb{R}^n \to \mathbb{R}, \ j = 1, 2, ..., k$, and $g_i: \mathbb{R}^n \to \mathbb{R}, \ i = 1, 2, ..., m$ be differentiable real valued strongly *E*-convex functions on \mathbb{R}^n . A multi-objective strongly *E*-convex programming problem is formulated as follows:

(P)

$$\begin{array}{l}
\operatorname{Min} f_j(x), \\
\operatorname{subject to} \\
x \in M = \{x \in R^n : g_i(x) \le 0\},
\end{array}$$

Definition 2.1. A feasible solution x^* for (P) is an efficient solution for (P) if and only if there is no other feasible x, for (P), such that for some $i \in \{1, 2, ..., k\}$,

$$f_i(x) < f_i(x^*), f_j(x) \le f_j(x^*), \text{ for all } j \ne i.$$

Definition 2.2. An efficient solution x^* for (P) is called a properly efficient solution for (P) if there exists a scalar q > 0 such that for each i, i = 1, 2, ..., k, and each $x \in M$ satisfying $f_i(x) < f_i(x^*)$, there exists at least one $j \neq i$ with $f_j(x) > f_j(x^*)$, and

$$[f_i(x) - f_i(x^*)] / [f_j(x^*) - f_j(x)] \le q.$$

Lemma 2.1. [11] Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a map and let $M \subseteq E(\mathbb{R}^n)$. If $M' = \{y \in \mathbb{R}^n : (g \circ E)(y) \leq 0\}$, then E(M') = M.

Let us now formulate the problem:

$$(PE) \qquad \begin{array}{l} Min \ (f_j \circ E)(y), \\ subject \ to \\ y \in M' = \{y \in R^n : \ (g_i \circ E)(y) \leq 0\}. \end{array}$$

Denote X and Y the sets of all efficient and properly efficient solutions for problem (P) respectively; and X' and Y' the sets of all efficient and properly efficient solutions for problem (PE) respectively.

Lemma 2.2. [9] If $x^* \in X$, then there is at least one element $y^* \in M'$, $x^* = E(y^*)$, and $y^* \in X'$.

Lemma 2.3. [9] $E(y^*) \in X$ for each $y^* \in X'$.

Remark 2.1. From the two Lemmas 2.2 and 2.3, we obtain X=E(X').

Lemma 2.4. If $x^* \in Y$, then there is at least one element $y^* \in M'$, $x^* = E(y^*)$, and $y^* \in Y'$.

Proof. Let $x^* \in Y$. Then, from Lemma 2.2, there is at least one element $y^* \in X'$, such that $x^* = E(y^*)$. Let $y^* \notin Y'$. Then there is $y' \in M'$ such that for any $i, f_i(Ey') < f_i(Ey^*)$, there exists at least one $j \neq i$ with $f_j(Ey') > f_j(Ey^*)$, and $f_i(Ey') - f_i(Ey^*) > q[f_j(Ey^*) - f_j(Ey')]$, thus there is $x' \in M, x'=E(y')$ such that $f_i(x') - f_i(x^*) > q[f_j(x^*) - f_j(x')]$ which contradicts $x^* \in Y$. Hence $y^* \in Y'$.

Lemma 2.5. $E(y^*) \in Y$ for each $y^* \in Y'$.

Proof. $y^* \in Y'$ implies $y^* \in X'$ and hence from Lemma 2.3 $E(y^*) \in X$. Let $E(y^*) \notin Y$. Then there is $x' \in M$ such that for any i, $f_i(x') < f_i(Ey^*)$, there exists at least one $j \neq i$ with $f_j(x') > f_j(Ey^*)$, and $f_i(x') - f_i(Ey^*) > q[f_j(Ey^*) - f_j(x')]$. From Lemma 2.1, there is at least one element $y' \in M'$, such that x'=E(y'), and $f_i(Ey') - f_i(Ey^*) > q[f_j(Ey^*) - f_j(Ey')]$ which contradicts $y^* \in Y'$. Hence $E(y^*) \in Y$.

Remark 2.2. Lemmas 2.4 and 2.5 imply Y = E(Y').

Lemma 2.6. [11] Let $E : \mathbb{R}^n \to \mathbb{R}^n$ and $M = \{x \in \mathbb{R}^n : g(x) \leq 0\}$. If $g : \mathbb{R}^n \to \mathbb{R}^m$ is a quasi strongly *E*-convex function and $M \subseteq E(\mathbb{R}^n)$, then *M* is a convex set.

Corollary 2.1.[11] Let $E : \mathbb{R}^n \to \mathbb{R}^n$. If $g : \mathbb{R}^n \to \mathbb{R}^m$ is a strongly *E*-convex function on \mathbb{R}^n and $M \subseteq E(\mathbb{R}^n)$, $M = \{x \in \mathbb{R}^n : g(x) \leq 0\}$. Then *M* is a convex set.

Lemma 2.7. If $f : \mathbb{R}^n \to \mathbb{R}^k$ is a strongly *E*-convex vector valued function on a strongly *E*-convex $M' \subseteq \mathbb{R}^n$, and $M \subseteq E(\mathbb{R}^n)$, then the set

$$A = \bigcup_{x \in M} A(x) = \{ z : z \in \mathbb{R}^k, z > f(x) - f(x^*) \}, \ x \in M$$

is a convex set.

Proof. Let $x^1, x^2 \in M$. Then, from Lemma 2.1, $\exists y^1, y^2 \in M'$ such that $x^1 = Ey^1, x^2 = Ey^2$. Since f is a strongly E-convex function on M', for $z^1, z^2 \in A$, $0 \le \alpha \le 1$, and $0 \le \lambda \le 1$, we have

$$\lambda z^{1} + (1 - \lambda)z^{2} > \lambda [f(x^{1}) - f(x^{*})] + (1 - \lambda)[f(x^{2}) - f(x^{*})],$$

which can be rewritten

$$\begin{split} \lambda z^1 + (1-\lambda)z^2 &> \lambda f(Ey^1) + (1-\lambda)f(Ey^2) - f(x^*) \\ &\geq f(\lambda(\alpha y^1 + Ey^1) + (1-\lambda)(\alpha y^2 + Ey^2)) - f(x^*) \\ &\geq f(\lambda Ey^1 + (1-\lambda)Ey^2) - f(x^*) \\ &= f(\lambda x^1 + (1-\lambda)x^2) - f(x^*). \end{split}$$

Since M is convex set upon Corollary 2.1, $\lambda z^1 + (1 - \lambda)z^2 \in A$. Hence A is a convex set.

For a feasible point $x^* \in M'$, we denote $I(x^*)$ as the index set for binding constraints at x^* , i.e.

$$I(x^*) = \{i : (g_i \circ E)x^* = 0\}.$$

3. Characterizing Efficient Solutions by Weighting Approach

A weighting approach is one of the common approach for characterize efficient solutions of multi-objective programming problems [9]. In the following we shall characterize an efficient solution for a multi-objective strongly E-convex programming problem (P) in term of an optimal solution of the following scalar problem:

$$(\mathbf{P}_w) \qquad Min \ \sum_{j=1}^k w_j f_j(x), \quad subject \ to \quad x \in M,$$

where $w_j \ge 0$, j = 1, 2, ..., k, $\sum_{j=1}^k w_j = 1$, f_j , j = 1, 2, ..., k are strongly *E*-convex on M' and M' is a strongly *E*-convex set.

Theorem 3.1. If $\bar{x} \in M$ is an efficient solution for the problem (P), then there exist $\bar{w}_j \geq 0$, j = 1, 2, ..., k, $\sum_{j=1}^k \bar{w}_j = 1$ such that \bar{x} is an optimal solution for problem (P_w).

Proof. Let $\bar{x} \in M$ be an efficient solution for problem (P). Then the system $f_j(x) - f_j(\bar{x}) < 0, \ j = 1, 2, ..., k$ has no solution $x \in M$. Upon Lemma 2.7 thus applying the generalized Gordan theorem [5], there exist $p_j \ge 0, \ j = 1, 2, ..., k$ such that $p_j[f_j(x) - f_j(\bar{x})] \ge 0, \ j = 1, 2, ..., k$, and $\frac{p_j}{\sum_{j=1}^k p_j} f_j(x) \ge \frac{p_j}{\sum_{j=1}^k p_j} f_j(\bar{x})$. Denote $w_j = \frac{p_j}{\sum_{j=1}^k p_j}$, then $w_j \ge 0, \ j = 1, 2, ..., k, \sum_{j=1}^k w_j = 1$, and $\sum_{j=1}^k w_j f_j(\bar{x}) \le \sum_{j=1}^k w_j f_j(x)$. Hence \bar{x} is an optimal solution for problem (P_w).

Theorem 3.2. [3] If $\bar{x} \in M$ is an optimal solution for $(P_{\bar{w}})$ corresponding to \bar{w}_j , then \bar{x} is an efficient solution for problem (P) if either one of the following two conditions holds:

(i) $\bar{w}_j > 0$, for all j = 1, 2, ..., k; or (ii) \bar{x} is the unique solution of $(\mathbf{P}_{\bar{w}})$.

4. Characterizing Efficient Solutions by ε -Constraint Approach

In this section, our basic aim is to characterized an efficient solution for problem (P) by ε -constraint approach. To characterize an efficient solution for problem (P) by ε -constraint approach let us scalarize problem (P) to become in the form:

$$\begin{array}{ll} P_q(\varepsilon) & \qquad Min \ (f_q \circ E)(x), \\ subject \ to \quad x \in M', \\ (f_j \circ E)(x) \leq \varepsilon_j, \quad j=1,2,...,k, \ j \neq q, \ \varepsilon_j \in R. \end{array}$$

where f_j , j = 1, 2, ..., k are strongly *E*-convex on M' and M' is strongly *E*-convex set .

Theorem 4.1. If $\bar{x} \in M$ is an efficient solution for problem (P), then there are $\bar{y} \in M', \varepsilon \in \mathbb{R}^k$ such that $\bar{x} = E(\bar{y})$ and \bar{y} is an optimal solution of problem $P_q(\varepsilon)$ for every q.

Proof. Since $\bar{x} \in M$ is an efficient solution for problem (P), from Remark 2.1, there is $\bar{y} \in M'$ which is an efficient solution for problem (PE), i.e. $\bar{y} \in X'$ and $\bar{x} = E(\bar{y})$.

Let \bar{y} be a non optimal solution for $P_q(\varepsilon)$ for some q. Then there is $\tilde{y} \in M'$ such that $(f_q \circ E)(\tilde{y}) < (f_q \circ E)(\bar{y})$ and $(f_j \circ E)(\tilde{y}) \leq \bar{\varepsilon}_j, \ j = 1, 2, ..., k, \ j \neq q$.

By putting $\bar{\varepsilon}_j = (f_j \circ E)(\bar{y}), j = 1, 2, ..., k, j \neq q$, then we get

$$(f_j \circ E)(\tilde{y}) \le (f_j \circ E)(\bar{y})$$

with strict inequality for at least one j. Thus, $\bar{y} \notin X'$ and $E(\bar{y}) = \bar{x} \notin X$ which is a contradiction. Hence \bar{y} is an optimal solution for problem $P_q(\varepsilon)$. \Box

Theorem 4.2. Let $\bar{y} \in M'$ be an optimal solution of problem $P_q(\varepsilon)$, for each q. Then $E(\bar{y})$ is an efficient for problem (P).

Proof. Let
$$h: \mathbb{R}^n \to [\frac{-1}{2}, \infty)$$
 be a map defined by

$$h(y) = \inf_{(\tilde{y},\beta)} \{ \frac{1}{2}\beta^2 + \beta : (f_j \circ E)(\tilde{y}) - (f_j \circ E)(y) \le \beta e, \ j = 1, 2, ..., k, \ \tilde{y} \in M' \}$$

where $e = (1, 1, ..., 1) \in \mathbb{R}^k$. From [2] we obtain that

 $(i)X' = \{ y \in M' : h(y) = 0 \},\$

(ii) $h(y) \leq 0$, for each $y \in M'$.

are equivalent, where X' is a set of efficient solution for problem (P_E) .

Let $E(\bar{y}) \notin X$. Then, from Remark 2.1, $\bar{y} \notin X'$, that is $h(\bar{y}) < 0$, and hence, for some $\tilde{y} \in M'$, we have

$$(f_j \circ E)(\tilde{y}) - (f_j \circ E)(\bar{y}) < 0, \ j = 1, 2, ..., k.$$

Therefore \bar{y} is not optimal solution for problem $P_q(\varepsilon)$, which is a contradiction, then $E(\bar{y})$ is an efficient for problem (P).

5. Optimality Criteria

In this section, we will drive the sufficient and necessary conditions for a feasible solution $E(x^*)$, $x^* \in M'$, to be efficient or properly efficient solution for problem (P) as in the following theorems.

Theorem 5.1. Suppose that $M \subseteq E(\mathbb{R}^n)$, there exists a feasible solution x^* for (PE), and scalars $\lambda_i > 0$, i = 1, 2, ..., k, $u_i \ge 0$, $i \in I(x^*)$ such that

$$\sum_{i=1}^{k} \lambda_i \nabla f_i(Ex^*) + \sum_{i \in I(x^*)} u_i \nabla g_i(Ex^*) = 0.$$
 (5.1)

If f_i , i = 1, 2, ..., k, and g_i , $i \in I(x^*)$ are strongly *E*-convex functions at $x^* \in M'$ with respect to the same *E*. Then x^* is a properly efficient solution for problem (PE) and $E(x^*)$ is a properly efficient solution for problem (P).

Proof. For all $x \in M'$, we have from [11]

$$\sum_{i=1}^{k} \lambda_i f_i(Ex) - \sum_{i=1}^{k} \lambda_i f_i(Ex^*) \ge (Ex - Ex^*) \sum_{i=1}^{k} \lambda_i [\nabla f_i(Ex^*)]^t = -(Ex - Ex^*) \sum_{i \in I(x^*)}^{k} u_i [\nabla g_i(Ex^*)]^t$$

by (5.1), it can be rewritten as

$$\sum_{i=1}^{k} \lambda_i f_i(Ex) - \sum_{i=1}^{k} \lambda_i f_i(Ex^*) \ge \sum_{i=1}^{k} u_i g_i(Ex^*) - \sum_{i=1}^{k} u_i g_i(Ex) = -\sum_{i \in I(x^*)} u_i g_i(Ex) \ge 0,$$

thus $\sum_{i=1}^{k} \lambda_i f_i(Ex) \geq \sum_{i=1}^{k} \lambda_i f_i(Ex^*)$, for all $x \in M'$, which implies that x^* is the minimizer of $\sum_{i=1}^{k} \lambda_i (f_i \circ E)(x)$ under the constraint $(g \circ E)(x) \leq 0$. Hence, x^* is a properly efficient solution for problem (PE) due to Theorem 4.1 of [3], and $E(x^*)$ is a properly efficient solution for problem (P) due to Lemma 2.5.

Theorem 5.2. Let $M \subseteq E(\mathbb{R}^n)$ and x^* be a feasible solution for (PE). If there exist scalars $\lambda_i \geq 0, i = 1, 2, ..., k, \sum_{i=1}^k \lambda_i = 1, u_i \geq 0, i \in I(x^*)$, such that the triplet (x^*, λ_i, u_i) satisfies (5.1) in Theorem 5.1, $\sum_{i=1}^k \lambda_i f_i$ is sharp strongly *E*-convex, and g_I is strongly *E*-convex at x^* with respect to *E*. Then x^* is an efficient solution for problem (PE), and $E(x^*)$ is an efficient solution for problem (P).

Proof. Suppose that x^* is not an efficient solution for (PE). There exists a feasible x for (PE) and index r such that

$$(f_r \circ E)(x) < (f_r \circ E)(x^*), (f_i \circ E)(x) \le (f_i \circ E)(x^*), \text{ for all } i \ne r$$

These two inequalities lead to

$$0 \ge \sum_{i=1}^{k} \lambda_i f_i(Ex) - \sum_{i=1}^{k} \lambda_i f_i(Ex^*) \quad or \quad 0 > (Ex - Ex^*) \sum_{i=1}^{k} \lambda_i [\nabla f_i(Ex^*)]^t,$$
(5.2)

since $\sum_{i=1}^{k} \lambda_i f_i$ is sharp strongly *E*-convex at x^* , and

$$(Ex - Ex^*)\nabla g_i(Ex^*) \le 0,$$

since $g_i, i \in I(x^*)$, is strongly *E*-convex at x^* and $(g \circ E)(x) \leq 0$. The above inequality yields

$$(Ex - Ex^*) \sum_{i \in I(x^*)} u_i [\nabla g_i(Ex^*)]^t \le 0.$$
(5.3)

Adding (5.2) and (5.3), we obtain a contradiction to (5.1). Hence, x^* is an efficient solution for problem (PE), and $E(x^*)$ is an efficient solution for problem (P) due to Lemma 2.3.

Remark 5.1. Proceeding along the same lines as in Theorem 5.1, it can be easily seen that x^* and $E(x^*)$ become properly efficient solutions for (PE), and (P), respectively in the above theorem, if $\lambda_i > 0$, for all i = 1, 2, ..., k.

Theorem 5.3. Suppose that $M \subseteq E(\mathbb{R}^n)$, there exists a feasible solution x^* for (PE), and scalars $\lambda_i > 0, i = 1, 2, ..., k, u_i \ge 0, i \in I(x^*)$, such that (5.1) of Theorem 5.1 holds. If $\sum_{i=1}^k \lambda_i f_i$ is pseudo-strongly *E*-convex, and g_I are quasi-strongly *E*-convex at $x^* \in M'$ with respect to *E*. Then x^* is a properly efficient solution for problem (PE), and $E(x^*)$ is a properly efficient solution for problem (PE).

Proof. Since $g_I(Ex) \leq g_I(Ex^*) = 0$, $u_i \geq 0$, and g_I are quasi-strongly *E*-convex at x^* , we have

$$(Ex - Ex^*) \sum_{i \in I(x^*)} u_i [\nabla g_i(Ex^*)]^t \le 0, \text{ for all } x \in M'.$$

By using (5.1), we have

$$(Ex - Ex^*)\sum_{i=1}^k \lambda_i [\nabla f_i(Ex^*)]^t \ge 0,$$

which implies that

$$\sum_{i=1}^k \lambda_i f_i(Ex) \ge \sum_{i=1}^k \lambda_i f_i(Ex^*),$$

since $\sum_{i=1}^{k} \lambda_i f_i$ is pseudo-strongly *E*-convex at x^* . Hence, x^* is the minimizer of $\sum_{i=1}^{k} \lambda_i (f_i \circ E)(x)$ under the constraint $(g \circ E)(x) \leq 0$. Therefore, x^* is a properly efficient solution for problem (PE), and $E(x^*)$ is a properly efficient solution for problem (P).

Theorem 5.4. Suppose that $M \subseteq E(\mathbb{R}^n)$, there exist a feasible solution x^* for (PE) and scalars $\lambda_i \geq 0, i = 1, 2, ..., k, \sum_{i=1}^k \lambda_i = 1, u_i \geq 0, i \in I(x^*)$, such that (5.1) of Theorem 5.1 holds. Let $\sum_{i=1}^k \lambda_i f_i$ be strictly pseudo-strongly *E*-convex and g_I be quasi-strongly *E*-convex at x^* with respect to *E*. Then x^* is an efficient solution for problem (PE), and $E(x^*)$ is an efficient solution for problem (P).

Proof. Suppose that x^* is not an efficient solution for (PE). Then, there exists a feasible x for (PE), and index r such that

$$(f_r \circ E)(x) < (f_r \circ E)(x^*), (f_i \circ E)(x) \le (f_i \circ E)(x^*), \text{ for all } i \neq r$$

Therefore,

$$\sum_{i=1}^k \lambda_i f_i(Ex) \le \sum_{i=1}^k \lambda_i f_i(Ex^*) \quad or \quad (Ex - Ex^*) \sum_{i=1}^k \lambda_i [\nabla f_i(Ex^*)]^t < 0,$$

since $\sum_{i=1}^{k} \lambda_i f_i$ is strictly pseudo-strongly *E*-convex at x^* . Since g_I is quasi strongly *E*-convex at x^* , $g_I(Ex) \leq g_I(Ex^*) = 0$ which implies

$$(Ex - Ex^*)\nabla g_I(Ex^*) \le 0.$$

The proof now is similar to the proof of Theorem 5.2.

Remark 5.2. Proceeding along similar lines as in Theorem 5.3, it can be easily seen that x^* and $E(x^*)$ become properly efficient solutions for (PE), and (P), respectively in the above Theorem, if $\lambda_i > 0$, for all i = 1, 2, ..., k.

Theorem 5.5. Suppose that $M \subseteq E(\mathbb{R}^n)$, there exists a feasible solution x^* for (PE), and scalars $\lambda_i > 0, i = 1, 2, ..., k, u_i \ge 0, i \in I(x^*)$, such that (5.1) in Theorem 5.1 holds. Let $\sum_{i=1}^k \lambda_i f_i$ be pseudo-strongly *E*-convex, and $u_I g_I$ be quasi-strongly *E*-convex at x^* with respect to *E*. Then x^* is a properly efficient solution for problem (PE), and $E(x^*)$ is a properly efficient solution for problem (PE).

Proof. The proof is similar to the proof of Theorem 5.3.

Theorem 5.6. Suppose that $M \subseteq E(\mathbb{R}^n)$, there exists a feasible solution x^* for (PE), and scalars $\lambda_i \geq 0, i = 1, 2, ..., k, \sum_{i=1}^k \lambda_i = 1, u_i \geq 0, i \in I(x^*)$, such that (5.1) of Theorem 5.1 holds. If $I(x^*) \neq \phi, \sum_{i=1}^k \lambda_i f_i$ is quasi-strongly *E*-convex and $u_I g_I$ is strictly pseudo-strongly *E*-convex at x^* with respect to *E*. Then x^* is an efficient solution for problem (PE), and $E(x^*)$ is an efficient solution for problem (P).

Proof. The proof is similar to the proof of Theorem 5.4.

Remark 5.3. Proceeding along similar lines as in Theorem 5.3, it can be easily seen that x^* and $E(x^*)$ become properly efficient solutions for (PE), and (P), respectively in the above Theorem, if $\lambda_i > 0$, for all i = 1, 2, ..., k.

Theorem 5.7. (Necessary Optimality Criteria) Assume that $y^* = Ex^*$ is a properly efficient solution for problem (P). Assume also that there exists a feasible point y' = Ex' for such that $g_i(y') < 0$, i = 1, 2, ..., m, and each g_i , $i \in I(x^*)$ is strongly *E*-convex at x^* with respect to the same map $E : \mathbb{R}^n \to \mathbb{R}^n$. Then, there exists scalars $\lambda_i > 0, i = 1, 2, ..., k$ and $u_i \ge 0, i \in I(x^*)$, such that the triplet (x^*, λ_i, u_i) satisfies

Multi-objective optimization problems

$$\sum_{i=1}^{k} \lambda_i \nabla f_i(Ex^*) + \sum_{i \in I(x^*)} u_i \nabla g_i(Ex^*) = 0.$$
 (5.4)

Proof. we show that the system

$$(Ex - Ex^*)^t \nabla f_q(Ex^*) < 0, (Ex - Ex^*)^t \nabla f_i(Ex^*) \le 0, \quad \text{for all } i \ne q . (Ex - Ex^*)^t \nabla g_i(Ex^*) \le 0, \quad i \in I(x^*),$$
 (5.5)

has no solution for every q = 1, 2, ..., k. Since by the assumed Slater-type condition,

 $g_i(y') - g_i(Ex^*) = g_i(Ex') - g_i(Ex^*) < 0, \ i \in I(x^*),$ and then from strong *E*-convexity of g_i at x^* , we get

$$(Ex' - Ex^*)^t \nabla g_i(Ex^*) < 0, \ i \in I(x^*).$$
(5.6)

Therefore from (5.5) and (5.6)

$$[(Ex - Ex^*) + \rho(Ex' - Ex^*)]^t \nabla g_i(Ex^*) < 0, \ i \in I(x^*),$$
for all $\rho > 0$. Hence for some positive λ small enough

 $g_i(Ex^* + \lambda[(Ex - Ex^*) + \rho(Ex' - Ex^*)]) < g_i(Ex^*) = 0, \ i \in I(x^*).$ Similarly, for $i \notin I(x^*), \ g_i(Ex^*) < 0$ and for $\lambda > 0$ small enough

 $g_i(Ex^* + \lambda[(Ex - Ex^*) + \rho(Ex^{'} - Ex^*)]) \leq 0, \ i \notin I(x^*).$ Thus, for λ sufficiently small and all $\rho > 0, \ Ex^* + \lambda[(Ex - Ex^*) + \rho(Ex^{'} - Ex^*)]$

is feasible for problem (P). For sufficiently small $\rho > 0$, (5.5) gives

$$f_q(Ex^* + \lambda[(Ex - Ex^*) + \rho(Ex' - Ex^*)]) < f_q(Ex^*), \quad (5.7)$$

now for all $j \neq q$ such that

$$f_{j}(Ex^{*} + \lambda[(Ex - Ex^{*}) + \rho(Ex^{'} - Ex^{*})]) > f_{j}(Ex^{*}).$$
(5.8)

Consider the ratio

$$\frac{N(\lambda,\rho)}{D(\lambda,\rho)} = \frac{[f_q(Ex^*) - f_q(Ex^* + \lambda[(Ex - Ex^*) + \rho(Ex' - Ex^*)])]/\lambda}{[f_j(Ex^* + \lambda[(Ex - Ex^*) + \rho(Ex' - Ex^*)]) - f_j(Ex^*)]/\lambda}.$$
 (5.9)

From (5.5), $N(\lambda, \rho) \to -(Ex - Ex^*)^t \nabla f_q(Ex^*) > 0$. Similarly, $D(\lambda, \rho) \to (Ex - Ex^*)^t \nabla f_j(Ex^*) \leq 0$; but, by (5.8) $D(\lambda, \rho) > 0$, so $D(\lambda, \rho) \to 0$. Thus, the ratio in (5.9) becomes unbounded, contradicting the proper efficiency of

 $y^* = Ex^*$ for (P). Hence, for each q = 1, 2, ..., k, the system (5.5) has no solution. The result then follows from an application of the Farkas Lemma as in [1], namely

$$\sum_{i=1}^k \lambda_i \nabla f_i(Ex^*) + \sum_{i \in I(x^*)} u_i \nabla g_i(Ex^*) = 0, \quad u \ge 0.$$

Remark 5.4. The above Theorem continues to hold when the functions $g_i, i \in I(x^*)$, are strictly pseudo-strongly *E*-convex at x^* with respect to the map $E: \mathbb{R}^n \to \mathbb{R}^n$.

Theorem 5.8. Assume that $y^* = Ex^*$ is an efficient solution for problem (P) at which the Kuhn-Tucker constraint qualification is satisfied. Then, there exist scalars $\lambda_i \geq 0, i = 1, 2, ..., k, \sum_{i=1}^k \lambda_i = 1, u_j \geq 0, j = 1, 2, ..., m$, such that

$$\sum_{i=1}^{k} \lambda_i \nabla f_i(Ex^*) + \sum_{j=1}^{m} u_j \nabla g_j(Ex^*) = 0,$$
$$\sum_{j=1}^{m} u_j g_j(Ex^*) = 0.$$

Proof. Since every efficient solution is a weak minimum, by applying Theorem 2.2 of Weir and Mond [6] for $y^* = Ex^*$, we get $\exists \lambda \in \mathbb{R}^k$, $y \in \mathbb{R}^m$ such that

$$\lambda^t \nabla f(Ex^*) + u^t \nabla g(Ex^*) = 0,$$
$$u^t g(Ex^*) = 0,$$
$$u \ge 0, \quad \lambda \ge 0, \quad \lambda^t e = 0,$$

where $e = (1, 1, ..., 1) \in \mathbb{R}^k$.

Example 1. Let $E_{\bar{\alpha}}: R^2 \to R^2$ be defined as $E_{\bar{\alpha}}(x, y) = ((1 - \bar{\alpha})\frac{x}{2}, (1 - \bar{\alpha})y)$ for fixed $\bar{\alpha} \in [0, 1)$, and let $M'_{\bar{\alpha}}$ be given by

 $M'_{\bar{\alpha}} = \{(x,y) \in R^2 : x - 2y \le 0, \ (1 - \bar{\alpha})(x + y) - 3 \le 0, \ y \ge 0, \ x \ge 0\}.$

Consider the following bi-objective programming

$$\min f_1(x, y) = (1 - x)^3$$
$$\min f_2(x, y) = (6 + x - 2y)^3$$
$$s.t. \ (x, y) \in M = \{(x, y) \in \mathbb{R}^2 : x - y \le 0, \ 2x + y - 3 \le 0, \ y \ge 0, \ x \ge 0\}$$

Where f_1 , and f_2 are strongly $E_{\bar{\alpha}}$ -convex functions on strongly $E_{\bar{\alpha}}$ -convex set $M'_{\bar{\alpha}}$ with respect to $E_{\bar{\alpha}}$, for fixed $\bar{\alpha}$.

We shall, now formulate the problem $(P_{E_{\bar{\alpha}}})$ as follow:

$$\min(f_1 \circ E_{\bar{\alpha}})(x, y)$$
$$\min(f_2 \circ E_{\bar{\alpha}})(x, y)$$
$$s. t. \quad (x, y) \in M'_{\bar{\alpha}}.$$

Now, we characterize the efficient solution for considered example by weighting approach, in part (i) and by ε -constraint approach in part (ii). Finally, in part (iii), we obtain sufficient and necessary conditions for efficient solution for this example:

i) Formulate the weighting problem (\mathbf{P}_w) as

$$Min \{w_1(1-x)^3 + w_2(6+x-2y)^3\},\$$

s.t. $x \in M$

where $w_1, w_2 \ge 0, w_1 + w_2 = 1$.

It is clear that a point (1,1) is optimal solution for (P_w) corresponding $w = (w_1,0), 0 < w_1 \leq 1$, and a point (0,3) is optimal solution for (P_w) corresponding to $w = (0, w_2), 0 < w_2 \leq 1$. Hence the set of efficient solutions of problem (P) can be described as

$$X = \{ (x, y) \in M : 2x + y = 3 \}.$$

ii) Formulate the problem $P_q(\varepsilon)$ as

$$\begin{array}{l} Min \ ((1-\bar{\alpha})\frac{x}{2})^3\\ s.t. \ (x,y) \in M',\\ (6+(1-\bar{\alpha})\frac{x}{2}-2(1-\bar{\alpha})y)^3 \le \varepsilon_1, \end{array}$$

and

$$\begin{array}{l} Min \ (6+(1-\bar{\alpha})\frac{x}{2}-2(1-\bar{\alpha})y)^3\\ s.t. \ (x,y)\in M',\\ ((1-\bar{\alpha})\frac{x}{2})^3 \leq \varepsilon_2. \end{array}$$

It is easy to see that the points $\{(x^*, y^*) \in M'_{\bar{\alpha}} : (1 - \bar{\alpha})(x^* + y^*) = 3\}$ are optimal solutions corresponding to

$$(\varepsilon_1, \varepsilon_2) = \{ (6 + (1 - \bar{\alpha})\frac{x^*}{2} - 2(1 - \bar{\alpha})y^*)^3, ((1 - \bar{\alpha})\frac{x^*}{2})^3 \}$$

the images of these optimal solutions by mapping $E_{\bar{\alpha}}$ are efficient solutions for problem (P) which can be described as

$$X = \{(x, y) \in M : 2x + y = 3\}.$$

iii) Applying the Kuhn-Tucker conditions (1) to
$$(P_{E_{\bar{\alpha}}})$$
 yields
 $\frac{-3\lambda_1}{2}(1-\bar{\alpha})(1-(1-\bar{\alpha})\frac{x^*}{2})^2 + \frac{3\lambda_2}{2}(1-\bar{\alpha})(6+(1-\bar{\alpha})\frac{x^*}{2}-2(1-\bar{\alpha})y^*)^2$

 $+u_1 + u_2 \left(1 - \bar{\alpha}\right) - u_4 = 0,$

$$\begin{aligned} -6\lambda_2(1-\bar{\alpha})(6+(1-\bar{\alpha})\frac{x^*}{2}-2(1-\bar{\alpha})y^*)^2-2u_1+u_2(1-\bar{\alpha})-u_3&=0,\\ -6\lambda_2(1-\bar{\alpha})(6+(1-\bar{\alpha})\frac{x^*}{2}-2(1-\bar{\alpha})y^*)^2-2u_1+u_2(1-\bar{\alpha})-u_3&=0,\\ u_2((1-\bar{\alpha})(x^*+y^*)-3)&=0,\\ u_1(x^*-2y^*)&=0,\\ -u_3\,y^*&=0,\\ -u_4x^*&=0, \end{aligned}$$

and

$$x^* - 2y^* \le 0, \ (1 - \bar{\alpha})(x^* + y^*) - 3 \le 0, \ y^* \ge 0, \ x^* \ge 0$$

where $\lambda_i \ge 0, \ i = 1, 2, \ \lambda_1 + \lambda_2 = 1, \ \text{and} \ u_i \ge 0, \ i = 1, 2, 3, 4.$

From the above system we conclude that the full set of efficient solutions of problem $(P_{E_{\bar{\alpha}}})$ can be described as

$$X'_{\bar{\alpha}} = \{ (x^*, y^*) \in M'_{\bar{\alpha}} : (1 - \bar{\alpha})(x^* + y^*) = 3 \}.$$

Hence the images of these efficient solutions, by mapping $E_{\bar{\alpha}}$ are efficient solutions for problem (P) which can be described as $X = \{(x, y) \in M : 2x + y = 3\}$.

References

- A. Ben-Israel and B. Mond, What is invexity?, Journal of Math. Soc. Ser. B, 28(1986), pp.1-9.
- [2] S. Bolintineanu, Necessary conditions for nonlinear sub-optimization over the weakly efficient set, Journal of Optimization Theory and Application, 78(1993), 451-462.
- [3] V. Chankong and Y. Y. Haimes, Multiobjective decision making Theory and methodology, North-Holland, New York. Amsterdam. Oxford, 8, 1983.
- [4] X. Chen, Some properties of semi-E-convex functions, Journal of Mathematical Analysis and Applications, 275(2002), 251-262.
- [5] O. L. Mangasarian, Nonlinear Programming, McGraw Hill, New York. 1969.
- [6] T. Weir and B. Mond, Generalized convexity and duality in multiple-objective programming, Bulletin of the Australian Mathematical Society, 39(1989), 287-299.
- [7] E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, Journal of Optimization Theory and Applications, 102(1999), 439-450.
- [8] E. A. Youness, Optimality criteria in E-convex programming, Journal of Chaos, Solitons& Fractals, 12(2001), 1737-1745.
- [9] E. A. Youness, Characterization of efficient solutions of multi-objective E-convex programming problems, Applied Mathematics and Computation, 151(2004), 755-761.
- [10] E. A. Youness and T. Emam, Strongly E-convex sets and strongly E-convex functions, Journal of Interdisciplinary Mathematics, 8(2005), 107-117.
- [11] E. A. Youness and T. Emam, Semi strongly E-convex functions, Journal of Mathematics and Statistics, 1(2005), 51-57.