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Abstract. In this paper we shall interest with characterization of efficient solutions for

special classes of problems. These classes consider strongly E -convexity of involved functions.

Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient

solution are obtained.

1. Introduction

The concept of E-convexity of sets and functions was presented by Youness
in [7, 8]. This concept was extended to a semi E-convexity by Chen in [4].
E-convexity notation considered only the convex combination of the images of
points under E. The authors generalized this notion to the so called strong E-
convexity [10]. This generalization took into account the convex combination
of points on the segment [Ex, x+Ex], and the points on the segment [Ey, y +
Ey]. Strong E-convexity was extended to a quasi and pseudo strongly E -
convexity in [11].

In this paper, we formulate a multi-objective programming problem which
it involves strongly E -convex functions. An efficient solution for considered
problem is characterized by weighting, and ε-constraint approaches. In the

0Received January 15, 2008. Revised May 27, 2008.
02000 Mathematics Subject Classification: 90C25, 90C51, 90C29.
0Keywords: Multi-objective optimization problems, strongly E-convex, efficient solutions,

properly efficient solutions.



208 Tarek Emam

end of the paper, we obtain sufficient and necessary conditions for a feasi-
ble solution to be an efficient or properly efficient solution for this kind of
problems.

Now let us summarize some definitions of strongly E -convex sets, strongly
E -convex functions, generalized strongly E -convex functions; and some results
about them.

Definition 1.1. [10] A set M ⊆ Rn is said to be a strongly E -convex set with
respect to an operator E : Rn → Rn if λ(αx + Ex) + (1 − λ)(αy + Ey) ∈ M
for each x, y ∈ M, 0 ≤ α ≤ 1, and 0 ≤ λ ≤ 1.

Every strongly E -convex set with respect to an operator E : Rn → Rn

is an E -convex set when α = 0. If M ⊆ Rn is strongly E -convex set, then
E(M) ⊆ M . If M1 andM2 are a strongly E -convex sets, then M1

⋂
M2 is a

strongly E -convex set but M1
⋃

M2 is not necessarily strongly E -convex set.
If E : Rn → Rn is a linear map, and M1 , M2 ⊆ Rn are strongly E -convex
sets, then M1 + M2 is a strongly E -convex set.

Definition 1.2. [10] A real valued function f : M ⊆ Rn → R is said to be a
strongly E -convex function on M, with respect to an operator E : Rn → Rn,
if M is a strongly E -convex set and, for each x, y ∈ M, 0 ≤ α ≤ 1, and 0 ≤
λ ≤ 1,

f(λ(αx + Ex) + (1− λ)(αy + Ey)) ≤ λf(Ex) + (1− λ)f(Ey).

If f(λ(αx+Ex)+(1−λ)(αy+Ey)) ≥ λf(Ex)+(1−λ)f(Ey), then f is called
a strongly E -concave function on M. If the inequality signs in the previous
two inequalities are strict, then f is called sharp strongly E -convex and sharp
strongly E -concave, respectively.

Every strongly E -convex function, with respect to an operator E : Rn → Rn

is E -convex function when α = 0. Let E0 : R → R, and E0(f(x) + t) =
f(Ex) + t, for each nonnegative real number t, then a numerical function f
defined on strongly E -convex set M ⊆ Rn is strongly E -convex if and only
if its epi(f) is strongly E × E0-convex on M × R. If (fi)i∈I is a family of
numerical functions, which are strongly E -convex and bounded from above,
then the numerical function f(x) = Sup

i∈I
fi(x) is a strongly E -convex on M.

If f : Rn → R is a differentiable strongly E -convex function, then, for each
x, y ∈ M , (Ex − Ey)∇f(Ey) ≤ f(Ex) − f(Ey). For more details about
strongly E -convex sets and strongly E -convex functions, see [10, 11].

Definition 1.3. [11] A real valued function f : M ⊆ Rn → R is said
to be quasi strongly E -convex function on M, with respect to an operator
E : Rn → Rn, if M is strongly E -convex set and, for each x, y ∈ M, 0 ≤ α ≤
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1, and 0 ≤ λ ≤ 1,

f(λ(αx + Ex) + (1− λ)(αy + Ey)) ≤ max{f(Ex), f(Ey)}.
If f(λ(αx + Ex) + (1−λ)(αy + Ey)) ≥ min{f(Ex), f(Ey)}, then f is called a
quasi strongly E -concave function on M. If the inequality signs in the previous
two inequalities are strict, then f is called strictly quasi strongly E -convex and
strictly quasi strongly E -concave respectively.

Every quasi strongly E -convex function, with respect to an operator E :
Rn → Rn is a quasi E -convex function when α = 0. If f : Rn → R is a
strongly E -convex function on a strongly E -convex set M ⊆ Rn, then f is a
quasi strongly E -convex function on M. If f : Rn → R is a differentiable quasi
strongly E -convex function at y ∈ M . Then (Ex− Ey)∇f(Ey) ≤ 0, for each
x ∈ M [11].

Definition 1.4. [11] A real valued function f : M ⊆ Rn → R is said to
be a pseudo strongly E -convex function on M, with respect to an operator
E : Rn → Rn, if M is strongly E -convex set and, there exists a strictly
positive function b : Rn ×Rn → R such that

f(Ex) < f(Ey) ⇒ f(λ(αx+Ex)+(1−λ)(αy+Ey)) ≤ f(Ey)+λ(λ−1)b(x, y)

for all x, y ∈ M, 0 ≤ α ≤ 1, and 0 ≤ λ ≤ 1.
Every strongly E -convex function f : Rn → R on a strongly E -convex set M

is pseudo strongly E -convex function on M. If f : Rn → R be a differentiable
pseudo strongly E -convex function at y ∈ M , then, for each x ∈ M

f(Ex) < f(Ey) ⇒ (Ex− Ey)∇f(Ey) < 0,

or
(Ex− Ey)∇f(Ey) ≥ 0 ⇒ f(Ex) ≥ f(Ey).

2. Preliminaries

Let E : Rn → Rn be a mapping, fj : Rn → R, j = 1, 2, ..., k, and gi : Rn →
R, i = 1, 2, ..., m be differentiable real valued strongly E -convex functions on
Rn. A multi-objective strongly E -convex programming problem is formulated
as follows:

(P )
Min fj(x),
subject to
x ∈ M = {x ∈ Rn : gi(x) ≤ 0},

Definition 2.1. A feasible solution x∗ for (P) is an efficient solution for
(P) if and only if there is no other feasible x, for (P), such that for some
i ∈ {1, 2, ..., k},

fi(x) < fi(x∗), fj(x) ≤ fj(x∗), for all j 6= i.
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Definition 2.2. An efficient solution x∗ for (P) is called a properly efficient
solution for (P) if there exists a scalar q > 0 such that for each i, i = 1, 2, ..., k,
and each x ∈ M satisfying fi(x) < fi(x∗), there exists at least one j 6= i with
fj(x) > fj(x∗), and

[fi(x)− fi(x∗)]/[fj(x∗)− fj(x)] ≤ q.

Lemma 2.1. [11] Let E : Rn → Rn be a map and let M ⊆ E(Rn). If
M

′
= {y ∈ Rn : (g ◦ E)(y) ≤ 0}, then E(M

′
) = M .

Let us now formulate the problem:

(PE)
Min (fj ◦ E)(y),
subiect to

y ∈ M
′
= {y ∈ Rn : (gi ◦ E)(y) ≤ 0}.

Denote X and Y the sets of all efficient and properly efficient solutions for
problem (P) respectively; and X ′ and Y ′ the sets of all efficient and properly
efficient solutions for problem (PE) respectively.

Lemma 2.2. [9] If x∗ ∈ X, then there is at least one element y∗ ∈ M
′
,

x∗ = E(y∗), and y∗ ∈ X ′.

Lemma 2.3. [9] E(y∗) ∈ X for each y∗ ∈ X ′.

Remark 2.1. From the two Lemmas 2.2 and 2.3, we obtain X=E (X’).

Lemma 2.4. If x∗ ∈ Y , then there is at least one element y∗ ∈ M
′
, x∗ =

E(y∗), and y∗ ∈ Y
′
.

Proof. Let x∗ ∈ Y . Then, from Lemma 2.2, there is at least one element y∗ ∈
X
′
, such that x∗ = E(y∗). Let y∗ /∈ Y

′
. Then there is y

′ ∈ M
′
such that for any

i, fi(Ey
′
) < fi(Ey∗), there exists at least one j 6= i with fj(Ey

′
) > fj(Ey∗),

and fi(Ey
′
)− fi(Ey∗) > q[fj(Ey∗)− fj(Ey

′
)], thus there is x

′ ∈ M , x’=E(y’)
such that fi(x

′
)− fi(x∗) > q[fj(x∗)− fj(x

′
)] which contradicts x∗ ∈ Y . Hence

y∗ ∈ Y
′
. ¤

Lemma 2.5. E(y∗) ∈ Y for each y∗ ∈ Y
′
.

Proof. y∗ ∈ Y
′
implies y∗ ∈ X

′
and hence from Lemma 2.3 E(y∗) ∈ X. Let

E(y∗) /∈ Y . Then there is x
′ ∈ M such that for any i, fi(x

′
) < fi(Ey∗),

there exists at least one j 6= i with fj(x
′
) > fj(Ey∗), and fi(x

′
) − fi(Ey∗) >

q[fj(Ey∗) − fj(x
′
)]. From Lemma 2.1, there is at least one element y′ ∈

M
′
, such that x’=E(y’), and fi(Ey

′
)− fi(Ey∗) > q[fj(Ey∗)− fj(Ey

′
)] which

contradicts y∗ ∈ Y
′
. Hence E(y∗) ∈ Y . ¤
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Remark 2.2. Lemmas 2.4 and 2.5 imply Y = E(Y ′).

Lemma 2.6. [11] Let E : Rn → Rn and M = {x ∈ Rn : g(x) ≤ 0}. If
g : Rn → Rm is a quasi strongly E -convex function and M ⊆ E(Rn), then M
is a convex set.

Corollary 2.1.[11] Let E : Rn → Rn. If g : Rn → Rm is a strongly E -convex
function on Rn and M ⊆ E(Rn), M = {x ∈ Rn : g(x) ≤ 0}. Then M is a
convex set.

Lemma 2.7. If f : Rn → Rk is a strongly E-convex vector valued function
on a strongly E-convex M ′ ⊆ Rn, and M ⊆ E(Rn), then the set

A =
⋃

x∈M

A(x) = {z : z ∈ Rk, z > f(x)− f(x∗)}, x ∈ M

is a convex set.

Proof. Let x1, x2 ∈ M. Then, from Lemma 2.1, ∃ y1, y2 ∈ M ′ such that x1 =
Ey1, x2 = Ey2. Since f is a strongly E-convex function on M ′, for z1, z2 ∈ A,
0 ≤ α ≤ 1, and 0 ≤ λ ≤ 1, we have

λz1 + (1− λ)z2 > λ[f(x1)− f(x∗)] + (1− λ)[f(x2)− f(x∗)],

which can be rewritten
λz1 + (1− λ)z2 > λf(Ey1) + (1− λ)f(Ey2)− f(x∗)

≥ f(λ(αy1 + Ey1) + (1− λ)(αy2 + Ey2))− f(x∗)
≥ f(λEy1 + (1− λ)Ey2)− f(x∗)
= f(λx1 + (1− λ)x2)− f(x∗).

Since M is convex set upon Corollary 2.1, λz1 + (1− λ)z2 ∈ A. Hence A is a
convex set. ¤

For a feasible point x∗ ∈ M
′
, we denote I(x∗) as the index set for binding

constraints at x∗, i.e.

I(x∗) = {i : (gi ◦ E)x∗ = 0}.
3. Characterizing Efficient Solutions by Weighting Approach

A weighting approach is one of the common approach for characterize ef-
ficient solutions of multi-objective programming problems [9]. In the follow-
ing we shall characterize an efficient solution for a multi-objective strongly
E -convex programming problem (P) in term of an optimal solution of the
following scalar problem:

(Pw) Min

k∑

j=1

wjfj(x), subiect to x ∈ M,
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where wj ≥ 0, j = 1, 2, ..., k,
∑k

j=1 wj = 1, fj , j = 1, 2, ..., k are strongly
E-convex on M ′ and M ′ is a strongly E-convex set.

Theorem 3.1. If x̄ ∈ M is an efficient solution for the problem (P), then
there exist w̄j ≥ 0, j = 1, 2, ..., k,

∑k
j=1 w̄j = 1 such that x̄ is an optimal

solution for problem (Pw).

Proof. Let x̄ ∈ M be an efficient solution for problem (P). Then the system
fj(x)−fj(x̄) < 0, j = 1, 2, ..., k has no solution x ∈ M . Upon Lemma 2.7 thus
applying the generalized Gordan theorem [5], there exist pj ≥ 0, j = 1, 2, ..., k
such that pj [fj(x)−fj(x̄)] ≥ 0, j = 1, 2, ..., k, and pj∑k

j=1 pj
fj(x) ≥ pj∑k

j=1 pj
fj(x̄).

Denote wj = pj∑k
j=1 pj

, then wj ≥ 0, j = 1, 2, ..., k,
∑k

j=1 wj = 1, and
∑k

j=1 wjfj(x̄) ≤ ∑k
j=1 wjfj(x). Hence x̄ is an optimal solution for problem

(Pw). ¤

Theorem 3.2. [3] If x̄ ∈ M is an optimal solution for (Pw̄) corresponding to
w̄j , then x̄ is an efficient solution for problem (P) if either one of the following
two conditions holds:
(i) w̄j > 0, for all j = 1, 2, ..., k; or (ii) x̄ is the unique solution of (Pw̄).

4. Characterizing Efficient Solutions by ε-Constraint Approach

In this section, our basic aim is to characterized an efficient solution for
problem (P) by ε-constraint approach. To characterize an efficient solution for
problem (P) by ε-constraint approach let us scalarize problem (P) to become
in the form:

Pq(ε )
Min (fq ◦ E)(x),
subiect to x ∈ M ′,
(fj ◦ E)(x) ≤ εj , j = 1, 2, ..., k, j 6= q, εj ∈ R.

where fj , j = 1, 2, ..., k are strongly E-convex on M ′ and M ′ is strongly E-
convex set .

Theorem 4.1. If x̄ ∈ M is an efficient solution for problem (P), then there
are ȳ ∈ M ′, ε ∈ Rk such that x̄ = E(ȳ) and ȳ is an optimal solution of problem
Pq(ε ) for every q.

Proof. Since x̄ ∈ M is an efficient solution for problem (P), from Remark 2.1,
there is ȳ ∈ M ′ which is an efficient solution for problem (PE), i.e. ȳ ∈ X ′
and x̄ = E(ȳ).

Let ȳ be a non optimal solution for Pq(ε) for some q. Then there is ỹ ∈ M ′
such that (fq ◦E)(ỹ) < (fq ◦E)(ȳ) and (fj ◦E)(ỹ) ≤ ε̄j , j = 1, 2, ..., k, j 6= q.
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By putting ε̄j = (fj ◦E)(ȳ), j = 1, 2, ..., k, j 6= q, then we get

(fj ◦ E)(ỹ) ≤ (fj ◦E)(ȳ)

with strict inequality for at least one j. Thus, ȳ /∈ X ′ and E(ȳ) = x̄ /∈ X which
is a contradiction. Hence ȳ is an optimal solution for problem Pq(ε). ¤

Theorem 4.2. Let ȳ ∈ M ′ be an optimal solution of problem Pq(ε), for each
q. Then E(ȳ) is an efficient for problem (P).

Proof. Let h : Rn → [−1
2 ,∞) be a map defined by

h(y) = inf
(ỹ,β)

{1
2β2 + β : (fj ◦E)(ỹ)− (fj ◦E)(y) ≤ βe, j = 1, 2, ..., k, ỹ ∈ M ′}

where e = (1, 1, ..., 1) ∈ Rk. From [2] we obtain that
(i)X ′ = {y ∈ M ′ : h(y) = 0},
(ii)h(y) ≤ 0, for each y ∈ M ′.

are equivalent, where X’ is a set of efficient solution for problem (PE).
Let E(ȳ) /∈ X. Then, from Remark 2.1, ȳ /∈ X ′, that is h(ȳ) < 0, and hence,

for some ỹ ∈ M ′, we have

(f j ◦E)(ỹ)− (fj ◦E)(ȳ) < 0, j = 1, 2, ..., k.

Therefore ȳ is not optimal solution for problem Pq(ε), which is a contradiction,
then E(ȳ) is an efficient for problem (P). ¤

5. Optimality Criteria

In this section, we will drive the sufficient and necessary conditions for a
feasible solution E(x∗), x∗ ∈ M

′
, to be efficient or properly efficient solution

for problem (P) as in the following theorems.

Theorem 5.1. Suppose that M ⊆ E(Rn), there exists a feasible solution x∗
for (PE), and scalars λi > 0, i = 1, 2, ..., k, ui ≥ 0, i ∈ I(x∗) such that

k∑

i=1

λi∇fi(Ex∗) +
∑

i∈I(x∗)

ui∇gi(Ex∗) = 0. (5.1)

If fi, i = 1, 2, ..., k, and gi , i ∈ I(x∗) are strongly E -convex functions at x∗ ∈
M

′
with respect to the same E. Then x∗is a properly efficient solution for

problem (PE) and E(x∗) is a properly efficient solution for problem (P).

Proof. For all x ∈ M
′
, we have from [11]∑k

i=1 λifi(Ex)−∑k
i=1 λifi(Ex∗) ≥ (Ex− Ex∗)

∑k
i=1 λi[∇fi(Ex∗)]t

= −(Ex−Ex∗)
∑

i∈I(x∗) ui[∇gi(Ex∗)]t
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by (5.1), it can be rewritten as
∑k

i=1 λifi(Ex)−∑k
i=1 λifi(Ex∗) ≥ ∑k

i=1 uigi(Ex∗)−∑k
i=1 uigi(Ex)

= −∑
i∈I(x∗) uigi(Ex) ≥ 0,

thus
∑k

i=1 λifi(Ex) ≥ ∑k
i=1 λifi(Ex∗), for all x ∈ M

′
, which implies that x∗

is the minimizer of
∑k

i=1 λi(fi ◦ E)(x) under the constraint (g ◦ E)(x) ≤ 0.
Hence, x∗ is a properly efficient solution for problem (PE) due to Theorem 4.1
of [3], and E(x∗) is a properly efficient solution for problem (P) due to Lemma
2.5. ¤

Theorem 5.2. Let M ⊆ E(Rn) and x∗ be a feasible solution for (PE). If
there exist scalars λi ≥ 0, i = 1, 2, ..., k,

∑k
i=1 λi = 1, ui ≥ 0, i ∈ I(x∗), such

that the triplet (x∗, λi, ui) satisfies (5.1) in Theorem 5.1,
∑k

i=1 λifi is sharp
strongly E -convex, and gI is strongly E -convex at x∗ with respect to E. Then
x∗ is an efficient solution for problem (PE), and E(x∗) is an efficient solution
for problem (P).

Proof. Suppose that x∗ is not an efficient solution for (PE). There exists a
feasible x for (PE) and index r such that

(fr ◦E)(x) < (fr ◦E)(x∗),
(fi ◦ E)(x) ≤ (fi ◦ E)(x∗), for all i 6= r.

These two inequalities lead to

0 ≥
k∑

i=1

λifi(Ex)−
k∑

i=1

λifi(Ex∗) or 0 > (Ex−Ex∗)
k∑

i=1

λi[∇fi(Ex∗)]t,

(5.2)
since

∑k
i=1 λifi is sharp strongly E -convex at x∗, and

(Ex−Ex∗)∇gi(Ex∗) ≤ 0,

since gi, i ∈ I(x∗), is strongly E -convex at x∗ and (g ◦E)(x) ≤ 0. The above
inequality yields

(Ex−Ex∗)
∑

i∈I(x∗)

ui[∇gi(Ex∗)]t ≤ 0. (5.3)

Adding (5.2) and (5.3), we obtain a contradiction to (5.1). Hence, x∗ is an effi-
cient solution for problem (PE), and E(x∗) is an efficient solution for problem
(P) due to Lemma 2.3. ¤
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Remark 5.1. Proceeding along the same lines as in Theorem 5.1, it can be
easily seen that x∗ and E(x∗) become properly efficient solutions for (PE),
and (P), respectively in the above theorem, if λi > 0, for all i = 1, 2, ..., k.

Theorem 5.3. Suppose that M ⊆ E(Rn), there exists a feasible solution x∗
for (PE), and scalars λi > 0, i = 1, 2, ..., k, ui ≥ 0, i ∈ I(x∗), such that (5.1)
of Theorem 5.1 holds. If

∑k
i=1 λifi is pseudo-strongly E -convex, and gI are

quasi-strongly E -convex at x∗ ∈ M
′
with respect to E. Then x∗ is a properly

efficient solution for problem (PE), and E(x∗) is a properly efficient solution
for problem (P).

Proof. Since gI(Ex) ≤ gI(Ex∗) = 0, ui ≥ 0, and gI are quasi-strongly E -
convex at x∗, we have

(Ex−Ex∗)
∑

i∈I(x∗)

ui[∇gi(Ex∗)]t ≤ 0, forall x ∈ M
′
.

By using (5.1), we have

(Ex− Ex∗)
k∑

i=1

λi[∇fi(Ex∗)]t ≥ 0,

which implies that
k∑

i=1

λifi(Ex) ≥
k∑

i=1

λifi(Ex∗),

since
∑k

i=1 λifi is pseudo-strongly E -convex at x∗. Hence, x∗ is the minimizer
of

∑k
i=1 λi(fi ◦ E)(x) under the constraint (g ◦ E)(x) ≤ 0. Therefore, x∗ is a

properly efficient solution for problem (PE), and E(x∗) is a properly efficient
solution for problem (P). ¤

Theorem 5.4. Suppose that M ⊆ E(Rn), there exist a feasible solution x∗

for (PE) and scalars λi ≥ 0, i = 1, 2, ..., k,
∑k

i=1 λi = 1, ui ≥ 0, i ∈ I(x∗), such
that (5.1) of Theorem 5.1 holds. Let

∑k
i=1 λifi be strictly pseudo-strongly

E -convex and gI be quasi-strongly E -convex at x∗ with respect to E. Then x∗
is an efficient solution for problem (PE), and E(x∗) is an efficient solution for
problem (P).

Proof. Suppose that x∗ is not an efficient solution for (PE). Then, there exists
a feasible x for (PE), and index r such that

(fr ◦E)(x) < (fr ◦E)(x∗),
(fi ◦ E)(x) ≤ (fi ◦ E)(x∗), for all i 6= r.
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Therefore,
k∑

i=1

λifi(Ex) ≤
k∑

i=1

λifi(Ex∗) or (Ex− Ex∗)
k∑

i=1

λi[∇fi(Ex∗)]t < 0,

since
∑k

i=1 λifi is strictly pseudo-strongly E -convex at x∗. Since gI is quasi
strongly E -convex at x∗, gI(Ex) ≤ gI(Ex∗) = 0 which implies

(Ex−Ex∗)∇gI(Ex∗) ≤ 0.

The proof now is similar to the proof of Theorem 5.2. ¤

Remark 5.2. Proceeding along similar lines as in Theorem 5.3, it can be
easily seen that x∗ and E(x∗) become properly efficient solutions for (PE),
and (P), respectively in the above Theorem, if λi > 0, for all i = 1, 2, ..., k.

Theorem 5.5. Suppose that M ⊆ E(Rn), there exists a feasible solution
x∗ for (PE), and scalars λi > 0, i = 1, 2, ..., k, ui ≥ 0, i ∈ I(x∗), such that
(5.1) in Theorem 5.1 holds. Let

∑k
i=1 λifi be pseudo-strongly E -convex, and

uI gI be quasi-strongly E -convex at x∗ with respect to E. Then x∗is a properly
efficient solution for problem (PE), and E(x∗) is a properly efficient solution
for problem (P).

Proof. The proof is similar to the proof of Theorem 5.3. ¤

Theorem 5.6. Suppose that M ⊆ E(Rn), there exists a feasible solution
x∗ for (PE), and scalars λi ≥ 0, i = 1, 2, ..., k,

∑k
i=1 λi = 1, ui ≥ 0, i ∈ I(x∗),

such that (5.1) of Theorem 5.1 holds. If I(x∗) 6= φ,
∑k

i=1 λifi is quasi-strongly
E -convex and uI gI is strictly pseudo-strongly E -convex at x∗ with respect to
E. Then x∗ is an efficient solution for problem (PE), and E(x∗) is an efficient
solution for problem (P).

Proof. The proof is similar to the proof of Theorem 5.4. ¤

Remark 5.3. Proceeding along similar lines as in Theorem 5.3, it can be
easily seen that x∗ and E(x∗) become properly efficient solutions for (PE),
and (P), respectively in the above Theorem, if λi > 0, for all i = 1, 2, ..., k.

Theorem 5.7. (Necessary Optimality Criteria) Assume that y∗ = Ex∗ is
a properly efficient solution for problem (P). Assume also that there exists a
feasible point y′ = Ex′ for such that gi(y

′
) < 0, i = 1, 2, ..., m, and each gi, i ∈

I(x∗) is strongly E -convex at x* with respect to the same map E : Rn → Rn.
Then, there exists scalars λi > 0, i = 1, 2, ..., k and ui ≥ 0, i ∈ I(x∗), such
that the triplet (x∗, λi, ui) satisfies
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k∑

i=1

λi∇fi(Ex∗) +
∑

i∈I(x∗)

ui∇gi(Ex∗) = 0. (5.4)

Proof. we show that the system

(Ex−Ex∗)t∇fq(Ex∗) < 0,
(Ex−Ex∗)t∇fi(Ex∗) ≤ 0, for all i 6= q
(Ex−Ex∗)t∇gi(Ex∗) ≤ 0, i ∈ I(x∗),

. (5.5)

has no solution for every q = 1, 2, ..., k. Since by the assumed Slater-type
condition,

gi(y
′
)− gi(Ex∗) = gi(Ex

′
)− gi(Ex∗) < 0, i ∈ I(x∗),

and then from strong E -convexity of gi at x∗, we get

(Ex
′ −Ex∗)t∇gi(Ex∗) < 0, i ∈ I(x∗). (5.6)

Therefore from (5.5) and (5.6)

[(Ex−Ex∗) + ρ(Ex
′ − Ex∗)]t∇gi(Ex∗) < 0, i ∈ I(x∗),

for all ρ > 0. Hence for some positive λ small enough

gi(Ex∗ + λ[(Ex−Ex∗) + ρ(Ex
′ − Ex∗)]) < gi(Ex∗) = 0, i ∈ I(x∗).

Similarly, for i /∈ I(x∗), gi(Ex∗) < 0 and for λ > 0 small enough

gi(Ex∗ + λ[(Ex− Ex∗) + ρ(Ex
′ −Ex∗)]) ≤ 0, i /∈ I(x∗).

Thus, for λ sufficiently small and all ρ > 0, Ex∗+λ[(Ex−Ex∗)+ρ(Ex
′−Ex∗)]

is feasible for problem (P). For sufficiently small ρ > 0, (5.5) gives

fq(Ex∗ + λ[(Ex−Ex∗) + ρ(Ex
′ − Ex∗)]) < fq(Ex∗), (5.7)

now for all j 6= q such that

fj(Ex∗ + λ[(Ex−Ex∗) + ρ(Ex
′ − Ex∗)]) > fj(Ex∗). (5.8)

Consider the ratio

N(λ, ρ)
D(λ, ρ)

=
[fq(Ex∗)− fq(Ex∗ + λ[(Ex− Ex∗) + ρ(Ex

′ −Ex∗)])]/λ

[fj(Ex∗ + λ[(Ex− Ex∗) + ρ(Ex′ − Ex∗)])− fj(Ex∗)]/λ
. (5.9)

From (5.5), N(λ, ρ) → −(Ex − Ex∗)t∇fq(Ex∗) > 0. Similarly, D(λ, ρ) →
(Ex− Ex∗)t∇fj(Ex∗) ≤ 0; but, by (5.8) D(λ, ρ) > 0 , so D(λ, ρ) → 0. Thus,
the ratio in (5.9) becomes unbounded, contradicting the proper efficiency of
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y∗ = Ex∗ for (P). Hence, for each q = 1, 2, ..., k, the system (5.5) has no
solution. The result then follows from an application of the Farkas Lemma as
in [1], namely

k∑

i=1

λi∇fi(Ex∗) +
∑

i∈I(x∗)

ui∇gi(Ex∗) = 0, u ≥ 0.

¤

Remark 5.4. The above Theorem continues to hold when the functions
gi, i ∈ I(x∗), are strictly pseudo-strongly E -convex at x* with respect to the
map E : Rn → Rn.

Theorem 5.8. Assume that y∗ = Ex∗ is an efficient solution for problem (P)
at which the Kuhn-Tucker constraint qualification is satisfied. Then, there
exist scalars λi ≥ 0, i = 1, 2, ..., k,

∑k
i=1 λi = 1, uj ≥ 0, j = 1, 2, ..., m, such

that

k∑

i=1

λi∇fi(Ex∗) +
m∑

j=1

uj∇gj(Ex∗) = 0,

m∑

j=1

ujgj(Ex∗) = 0.

Proof. Since every efficient solution is a weak minimum, by applying Theorem
2.2 of Weir and Mond [6] for y∗ = Ex∗, we get ∃λ ∈ Rk, y ∈ Rm such that

λt∇f(Ex∗) + ut∇g(Ex∗) = 0,

utg(Ex∗) = 0,

u ≥ 0, λ ≥ 0, λte = 0,

where e = (1, 1, ..., 1) ∈ Rk. ¤

Example 1. Let Eᾱ : R2 → R2 be defined as Eᾱ(x, y) = ((1− ᾱ)x
2 , (1− ᾱ)y)

for fixed ᾱ ∈ [0, 1), and let M
′
ᾱ be given by

M
′
ᾱ = {(x, y) ∈ R2 : x− 2y ≤ 0, (1− ᾱ)(x + y)− 3 ≤ 0, y ≥ 0, x ≥ 0}.

Consider the following bi-objective programming

minf1(x, y) = (1− x)3

minf2(x, y) = (6 + x− 2y)3

s. t. (x, y) ∈ M = {(x, y) ∈ R2 : x− y ≤ 0, 2x + y − 3 ≤ 0, y ≥ 0, x ≥ 0}.
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Where f1, and f2 are strongly Eᾱ-convex functions on strongly Eᾱ-convex set
M

′
ᾱ with respect to Eᾱ, for fixed ᾱ.
We shall, now formulate the problem (PEᾱ) as follow:

min(f1 ◦Eᾱ)(x, y)

min(f2 ◦ Eᾱ)(x, y)

s. t. (x, y) ∈ M
′
ᾱ.

Now, we characterize the efficient solution for considered example by weight-
ing approach, in part (i) and by ε-constraint approach in part (ii). Finally,
in part (iii), we obtain sufficient and necessary conditions for efficient solution
for this example:

i) Formulate the weighting problem (Pw) as

Min {w1(1− x)3 + w2(6 + x− 2y)3},
s. t. x ∈ M

where w1, w2 ≥ 0, w1 + w2 = 1.
It is clear that a point (1, 1) is optimal solution for (Pw) corresponding

w = (w1, 0), 0 < w1 ≤ 1, and a point (0, 3) is optimal solution for (Pw)
corresponding to w = (0, w2), 0 < w2 ≤ 1. Hence the set of efficient solutions
of problem (P) can be described as

X = {(x, y) ∈ M : 2x + y = 3}.
ii) Formulate the problem Pq(ε ) as

Min ((1− ᾱ)x
2 )3

s. t. (x, y) ∈ M ′,
(6 + (1− ᾱ)x

2 − 2(1− ᾱ)y)3 ≤ ε1,

and
Min (6 + (1− ᾱ)x

2 − 2(1− ᾱ)y)3

s. t. (x, y) ∈ M ′,
((1− ᾱ)x

2 )3 ≤ ε2.

It is easy to see that the points {(x∗, y∗) ∈ M
′
ᾱ : (1 − ᾱ)(x∗ + y∗) = 3} are

optimal solutions corresponding to

(ε1, ε2) = {(6 + (1− ᾱ)
x∗

2
− 2(1− ᾱ)y∗)3, ((1− ᾱ)

x∗

2
)3};

the images of these optimal solutions by mapping Eᾱ are efficient solutions for
problem (P) which can be described as

X = {(x, y) ∈ M : 2x + y = 3}.
iii) Applying the Kuhn-Tucker conditions (1) to (PEᾱ) yields
−3λ1

2 (1− ᾱ)(1− (1− ᾱ)x∗
2 )2 + 3λ2

2 (1− ᾱ)(6 + (1− ᾱ)x∗
2 − 2(1− ᾱ)y∗)2



220 Tarek Emam

+u1 + u2 (1− ᾱ)− u4 = 0,

−6λ2(1− ᾱ)(6 + (1− ᾱ)
x∗

2
− 2(1− ᾱ)y∗)2 − 2u1 + u2 (1− ᾱ)− u3 = 0,

−6λ2(1− ᾱ)(6 + (1− ᾱ)
x∗

2
− 2(1− ᾱ)y∗)2 − 2u1 + u2 (1− ᾱ)− u3 = 0,

u2( (1− ᾱ)(x∗ + y∗)− 3) = 0,

u1(x∗ − 2y∗) = 0,
−u3 y∗ = 0,

−u4x
∗ = 0,

and
x∗ − 2y∗ ≤ 0, (1− ᾱ)(x∗ + y∗)− 3 ≤ 0, y∗ ≥ 0, x∗ ≥ 0,

where λi ≥ 0, i = 1, 2, λ1 + λ2 = 1, and ui ≥ 0, i = 1, 2, 3, 4.
From the above system we conclude that the full set of efficient solutions of

problem (PEᾱ) can be described as

X
′
ᾱ = {(x∗, y∗) ∈ M

′
ᾱ : (1− ᾱ)(x∗ + y∗) = 3}.

Hence the images of these efficient solutions, by mapping Eᾱ are efficient
solutions for problem (P) which can be described as X = {(x, y) ∈ M :
2x + y = 3}.
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