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Abstract. In this paper we shall interest with characterization of efficient solutions for
special classes of problems. These classes consider strongly E-convexity of involved functions.
Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient
solution are obtained.

1. INTRODUCTION

The concept of E-convexity of sets and functions was presented by Youness
in [7, 8]. This concept was extended to a semi E-convexity by Chen in [4].
E-convexity notation considered only the convex combination of the images of
points under F. The authors generalized this notion to the so called strong E-
convexity [10]. This generalization took into account the convex combination
of points on the segment [Fz,x + Ex|, and the points on the segment [Ey,y +
Eyl. Strong E-convexity was extended to a quasi and pseudo strongly FE-
convexity in [11].

In this paper, we formulate a multi-objective programming problem which
it involves strongly E-convex functions. An efficient solution for considered
problem is characterized by weighting, and e-constraint approaches. In the
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end of the paper, we obtain sufficient and necessary conditions for a feasi-
ble solution to be an efficient or properly efficient solution for this kind of
problems.

Now let us summarize some definitions of strongly F-convex sets, strongly
E-convex functions, generalized strongly E-convex functions; and some results
about them.

Definition 1.1. [10] A set M C R" is said to be a strongly E-convex set with
respect to an operator E : R" — R" if A(ax + Ex) + (1 — A\)(ay + Ey) € M
foreach z,ye M, 0<a <1, and 0 <A< 1.

Every strongly F-convex set with respect to an operator £ : R* — R"
is an F-convex set when o« = 0. If M C R" is strongly E-convex set, then
E(M) C M. If M;and M; are a strongly E-convex sets, then M; Mz is a
strongly E-convex set but M; |J Ma is not necessarily strongly E-convex set.
If F: R" — R" is a linear map, and M;, My C R" are strongly F-convex
sets, then My + M, is a strongly E-convex set.

Definition 1.2. [10] A real valued function f : M C R" — R is said to be a
strongly F-convex function on M, with respect to an operator £ : R — R",
if M is a strongly E-convex set and, for each x,y € M, 0 < a <1, and 0 <
A<,

fMaz 4 Ex) + (1 = N)(ay + Ey)) < Af(Ex) + (1 = A) f(Ey).

If fMaz+Ez)+(1-=N)(ay+Ey)) > Af(Ex)+(1—\)f(Ey), then f is called
a strongly F-concave function on M. If the inequality signs in the previous
two inequalities are strict, then f is called sharp strongly E-convex and sharp
strongly FE-concave, respectively.

Every strongly E-convex function, with respect to an operator £ : R — R"
is E-convex function when o = 0. Let Ey : R — R, and Eo(f(x) +1t) =
f(Ex) + t, for each nonnegative real number ¢, then a numerical function f
defined on strongly FE-convex set M C R" is strongly E-convex if and only
if its epi(f) is strongly E x Ey-convex on M x R. If (f;)ier is a family of
numerical functions, which are strongly E-convex and bounded from above,

then the numerical function f(z) = Sup fi(z) is a strongly E-convex on M.
i€l

If f: R" — R is a differentiable strongly F-convex function, then, for each

z,y € M, (Ex — Ey)Vf(Ey) < f(Ex) — f(Ey). For more details about

strongly E-convex sets and strongly E-convex functions, see [10, 11].

Definition 1.3. [11] A real valued function f : M C R"™ — R is said
to be quasi strongly F-convex function on M, with respect to an operator
E: R"— R"™ if M is strongly E-convex set and, for each z,y € M, 0 < a <
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1,and 0 <A< 1,
f(Maz + Ez) + (1 — N)(ay + Ey)) < max{f(Exz), f(Ey)}.

If f(Max+ Ez)+ (1—MN)(ay+ Ey)) > min{f(Ez), f(Ey)}, then f is called a
quasi strongly E-concave function on M. If the inequality signs in the previous
two inequalities are strict, then f is called strictly quasi strongly E-convex and
strictly quasi strongly E-concave respectively.

Every quasi strongly F-convex function, with respect to an operator E :
R"™ — R"™ is a quasi E-convex function when « = 0. If f : R® — R is a
strongly E-convex function on a strongly E-convex set M C R™, then f is a
quasi strongly E-convex function on M. If f : R® — R is a differentiable quasi
strongly E-convex function at y € M. Then (Ex — Ey)V f(Ey) < 0, for each
x € M [11].

Definition 1.4. [11] A real valued function f : M C R™ — R is said to
be a pseudo strongly F-convex function on M, with respect to an operator
E : R* — R" if M is strongly E-convex set and, there exists a strictly
positive function b : R” x R™ — R such that

f(Ez) < [(By) = f(Mox+Ex)+(1-M(ay+Ey)) < f(Ey) +AA=1)b(z,y)

forall z,y e M, 0<a<1l,and 0 <A< 1.

Every strongly F-convex function f : R — R on a strongly FE-convex set M
is pseudo strongly E-convex function on M. If f : R™ — R be a differentiable
pseudo strongly F-convex function at y € M, then, for each z € M

f(Ex) < f(Ey) = (BEx—Ey)Vf(Ey) <0,

(Bx — Ey)Vf(Ey) > 0= f(Ex) > f(Ey).

2. PRELIMINARIES

Let £': R" — R"™ be a mapping, f;: R* - R, j=1,2,...,k,and g; : R" —
R, 1=1,2,...,m be differentiable real valued strongly F-convex functions on
R™. A multi-objective strongly E-convex programming problem is formulated
as follows:

Min f;(x),
(P) subject to
reM={zxeR": gi(x) <0},

Definition 2.1. A feasible solution z* for (P) is an efficient solution for
(P) if and only if there is no other feasible z, for (P), such that for some
i€ {1,2, ...k},

fl(x) <f1($*),f](.%') Sf](w*)a f07“ all];ﬁl
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Definition 2.2. An efficient solution z* for (P) is called a properly efficient
solution for (P) if there exists a scalar ¢ > 0 such that for each i, i =1,2,...,k,
and each x € M satisfying fi(z) < fi(z*), there exists at least one j # i with

fi(x) > fj(z*), and
[fi(@) = fila")]/1f5(2%) = fi(2)] < ¢

Lemma 2.1. [11] Let £ : R — R"™ be a map and let M C E(R"). If
M ={yeR": (goE)(y) <0}, then E(M') = M.

Let us now formulate the problem:

Min (fj o E)(y),
(PE) subiect to
yeM ={yeR": (gioE)(y) <0}
Denote X and Y the sets of all efficient and properly efficient solutions for
problem (P) respectively; and X’ and Y’ the sets of all efficient and properly
efficient solutions for problem (PFE) respectively.

Lemma 2.2. [9] If 2* € X, then there is at least one element y* € M,
z* = E(y*), and y* € X'

Lemma 2.3. [9] E(y*) € X for each y* € X'.
Remark 2.1. From the two Lemmas 2.2 and 2.3, we obtain X=F (X’).

Lemma 2.4. If 2* € Y, then there is at least one element y* € M, z* =
E(y*), and y* € Y.

Proof. Let x* € Y. Then, from Lemma 2.2, there is at least one element y* €
X', such that z* = E(y*). Let y* ¢ Y'. Then thereisy € M  such that for any
i, fi(Ey') < fi(Ey*), there exists at least one j # i with fj(Ey/) > fi(Ey*),
and f;(By') — fi(By*) > q[f;(Ey*) — f;(Ey')], thus there is " € M, z'=E(y’)
such that f;(z') — fi(x*) > q[fj(z*) — f;(z")] which contradicts z* € Y. Hence
y ey’ O

Lemma 2.5. E(y*) €Y for each y* € Y.

Proof. y* € Y implies y* € X' and hence from Lemma 2.3 E(y*) € X. Let
E(y*) ¢ Y. Then there is ' € M such that for any i, fi(z') < fi(Ey*),
there exists at least one j # i with f;(z') > f;(Ey*), and f;(z') — fi;(By*) >
qlfi(Ey*) — fj(:cl)]. From Lemma 2.1, there is at least one element 3y’ €
M’, such that z’=E(y’), and fi(Ey') — fi(Ey*) > q[f;(Ey*) — f;(Ey’)] which
contradicts y* € Y. Hence E(y*) € Y. O
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Remark 2.2. Lemmas 2.4 and 2.5 imply Y = E(Y”).

Lemma 2.6. [11] Let £ : R* — R" and M = {z € R" : g(x) < 0}. If
g: R™ — R™ is a quasi strongly F-convex function and M C E(R"), then M
is a convex set.

Corollary 2.1.[11] Let E: R® — R"™. If g : R" — R™ is a strongly E-convex
function on R™ and M C E(R"), M = {z € R" : g(z) < 0}. Then M is a
convex set.

Lemma 2.7. If f : R* — R* is a strongly F-convex vector valued function
on a strongly E-convex M’ C R™ and M C E(R"), then the set

A= U Alx)={z:2€ RF 2> f(x) — f(a")}, €M
xeM
is a convex set.

Proof. Let o', 2? € M. Then, from Lemma 2.1, 3y',y? € M’ such that 2! =
Ey', 22 = Ey?. Since f is a strongly E-convex function on M, for 2!, 2% € A,
0 <a<1 and 0 < X <1, we have

Azt (1= 022 > A[f(ah) = f(@)] + (1= V[f(2) = Fa")],
which can be rewritten
Azt + (1= N)22 > M (By') + (1= N f(By?) — f(a¥)

> f(May! + By') + (1 = N)(ay? + Ey?)) — f(2")
> f(ABY' + (1= N Ey?) — f(a*)
= fOzt+ (1= Nz?) — f(z*).

Since M is convex set upon Corollary 2.1, Az! + (1 — )22 € A. Hence A is a

convex set. l

For a feasible point 2* € M', we denote I(z*) as the index set for binding
constraints at x*, i.e.

I(z*) ={i: (gio E)x* = 0}.
3. CHARACTERIZING EFFICIENT SOLUTIONS BY WEIGHTING APPROACH

A weighting approach is one of the common approach for characterize ef-
ficient solutions of multi-objective programming problems [9]. In the follow-
ing we shall characterize an efficient solution for a multi-objective strongly
E-convex programming problem (P) in term of an optimal solution of the
following scalar problem:

k
(P, Min ijfj(:n), subiect to x € M,
j=1
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where w; > 0, j = 1,2,..,k, Z?:l w; = 1, fj, j = 1,2,...,k are strongly
E-convex on M’ and M’ is a strongly E-convex set.

Theorem 3.1. If z € M is an efficient solution for the problem (P), then
there exist w; > 0, 7 = 1,2,...k, Z?:l w; = 1 such that T is an optimal
solution for problem (P,).

Proof. Let & € M be an efficient solution for problem (P). Then the system
fi(x)—f;(z) <0, 5 =1,2,...,k has no solution z € M. Upon Lemma 2.7 thus
applying the generalized Gordan theorem [5], there exist p; >0, j=1,2,...,k

such that p;[f;(z)—f;(Z)] >0, 7 =1,2,....k, and =2— fj(z) > <2—f;(Z).
>5=1Pj 2j=1Pj

Denote w; = %, then w; > 0, j = 1,2,..,k, Z?:l w; = 1, and
25:1 w;fi(z) < Z§:1 w;fj(z). Hence Z is an optimal solution for problem
(P,)- O

Theorem 3.2. [3] If Z € M is an optimal solution for (P ) corresponding to
wj, then Z is an efficient solution for problem (P) if either one of the following
two conditions holds:

(i) w; >0, forall j=1,2,...,k; or (ii) Z is the unique solution of (P ).

4. CHARACTERIZING EFFICIENT SOLUTIONS BY e-CONSTRAINT APPROACH

In this section, our basic aim is to characterized an efficient solution for
problem (P) by e-constraint approach. To characterize an efficient solution for
problem (P) by e-constraint approach let us scalarize problem (P) to become
in the form:

Min (fq 0 E)(z),
P,(e) subiect to x € M’,
(fioE)(x)<e¢ej, j=1,2,...k, j#q, ¢ € R.

where f;, j = 1,2,...,k are strongly E-convex on M’ and M’ is strongly E-
convex set .

Theorem 4.1. If Z € M is an efficient solution for problem (P), then there
are § € M’ e € RF such that Z = E(§) and 7 is an optimal solution of problem
P,(e) for every q.

Proof. Since & € M is an efficient solution for problem (P), from Remark 2.1,
there is § € M’ which is an efficient solution for problem (PE), i.e. § € X’
and T = E(y).

Let § be a non optimal solution for P,(g) for some ¢. Then there is § € M’
such that (fq o E)(7) < (fo E)(§) and (fj0 E)() <&, j=12,...k, j #q.
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By putting &; = (fj 0o E)(y),j = 1,2,...,k, j # q, then we get

(fio E) @) < (fj o E)(®)

with strict inequality for at least one j. Thus, § ¢ X' and E(7) = & ¢ X which
is a contradiction. Hence 7 is an optimal solution for problem P,(e). O

Theorem 4.2. Let § € M’ be an optimal solution of problem P(e), for each
q. Then E(y) is an efficient for problem (P).
Proof. Let h: R" — [_71, o0) be a map defined by
h(y) = (1@115){%62 +/6 : (f] © E)(g) - (f] % E)(y) < ,86, .7 = 1>27 "'?kv :'-7 € M,}
where e = (1,1,...,1) € R¥. From [2] we obtain that

() X" ={y € M": h(y) = 0},

(i)h(y) < 0, for each y € M'.
are equivalent, where X’ is a set of efficient solution for problem (P).

Let E(y) ¢ X. Then, from Remark 2.1, § ¢ X', that is h(y) < 0, and hence,
for some 3 € M’, we have

(fioE)(@) = (fio E)(y) <0,j=1,2,.... k.

Therefore g is not optimal solution for problem P, (¢), which is a contradiction,
then E(y) is an efficient for problem (P). O

5. OPTIMALITY CRITERIA

In this section, we will drive the sufficient and necessary conditions for a
feasible solution E(z*), 2* € M’, to be efficient or properly efficient solution
for problem (P) as in the following theorems.

Theorem 5.1. Suppose that M C E(R"), there exists a feasible solution x*
for (PE), and scalars \; >0, i =1,2,....k, u; >0, i € I(z*) such that

k

S NVSi(Bxt) + ) uiVgi(Bx*) =0. (5.1)
i=1 iel(x*)

If fi, i=1,2,...,k, and g; ,i € I(x*) are strongly E-convex functions at z* €

M’ with respect to the same E. Then z*is a properly efficient solution for

problem (PE) and E(z*) is a properly efficient solution for problem (P).

Proof. For all z € M, we have from [11]
i Nifi(Br) = X0y Nifi(Ba®) > (Bx — Ba®) S MV fi(Bae))
= —(Ez — Ex") 3 icr(o) u;[Vg;(Ex*)]t
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by (5.1), it can be rewritten as

S N fi(Br) — S N fi(Er) > YF wigi(Bxt) — b wigi(Ba)
=~ Yicier) wigi(Ex) >0,

thus % Nifi(Bx) > S \ifi(Ex*), for all € M, which implies that z*
is the minimizer of Zle Ai(fi o E)(x) under the constraint (g o E)(z) < 0.
Hence, x* is a properly efficient solution for problem (PE) due to Theorem 4.1

of [3], and E(z*) is a properly efficient solution for problem (P) due to Lemma
2.5. O

Theorem 5.2. Let M C E(R") and z* be a feasible solution for (PE). If
there exist scalars \; > 0,7 = 1,2,...,k,Zf:1 Ai = Liu; > 0,4 € I(x*), such
that the triplet (xz*, A;,u;) satisfies (5.1) in Theorem 5.1, Zle ;i fi is sharp
strongly E-convex, and gy is strongly E-convex at * with respect to E. Then

x* is an efficient solution for problem (PE), and E(x*) is an efficient solution
for problem (P).

Proof. Suppose that z* is not an efficient solution for (PE). There exists a
feasible z for (PE) and index r such that

(froE)(x) < (fTOE)(x*),
(fioE)(x) < (fio E)(x*), for all i #r.

These two inequalities lead to

k k k
0>> Xifi(Bx) =Y _Nifi(Ex*) or 0> (Ez— Ex*)Y N[V fi(Ea")],
i=1 i=1 i=1
(5.2)
since Zle Aifi is sharp strongly E-convex at z*, and

(Ex — Ex*)Vg;(Exz*) <0,

since g;, i € I(x*), is strongly E-convex at z* and (go E)(x) < 0. The above
inequality yields

(Bx— Ex*) Y w[Vgi(Ex*)]" <0. (5.3)
1el(z*)
Adding (5.2) and (5.3), we obtain a contradiction to (5.1). Hence, z* is an effi-

cient solution for problem (PE), and E(x*) is an efficient solution for problem
(P) due to Lemma 2.3. O
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Remark 5.1. Proceeding along the same lines as in Theorem 5.1, it can be
easily seen that z* and E(z*) become properly efficient solutions for (PE),
and (P), respectively in the above theorem, if A\; >0, for all i=1,2,....k.

Theorem 5.3. Suppose that M C E(R"), there exists a feasible solution x*
for (PE), and scalars X\; > 0,i = 1,2,...,k,u; > 0,7 € I(x*), such that (5.1)
of Theorem 5.1 holds. If Zle Aifi is pseudo-strongly E-convex, and g; are
quasi-strongly E-convex at x* € M " with respect to E. Then z* is a properly

efficient solution for problem (PE), and E(z*) is a properly efficient solution
for problem (P).

Proof. Since gr(Fz) < gr(Fz*) = 0, u; > 0, and gy are quasi-strongly E-
convex at z*, we have

(Ex — Ex*) Z ui[Vgi(Ex*)] <0, forall € M .
i€l (z*)

By using (5.1), we have

k
(Bx — Bx*)>_ X[V fi(Ea®)]" >0,
=1
which implies that

k k
D Nifi(Bx) =Y Nifi(Bx),
i=1 =1

since Zle A fi 1s pseudo-strongly E-convex at x*. Hence, z* is the minimizer
of Zle Ai(fi o E)(z) under the constraint (g o E)(x) < 0. Therefore, z* is a
properly efficient solution for problem (PE), and E(z*) is a properly efficient
solution for problem (P). O

Theorem 5.4. Suppose that M C E(R"), there exist a feasible solution z*
for (PE) and scalars \; > 0,i =1,2,.... k, Zle Ai=1, u; >0,i € I(x*), such
that (5.1) of Theorem 5.1 holds. Let Z,’f:l Aifi be strictly pseudo-strongly
E-convex and g; be quasi-strongly F-convex at x* with respect to E. Then z*

is an efficient solution for problem (PE), and F(z*) is an efficient solution for
problem (P).

Proof. Suppose that 2* is not an efficient solution for (PE). Then, there exists
a feasible z for (PE), and index r such that

(frOE)(x) < (frOE)(x*))
(fi o E)(z) < (fio E)(z*), for all i #r.
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Therefore,
k k k
S Nifi(Bx) <Y Nfi(Bx*) or (Bx— Ex*)Y X[V fi(Ea")]' <0,
=1 =1 =1

since Zle Ai fi is strictly pseudo-strongly E-convex at x*. Since gr is quasi
strongly E-convex at ¥, gr(Ex) < gr(Ez*) = 0 which implies

(Ex — Ex*)Vgr(Ex*) <0.

The proof now is similar to the proof of Theorem 5.2. O

Remark 5.2. Proceeding along similar lines as in Theorem 5.3, it can be
easily seen that z* and E(x*) become properly efficient solutions for (PE),
and (P), respectively in the above Theorem, if A\; >0, for all i=1,2,...,k.

Theorem 5.5. Suppose that M C E(R"), there exists a feasible solution
x* for (PE), and scalars \; > 0,i = 1,2,...,k,u; > 0,i € I(z*), such that
(5.1) in Theorem 5.1 holds. Let Zle i fi be pseudo-strongly E-convex, and
uy g7 be quasi-strongly E-convex at x* with respect to E. Then x*is a properly

efficient solution for problem (PE), and E(x*) is a properly efficient solution
for problem (P).

Proof. The proof is similar to the proof of Theorem 5.3. O

Theorem 5.6. Suppose that M C E(R™), there exists a feasible solution
x* for (PE), and scalars \; > 0,7 = 1,2,...,]{7,2?21 Ai = Lu; > 0,0 € I(z¥),
such that (5.1) of Theorem 5.1 holds. If I(z*) # ¢, Zle A fi 18 quasi-strongly
E-convex and uy gy is strictly pseudo-strongly F-convex at z* with respect to
E. Then x* is an efficient solution for problem (PE), and F(z*) is an efficient
solution for problem (P).

Proof. The proof is similar to the proof of Theorem 5.4. O

Remark 5.3. Proceeding along similar lines as in Theorem 5.3, it can be
easily seen that z* and E(x*) become properly efficient solutions for (PE),
and (P), respectively in the above Theorem, if A\; >0, for all i=1,2,...,k.

Theorem 5.7. (Necessary Optimality Criteria) Assume that y* = Ez* is
a properly efficient solution for problem (P). Assume also that there exists a
feasible point i/ = Fz’ for such that g;(y') < 0, i = 1,2, ..., m, and each g;, i €
I(z*) is strongly E-convex at z* with respect to the same map E : R" — R".
Then, there exists scalars A\; > 0,7 = 1,2,...,k and u; > 0,7 € I(z*), such
that the triplet (z*, \;, u;) satisfies
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k
Y NVS(Ex) + ) wVgi(Ex®) =0. (5.4)
=1 i€l(z*)
Proof. we show that the system
( Ex*)'V f,(Ex*) <0,
(Exz — Ex*)!'V fi(Ez*) <0, foralli#q . (5.5)
(Bx — Em*)thi(E ) <0, diel(z),
has no solution for every ¢ = 1,2,....,k. Since by the assumed Slater-type
condition,

9i(y) — gi(Ex”™) = gi(Bx') — g:i(Bx*) < 0, i € I(a"),
and then from strong F-convexity of g; at x*, we get

(B — Ex*)'Vgi(Ex*) <0, i € I(z*). (5.6)
Therefore from (5.5) and (5.6)

[(Ex — Ex*) + p(Ex — Ex*)]'Vg;(Ez*) <0, i € I(z*),
for all p > 0. Hence for some positive A small enough

gi(Bx* 4+ N[(Ex — Ex*) + p(Ex — Ex"))) < gi(Exz*) =0, i € I(z*).
Similarly, for i ¢ I(z*), g;(Ex*) < 0 and for A > 0 small enough

gi(Ex* + \(Bx — Ex*) + p(Ex' — Ex")])) <0, i ¢ I(z").
Thus, for X sufficiently small and all p > 0, Ex*+\[(Ez — Ex*) 4 p(Ex’ — Ex*)]
is feasible for problem (P). For sufficiently small p > 0, (5.5) gives

fo(Bx* + N[(Bx — Ex*) 4 p(Ex — Ex*)]) < f,(Ex¥), (5.7)
now for all j # ¢ such that

fj(Ex* + N[(Bx — Ex*) 4 p(Ex — Ex*)]) > fj(Ex*). (5.8)
Consider the ratio

N\ p) _ [fo(Br*) — fo(Ba* + A[(Ez — Ez*) + p(Bz’ — Exz*)])]/A
D(\,p) — [fi(Ex* + N(Bx — Ex*) + p(Bz’ — Ex*)]) — f;(Ex*)] /A’
From (5.5), N(\,p) — —(Ez — Ex*)'Vf,(Ez*) > 0. Similarly, D(\, p) —
(Ex — Ex*)t f](E:U*) < 0; but, by (5.8) D(A,p) >0 ,s0 D(A,p) — 0. Thus,
the ratio in (5.9) becomes unbounded, contradicting the proper efficiency of

(5.9)
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yx = Ex* for (P). Hence, for each ¢ = 1,2,...,k, the system (5.5) has no
solution. The result then follows from an application of the Farkas Lemma as
in [1], namely

k
i=1 1€l(z*)
O

Remark 5.4. The above Theorem continues to hold when the functions
gi, © € I(x*), are strictly pseudo-strongly E-convex at z* with respect to the
map F: R® — R™.

Theorem 5.8. Assume that y* = Ex* is an efficient solution for problem (P)
at which the Kuhn-Tucker constraint qualification is satisfied. Then, there
exist scalars \; > 0,7 = 1,2,...,1@,2?:1 Xi = Lu; > 0,5 =1,2,...,m, such
that

k m
> ANVSi(Bxt) + > u;Vgi(Ex*) =0,

i=1 j=1
m
Z ujg;(Ex*) = 0.
j=1

Proof. Since every efficient solution is a weak minimum, by applying Theorem
2.2 of Weir and Mond [6] for y* = Ex*, we get I\ € R*, y € R™ such that

NV f(Bx*) + u'Vg(Ex*) = 0,
u'g(Ex*) =0,
u>0, \>0, Me=0,
where e = (1,1,...,1) € R*. O

Example 1. Let E5 : R* — R? be defined as Es(z,y) = (1 - a)%, (1 —a)y)
for fixed @ € [0,1), and let M!i be given by
M, ={(z,y) e R*: -2y <0, 1—a)(z+y)—3<0, y>0, x>0}

Consider the following bi-objective programming

minfi(z,y) = (1 - 2)°

minfa(z,y) = 6+ — 2y)°
s.t. (wy) e M ={(z,y) €ER*: z—y<0,22+y—3<0,y>0, >0}
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Where f1, and fo are strongly E5-convex functions on strongly Eg-convex set
M, with respect to Eg, for fixed a.
We shall, now formulate the problem (P, ) as follow:

min(fi o Es)(z,y)

mln(fZ o E@)(.’E, y)

s.t. (z,y) € M.
Now, we characterize the efficient solution for considered example by weight-
ing approach, in part (i) and by e-constraint approach in part (ii). Finally,
in part (iii), we obtain sufficient and necessary conditions for efficient solution

for this example:
i) Formulate the weighting problem (P,) as

Min {wi(1 —z)3 +wa(6 + z — 2y)*},
s.t. reM
where wq,ws > 0, wy +wy = 1.

It is clear that a point (1,1) is optimal solution for (P,) corresponding
w = (w,0), 0 < w; <1, and a point (0,3) is optimal solution for (P,)
corresponding to w = (0,wz), 0 < we < 1. Hence the set of efficient solutions
of problem (P) can be described as

X ={(z,y) e M : 2z +y =3}

ii) Formulate the problem P4(c) as

and
Min (6+ (1 —a)% —2(1—a)y)?
s.t. (z,y) € M,
(1-a)%) <es.
It is easy to see that the points {(z*,y*) € My : (1 — a)(z* + y*) = 3} are
optimal solutions corresponding to

* ﬂf*

(erve2) = {6+ (1- @)% —2(1 - a)y")* (1 - &) %)%

the images of these optimal solutions by mapping Eg are efficient solutions for
problem (P) which can be described as

X ={(z,y) e M : 204y =3}

iii) Applying the Kuhn-Tucker conditions (1) to (Pg,) yields
rl-a)l-1-a)%)?+ 31 -a)6+ (1 -a)% -2 -a)y)
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and
=2y <0, (1-a)(z"+y*)—3 <0, y* >0, =" >0,
where \; >0, t=1,2, Ay +X=1,and u; >0, :=1,2,3,4.
From the above system we conclude that the full set of efficient solutions of
problem (Pg,) can be described as

Xa={@"y") € My: (1-a)(=" +y") =3}
Hence the images of these efficient solutions, by mapping F5 are efficient
solutions for problem (P) which can be described as X = {(z,y) € M :
2z +y = 3}.
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