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Abstract. In this paper we prove several fixed point theorems for set-valued mappings
on complete partial ordered metric spaces which generalize some results in [2] and extend
some results of [6] in Tp-quasipseudometric spaces. We also generalize some results of [11]
for set-valued mappings on topological space. Some example are presented to illustrate the

results.

1. INTRODUCTION

It is well known that fixed point theory plays an important role in various
fields of applied mathematical analysis and scientific applications. In 2013,
Beg and Butt [2] extended the fixed point theorems for set valued mappings
in partially ordered metric space. In 2014, Tirado et al. [6] generalize some
fixed point theorems in terms of ()-function on complete quasimetric space.
Recently, Shaha et al. [11] give the existence of fixed points of mappings on
general topological spaces. In this paper, we also extend their results. For
convenience, we recall some definitions below.

2. PRELIMINARIES

Definition 2.1. Let (X, d) be a complete metric space, and CB(X) the class
of all nonempty closed and bounded subsets of X. For A, B € CB(X), let
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D(A, B) = max {sup d(A,b),supd(a, B)} ,
beB acA

where, D is said to be a Hausdorff metric induced by d.

Definition 2.2. A partial order is a binary relation < over a set X which
satisfies the following conditions:

(1) z <u;

(2) if x <y and y <z, then z = y;

(3) if x <y and y < z, then z < 2.

Definition 2.3. Let X be a nonempty set and d : X x X — [0, 00) a function
such that:

(a) d(z,y) = d(y7x) =0er=y

(b) d(x,2) <d(z,y)+d(y,2), Vz,y,z€X.
Then d is called a Ty-quasipseudometric on a set X. The pair (X, d) is said
to be a Ty-quasipseudometric space. If one replaces the condition (a) with the
stronger condition

(a*) d(z,y) =0z =y.

Then d is called a quasimetric on X. In this case the pair (X,d) is said to
be a Ty-quasimetric space. In the sequel we will use the abbreviation Tp-qpm
(respectively, Tyo-qpm space) instead of Tp-quasipsrudometric (respectively, Tp-
quasipsrudometric space).

Definition 2.4. A sequence {z,,}°°; in a Ty-qpm space (X, d) is 74-convergent
to xz € X, if only if lim d(z,z,) = 0. Analogously, a sequence {x,}52 in a
n—oo

To-gpm space (X, d) is 74-1-convergent to x € X, if only if lim d(z,,z) = 0.
n—oo

Definition 2.5. A Ty-qpm space (X, d) is said to be complete if every Cauchy
sequence is 74-1-convergent in the metric space.

Definition 2.6. Let (X, d) be a Ty-qpm space and ¢ : X x X — [0,00) be a
function which satisfies:
(Q1) q(x,z) < q(x,y) +q(y,2), Vao,y,z € X;
(Q2)ifx € X, M > 0, {yn}2, is Tg-1-converges to y € X and satisfies
q(z,yn) < M, for all n € Nx, then q(x,y) < M;
(Q3) for Ve > 0,36 > 0, such that ¢(z,y) < ¢ and ¢(y,z) < ¢, imply
d(y, z) < &
then ¢ is call a Q-function on (X, d).
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Definition 2.7. Let ¢ be a Q-function on (X,d). T : X — 2% is said to be
g-l.s.c operator. If the function = — ¢(z,Tz) is 74-1-lower semicontinuous on
(X,d), where q(z, Tx) = inf{q(z,y) : y € Tz}.

Definition 2.8. Let X be a topological space.

1. A function f : X — R is said to be lower-continuous from above
(Isca) at a point xg € X, if for any net {x)},., converging to xg
such that f(zy,) < f(zy,) for any A1, A2 € A with Ay < Ay, imply
f(@o) < lim f(z3).

2. A function f: X x X — R is said to be lower-continuous from above
(Isca) at a point (xq,y0) € X x X, if for any net {(2x,yx)},ca converg-
ing to (xo,yo) such that f(xx,,yr,) < f(Tr,,Yn,) for any Aj, Ao € A
with Ay < Ay, imply (20, y0) < Lim f(@x, ya)-

€

3. A function f : X x X — R is said to be Isca on X x X if it is Isca at

all points (z,y) € X x X.

Definition 2.9. V={F : X x X — R| F is Isca and F(z,y) =0 if x = y}.

Lemma 2.10. ([2]) Let {A,} C CB(X) and li_}m D(A,,A) = 0 for A €
CB(X). If x,, € A, and li_>m d(zp,x) =0, then x € A.

Lemma 2.11. ([7]) Let q be a Q-function on a Ty-gpm space (X, d), lete > 0,
and § = 6(x) > 0 for which condition (Q3) holds. If q(x,y) < ¢ and q(x,z) <
0, then d*(y,z) < e.

Lemma 2.12. ([3]) Let X be a compact topological space and f: X x X — R
be a lsca function. Then there exists xo € X such that f(xo) = inf{f(z):x €
X}.

3. MAIN RESULTS

Theorem 3.1. Let (X, <) be a partially order set and d be a metric on X
such that (X,d) is a complete metric space. Assume that X satisfies: if a
non-decreasing sequence x, — x € X, then z, < x, for Vn € N*. Let
F : X — CB(X) satisfying the following three conditions:
(1) D(F(x),F(y)) < ¢ld(z,y)], Vo <y (¢: RT — R be a non-decreasing,
satisfies " (t) — 07thr(l)l+ e(t)=0,Vt>0.);
—

(2) ifd(z,y) <e <1, for somey € F(x), then x < y;
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(3) there exists xg € X, x1 € F(xg) with xo < z1 such that d(zg,x1) < 1.
Then F has a fized point.

Proof. For assumption (3), there exists xg € X, x1 € F(xg) with zg < x1 such
that
d(xo,azl) < 1. (31)

Then, from assumption (1) and inequality (3.1), we deduce,
d(xz1, F(z1)) < D(F(x0), F(21)) < pld(zg,z1)] < 1.
So there exists xo € F(x1) such that x; < x9, and
d(z1,22) < pld(zo,21)].
Since
d(ws, F(a2)) < D(F(x1), F(2)) < ¢ld(z1,22)] < ¢*[d(x0,21)],
there exists x,, € F(x,—1) such that z,,—1 < z,, and
d(xp—1, ) < pld(Tn—2,Tn-1)].

Again, since

d(@n, F(zn)) < ¢"[d(z0, 1)),
there exists x, 1 € F(x,) such that x,, < x,41, and

d(xn, Tnt1) < @"[d(zg,21)] = 0, as n — oo. (3.2)

Next we will show that {x,} is a Cauchy sequence in X. From inequality
(3.2), for all € > 0, there exists N such that

d(xp, Tny1) <e—@(e), ¥Yn>N.
By using assumption (1), we have,
d(@p41, Tn2) < @[d(Tn, Tns)].

Therefore,
d(ﬂjna 1:n+2) < d(xna xn-l—l) + d(l‘n+1, xn+2)

<e—ple) + pld(wn, Tni1)]
<e—p(e) +ole) =e.
Using the mathematical induction, we have,
d(xp, Tpik) <&, VYkeN* n>N.

Therefore {z,,} is a Cauchy sequence in X and hence converges to some point
(say) x in the complete metric space X.

Now we will show that x is a fixed point of the mapping F. For {z,} is a
non-decreasing sequence in X such that x,, — =, we deduce

T, <z, VneN~.
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From assumption (1), it follows that
D(F(zy), F(z)) < ¢ld(xn,z)] -0 as n— oo.

Now since x,41 € F(zy,), it follows by using Lemma 2.11 that = € F(x), i.e.,
x is a fixed point of the mapping F'. O

Theorem 3.2. Let (X,d) be a complete metric space and satisfying:
D(Fz,Fy) < pld(z,y)], Yz,ye X, (3.3)

where ¢ : R™ — R™ is any monotone non-decreasing (not necessarily contin-
uous) function such that

lim ¢"(t) =0 and lim p(t)=0, VYVi¢>0.

n—o0 {0+
Then F has a fixed point in X.
Proof. For all x € X, there exists 21 € Fz such that Fx; C F2z. Since
d(Fxy,21) < D(Fx1, Fx) < ¢[d(x1, )],
there exists ro € Fr1 C F?x = F(Fz) such that
d(z2, 1) < pld(z1, 7)].

Then, we have Fzy C F3z. Similarly, we have, Tpe1 € Fx, C F" g such
that

d(n+1, ) < @ld(Tn, Tn-1)]-
Next we will show that {x,} is a Cauchy sequence in X. By the structuring of
{z,}, we have

d(Tni1,7n) < @ld(zn, T7-1)]
< SDQ[d(fUnfbxnf?)]

< "ld(x1,2)] = 0, as n — oo.
For all € > 0, choose N so large that
d(xpt1,2n) <e—p(e), ¥Yn>N.
Then, we have
d(Tn, Tpt2) < d(Tn, Tpg1) + d(Tng1, Tng2)

< e—(e) + eld(@n, Tni1)]

<e—ple)+ple) =e¢.
Using the mathematical induction, we have,

d(xp, Tpik) <&, VYkeN* n>N.
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Therefore {z,} is a Cauchy sequence in X and hence converges to some point
(say) xo in the complete metric space X.

Next we have to show that x( is a fixed point of the mapping F'.
From assumption (3), it follows that

D(Fzy, Fxo) < pld(zp,x0)] =0, as n — oo.
Now because z,+1 € F(x,), we have

lim d(zp41, Fzo) = 0.

n—o0

It follows by using Lemma 2.11 that z¢ € F(x), i.e., x¢ is a fixed point of the
mapping F'. O

Theorem 3.3. Let (X,d) be a complete metric space and F : X — CB(X)
satisfying: for all € > 0, there exists 6(x) > 0 such that d(x, Fx) < § imply
F[B(x,e)] C B(z,¢). If there exists a point uw € X with

lim D(F™(u), F"*(u)) = 0.

n—o0
Then exists a sequence {u,} = {u;|u; € Fi(u),i=1,2,---} such that u, — ug
and ug is a fixed point of F' in X.
Proof. Take u1 € Fu, then Fu; C F?u = F(Fu) and take ups € Fu; C F?u,
then Fuy C F3u. Similarly, we get,
Ups1 € Fu, C F" My,
Next we will show that {x,} is a Cauchy sequence in X.
Since li_}m D(F"u, F"t') = 0, for all € > 0, choose N so large that
n oo
D(F™u, F""lu) < 6(¢), V¥n> N,
then
d(tn, Fuy,) < D(F™u, F"u) < 6(e), Vn> N.
Specifically, we have
d(un, Fuy) < d(¢).
So, we get
F[B(UN,zE)] C B(UN,E-I).
On the other hand, for u, 1 € Fu,, we have unyy1 € B(upy,e). Then
Funi1 C F[B(up,€)] C B(uy,¢).
Therefore, un 2 € B(uy, ). Following the same way, we have

Fupnyr C F[B(un,¢)] C B(un,¢),
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then unyr € B(un,e), Yk € N*. So, we have
d(UN,UN-&-k) <e, VkeN*

Therefore {u,} is a Cauchy sequence in X and we get u, — up € X in the
complete metric space X.

Next we have to show that wug is a fixed point of the mapping F'(proof by
contradiction).
Suppose, to the contrary, that d(Fug,up) = a > 0. For u, — up we have

d(Fup,u,) - a, as n — oo.
So we could take u, € B(ug, §) such that
a

3)'

2
d(Fug, up) > ga and  d(up, unt1) < O(

By the assumption we have
a a
F[B(uy, §)] C B(up, §)

On the other hand, for ug € B(uy, §) we have
FUO g B(un7 g))

a contradiction to d(Fug, u,) > %a Thus d(Fug,up) = a =0, i.e., up is a fixed
point of the mapping F'. O

Theorem 3.4. Let (X,d) be a To-gpm space, q a Q-function on (X,d). T :
X — 2% o multivalued map such that for all x,y € X,u € Tz, there exists
v € Ty satisfying:
q(u,v) < p(max {q(z,y), ¢(x,u), a(y,v)})
where ¢ : RT — R™ is any monotone non-decreasing (not necessarily contin-
uous) function such that lim ¢"(t) =0 and lim ¢(t) =0, Vt > 0. Then for
n—00 t—0t
all xg € X, there exists {x,} satisfying the following three conditions:

(a) xpy1 € Tz, for alln € N*;
(b) for d > 0, there exists ns € N such that q(zy,Tm) <, ¥Vm >n > ns;
(¢) {zn} is a Cauchy sequence in the metric space (X,d*).

Proof. Following the same process with Lemma 2.12 of literature [6]. We get
a sequence {x,} C X with 2,41 € Tz, and for all n € N

Q(xn-i-l; «Tn+2) < go(maX {Q(xna xn+1)7 Q(xn-‘rlv xn+2)})' (34)

Now we distinguish two cases.
Case 1. The same discussion with Lemma 2.12 of literature [6].
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Case 2. For all n € N*, q(zy, zp+1) > 0. Then, for the same way with Lemma
2.12 of literature [6], we have

q(Tn; Tny1) < 9" (q(wo, 1)), Yne N™
Since ILm ©"(t) =0, Vt > 0, then we have

Jimg(zn, 2p41) = 0.

So, for § > 0, there exists Ng so large that
q(Tn, Tpi1) <6 —@(9),
then, for all n > Ny,

q(@n, Tnt2) < @(Tn; Tnt1) + @(Tns1, Tny2)
<6 = ¢(0) + ¢(q(xn, Tny1))
<0 —(0) +p(d) =0

Using the mathematical induction we have
q(xp, Tpyr) <6, ¥Ym>Ns, ke N*.

In particular, ¢(zn,,z,) < d and g(xn,, Tm) < d, for all n,m > Ns. Thus by
Lemma 2.12 of this article, for Ve > 0, we have d*(x,, xn,) < ¢, for all n,m >
Ns. Hence {z,} is a Cauchy sequence in (X, d*). This concludes the proof. [

Theorem 3.5. Let (X, d) be a Ty-gpm space and q is a Q-function on (X,d),
T: X — CB(X), a multivalued map, is q-l.s.c operator and for all z,y €
X,u € Tz, there exists v € Ty satisfying:

q(u,v) < p(max {q(z,y),q(z,u), q(y,v)})

where ¢ : RY — R is any monotone non-decreasing (not necessarily continu-
ous) function such that lim ¢"(t) =0 and lim ¢(t) =0, Vt > 0. Then, there
n—oo t—0t

exists z € X such that z € Tz and q(z, z) = 0.

Proof. Using the same proving way with Theorem 1 of article [6]. g

Theorem 3.6. Let (X, d) be a Th-gpm space and q is a Q-function on (X,d),
T:X — CB(X), a multivalued map, such that for all x,y € X,u € Tz, there
exists v € Ty satisfying:
q(u,v) < p(max{q(z,y), q(z,u)}),
where ¢ : RT — R is any monotone non-decreasing (not necessarily continu-
ous) function such that lim ¢"(t) =0 and lim+ o(t) =0,Yt > 0. Then, there
n—00 t—0

exists z € X such that z € Tz and q(z,z) = 0.
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Proof. Using the same proving way with Theorem 2 of article [6], we get a
z € X such that z € Tz.

Now we prove that ¢(z,z) = 0. Since z € T'z, hence, there exists {z,} with
21 €Tz, zpt1 € Tz, and nlgrolo d(zp,z) = 0 such that

q(z, zn) < p(max{q(z, zn-1),q(2,2)}), Vn>2.
Then, there is Ny such that for any n > Ny, we have q(z, z,) < ¢(q(z, 2)).
Thus, we obtain
T gz 20) < ola(z )
By hypotheses ¢(z, z) > 0, we have

©(q(z,2)) < q(z,2) < q(z,2n) + q(2n, 2).

Since lim d(z,,z) =0, then lim ¢(z,,z) = 0. Thus, we obtain

lim Q(Z7Zn) > Q(za Z)

n—oo

So, we get a contradiction that lim ¢(z, z,) > lim ¢(z, 2z,,). Thus we have
n—00 n—o0

q(z,2z) =0.
U

Theorem 3.7. Let X be a topological space, K be a nonempty compact subset
of X and T : K — CB(K) be a set valued operator. If F' € U and for all
x,y € K,z # y,u € Tz, there exists v € Ty satisfying

F(u,v) < max{F(x,y), min{F(x,u), F(y,v)}}
+ Amin{F(x,v), F(u,y)},
where X\ is an arbitrary positive real number. Then T has at least one fixed
point.
Proof. Define ¢ : K — R by ¢(x) = uienjfo(:c,u),x € K. We shall show

that ¢ is also Isca on K. For any zg € K, there exists {x,} C K such that
Tp — Tg. Since Tz, is close and K is compact, there exists y, € Tz, that
Yn — Yo € Txg. For F is Isca, we have

(3.5)

F(.Cvg,yo) < lim F(xnayn)‘
n—oo
Then

SO(CL'O): inf F(mo,y) S‘F('CL‘ano)
yeTzo

o o . ‘
< lim F(zp,yn) = lim  F(z,y,) = lim ¢ (2n)
yn€Txy
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So, ¢ is Isca on K for the arbitrary of xg. Then, by using Lemma 2.12, there
exists a point, (say, w € K) such that

p(w) = inf p(z) = mf{ inf F(z,u)}.

Generally, We note that p(w) = in}f(go(a:) = F(x,up), where up € Tw.
Te

Next we shall prove that ug = w. Suppose, to the contrary, that ug # w,
then, by using condition (3.5), for w,ug € K, ug € Tw, v € Ty, for A an
arbitrary positive real number that satisfying

F(up,v) < max{F(w,up), min{F(w, up), F(ug,v)}}
+ Amin{F(w,v), F(up, uo)}
= max{F(w, up), min{ F(w, up), F(ug,v)}}.

Since p(w) = xlg[f(go(m), we have
F(w,uo) = p(w) < p(uo) = inf F(uo,y) < F(uo,v).
Then,
min{ F(w, ug), F(up,v)} = F(w,up). (3.6)
So, we deduce
F(up,v) < F(w,up),
a contradiction to (3.6). Thus up = w and w is a fixed point of 7" on K. [

Corollary 3.8. Let X be a compact topological space, K be a nonempty com-
pact subset of X and T : K — CB(X) be a set valued operator. If F € ¥ and
forVa,ye K,z # y,u € Tz, there exists v € Ty satisfying

F(u,v) < max{F(z,y), min{F(z,u), F(y,v)}} + Amin{F(x,v), F(u,y)},

where X\ is an arbitrary positive real number. Then T has at least one fixed
point.

Corollary 3.9. Let X be a topological space, K be a nonempty compact subset
of X and T : K — CB(X) be a set valued operator. If F € ¥ is symmetric
and forVax,y € K,z # y,u € Tx, there exists v € Ty satisfying

F(u,v) < max{F(z,y), min{F(x,u), F(y,v)}} + Amin{F(z,v), F(u,y)},

where \ is an arbitrary positive real number. Then T has at least one fixed
point.
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Corollary 3.10. Let (X,d) be a metric space, K be a nonempty compact
subset of X and T : K — CB(x) be a set valued operator. If for Vx,y €
K,x # y,u € Tx, there exists v € Ty satisfying

d(u,v) < max{d(z,y), min{d(x,u),d(y,v)}} + Amin{d(z,v), d(u,y)},

where X is an arbitrary positive real number. Then T has at least one fized
point.

Proof. We can easily verify that d € ¥. Thus, by using Theorem 3.7 we get
the conclusion. O

4. EXAMPLE

Cross reference to [5], we could know that a (c)-comparison function must
be a comparison function. However, the opposite is not true. Thus, Theorem
3.6 and Theorem 3.7 both are the generalize of [6]. Next we will give two
examples to show that.

Example 4.1. Let X = {0,1,2,3,---} and let d be the quasimetric on X
defined as: d(z,z) =0, for all z € X; d(z,y) =z, if ¢ > y; and d(x,y) = z+y,
if z < y. Clearly (X, d) is a complete quasimetric space and d is a w-distance
on (X, d).

Now let T': X — C'B(X) given as:

T0=0; T1={zeN:z>1tand Te ={0}U{ye N:y >z}, x € N\{1};
Consider the function ¢ given by

o(t)=——, 0<t<2,
n, n+1<t<n+2, neN.

(4.1)

An easy computation of all different cases show that the condition of Theorem
3.6 is satisfied (but ¢(t) isn’t a (¢)-comparison function and cannot apply
Theorem 1 of [6]).

Case 1: If x =0,y =0, then u = 0,v = 0, we deduce that g(u,v) = 0.

Case 2: If x =0,y =1, then u = 0. Take v = 2 € Ty, we deduce that

d(u,v) = 2 = ¢(3) = ¢(d(y, v))-

Case 3: If z = 0,y € N\{1}, then u = 0. Take v = y + 1 € Ty, we deduce
that

d(u,v) < 2y = @(d(y,v)).
Case 4: If x = 1,y = 0, then for all u € Tz. Take v =0 € Ty, we deduce that

d(u,v) =u=pu+1) =p(dx,u)).
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Case 5: If x = 1,y =1, then for all u € Tz. Take v =2 € Ty, we deduce that
d(u,v) < u = p(d(z, u)).
Case 6: If v = 1,y = N\{1}, then for all u € Tx. Take v = 0 € T'y, we deduce
that
d(u,v) =u = p(d(z,u).
Case 7: If z € N\{1},y = 0, then for all u € Txz. Take v =0 € Ty, we deduce
that
d(u,v) = u < @(d(z,u)).
Case 8: If z € N\{1},y = 1, then for all u € Tz. Take v =0 € Ty, we deduce
that

d(u,v) = max{u,v} <max{u+z — 1,0} = p(max{d(z,u),d(y,v)}).
Case 9: If z,y € N\{1}, then for all u € Tz. Take v = 0 € Ty, we deduce
that

dlu,v) =u<u+z—1=pu+z)=p(dxu)).
Hence, all conditions of Theorem 3.6 are satisfied. So T" has fixed point.

Example 4.2. Let X = {O,%,Q} U [15—2, %] and let d be the Ty-gpm on X
defined as:

d(z,z) =0,d(z,0) =0, VzelX,

d(z,y) =1, otherwise.

It is clear that d is complete and the function ¢ : X x X — [0,00) defined as:
q(z,2) =0, Vr € X\{1}§ q(1,1) =1; ¢(0,z) = ¢(z,0) = %7 Ve X\{O},
q(l,z) =z, Ve € A; q(z,1)=1—z, Vz € A; q(x,y) = |z —vy|, Vz,ye A

is also a @-function. Now let ' : X — CB(X) given as: 70 = 0; T1 =

{0,1}; Tz = {0, 1%},:6 € A and let ¢ given as:

¢
H=—— 0<t<l1

©(1) 7 05 : w2

2t '

= t>1.

3

Notice that T is not ¢-l.s.c. Hence we cannot apply Theorem 3.6 to this
example. We shall show that, nevertheless the conditions of Theorem 3.7 are
satisfied.

Case 1: For z € {0,1},y € {0,3} U [, 3], then u = 0. Take v = 0 € Ty, we
deduce that

q(u,v) =0.
Case 2: For 2 € {0, 1},y = 2, then u = 0. Take v = 25 € Ty, we deduce that

5

q(u,v) = 15 < pla(@,y)).
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Case 3: For % <z< %,y € {0, %} U [%,%],Vu € Tx. Take v = 0 € Ty, and
we have if u = 0, then g(u,v) = 0; else that u = %, we deduce that

1< z+u
4~ 14xz+u
Case 4: For % <z< %,y =2,Vu € Tx. Take v = % € Ty, we deduce that

q(u,v) = = p(z +u) = ¢(q(x,u)).

aw,0) < 5 + 13 = 0l1) < lale,v).

Case 5: For z = 2,y € {0, i} U [%, %],Vu € Tx. Take v = 0 € Ty, we deduce
that

2(x +u
o) =< 20D oo, u)),
Case 6: For x =2,y =2,Vu € Tx. Take v = % € Ty, we deduce that
3 5 8
<S4 <= ,
q(u,v) < 7+ 35 < 5 = lalz,y))

Hence, all conditions of Theorem 3.7 are satisfied. So T" has fixed point.
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