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Abstract. In this paper we prove several fixed point theorems for set-valued mappings

on complete partial ordered metric spaces which generalize some results in [2] and extend

some results of [6] in T0-quasipseudometric spaces. We also generalize some results of [11]

for set-valued mappings on topological space. Some example are presented to illustrate the

results.

1. Introduction

It is well known that fixed point theory plays an important role in various
fields of applied mathematical analysis and scientific applications. In 2013,
Beg and Butt [2] extended the fixed point theorems for set valued mappings
in partially ordered metric space. In 2014, Tirado et al. [6] generalize some
fixed point theorems in terms of Q-function on complete quasimetric space.
Recently, Shaha et al. [11] give the existence of fixed points of mappings on
general topological spaces. In this paper, we also extend their results. For
convenience, we recall some definitions below.

2. Preliminaries

Definition 2.1. Let (X, d) be a complete metric space, and CB(X) the class
of all nonempty closed and bounded subsets of X. For A,B ∈ CB(X), let
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D(A,B) = max

{
sup
b∈B

d(A, b), sup
a∈A

d(a,B)

}
,

where, D is said to be a Hausdorff metric induced by d.

Definition 2.2. A partial order is a binary relation ≤ over a set X which
satisfies the following conditions:

(1) x ≤ x;
(2) if x ≤ y and y ≤ x, then x = y;
(3) if x ≤ y and y ≤ z, then x ≤ z.

Definition 2.3. Let X be a nonempty set and d : X×X → [0,∞) a function
such that:

(a) d(x, y) = d(y, x) = 0⇔ x = y;
(b) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X.

Then d is called a T0-quasipseudometric on a set X. The pair (X, d) is said
to be a T0-quasipseudometric space. If one replaces the condition (a) with the
stronger condition

(a*) d(x, y) = 0⇔ x = y.

Then d is called a quasimetric on X. In this case the pair (X, d) is said to
be a T0-quasimetric space. In the sequel we will use the abbreviation T0-qpm
(respectively, T0-qpm space) instead of T0-quasipsrudometric (respectively, T0-
quasipsrudometric space).

Definition 2.4. A sequence {xn}∞n=1 in a T0-qpm space (X, d) is τd-convergent
to x ∈ X, if only if lim

n→∞
d(x, xn) = 0. Analogously, a sequence {xn}∞n=1 in a

T0-qpm space (X, d) is τd−1-convergent to x ∈ X, if only if lim
n→∞

d(xn, x) = 0.

Definition 2.5. A T0-qpm space (X, d) is said to be complete if every Cauchy
sequence is τd−1-convergent in the metric space.

Definition 2.6. Let (X, d) be a T0-qpm space and q : X ×X → [0,∞) be a
function which satisfies:

(Q1) q(x, z) ≤ q(x, y) + q(y, z), ∀x, y, z ∈ X;
(Q2) if x ∈ X,M > 0, {yn}∞n=1 is τd−1-converges to y ∈ X and satisfies

q(x, yn) ≤M, for all n ∈ N∗, then q(x, y) ≤M ;
(Q3) for ∀ ε > 0, ∃ δ > 0, such that q(x, y) ≤ δ and q(y, z) ≤ δ, imply

d(y, z) ≤ ε;
then q is call a Q-function on (X, d).
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Definition 2.7. Let q be a Q-function on (X, d). T : X → 2X is said to be
q-l.s.c operator. If the function x 7→ q(x, Tx) is τd−1-lower semicontinuous on
(X, d), where q(x, Tx) = inf{q(x, y) : y ∈ Tx}.

Definition 2.8. Let X be a topological space.

1. A function f : X → R is said to be lower-continuous from above
(lsca) at a point x0 ∈ X, if for any net {xλ}λ∈Λ converging to x0

such that f(xλ1) ≤ f(xλ2) for any λ1, λ2 ∈ Λ with λ2 ≤ λ1, imply
f(x0) ≤ lim

λ∈Λ
f(xλ).

2. A function f : X ×X → R is said to be lower-continuous from above
(lsca) at a point (x0, y0) ∈ X×X, if for any net {(xλ, yλ)}λ∈Λ converg-
ing to (x0, y0) such that f(xλ1 , yλ1) ≤ f(xλ2 , yλ2) for any λ1, λ2 ∈ Λ
with λ2 ≤ λ1, imply f(x0, y0) ≤ lim

λ∈Λ
f(xλ, yλ).

3. A function f : X ×X → R is said to be lsca on X ×X, if it is lsca at
all points (x, y) ∈ X ×X.

Definition 2.9. Ψ={F : X ×X → R | F is lsca and F (x, y) = 0 if x = y}.

Lemma 2.10. ([2]) Let {An} ⊂ CB(X) and lim
n→∞

D(An, A) = 0 for A ∈
CB(X). If xn ∈ An and lim

n→∞
d(xn, x) = 0, then x ∈ A.

Lemma 2.11. ([7]) Let q be a Q-function on a T0-qpm space (X, d), let ε > 0,
and δ = δ(x) > 0 for which condition (Q3) holds. If q(x, y) ≤ δ and q(x, z) ≤
δ, then ds(y, z) ≤ ε.

Lemma 2.12. ([3]) Let X be a compact topological space and f : X ×X → R
be a lsca function. Then there exists x0 ∈ X such that f(x0) = inf{f(x) : x ∈
X}.

3. Main Results

Theorem 3.1. Let (X,≤) be a partially order set and d be a metric on X
such that (X, d) is a complete metric space. Assume that X satisfies: if a
non-decreasing sequence xn → x ∈ X, then xn ≤ x, for ∀n ∈ N∗. Let
F : X → CB(X) satisfying the following three conditions:

(1) D(F (x), F (y)) < ϕ[d(x, y)], ∀x ≤ y (ϕ : R+ → R+ be a non-decreasing,
satisfies ϕn(t)→ 0, lim

t→0+
ϕ(t) = 0, ∀ t > 0. );

(2) if d(x, y) < ε < 1, for some y ∈ F (x), then x ≤ y;
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(3) there exists x0 ∈ X, x1 ∈ F (x0) with x0 ≤ x1 such that d(x0, x1) < 1.

Then F has a fixed point.

Proof. For assumption (3), there exists x0 ∈ X,x1 ∈ F (x0) with x0 ≤ x1 such
that

d(x0, x1) < 1. (3.1)

Then, from assumption (1) and inequality (3.1), we deduce,

d(x1, F (x1)) ≤ D(F (x0), F (x1)) < ϕ[d(x0, x1)] < 1.

So there exists x2 ∈ F (x1) such that x1 ≤ x2, and

d(x1, x2) ≤ ϕ[d(x0, x1)].

Since

d(x2, F (x2)) ≤ D(F (x1), F (x2)) < ϕ[d(x1, x2)] ≤ ϕ2[d(x0, x1)],

there exists xn ∈ F (xn−1) such that xn−1 ≤ xn and

d(xn−1, xn) ≤ ϕ[d(xn−2, xn−1)].

Again, since
d(xn, F (xn)) ≤ ϕn[d(x0, x1)],

there exists xn+1 ∈ F (xn) such that xn ≤ xn+1, and

d(xn, xn+1) ≤ ϕn[d(x0, x1)]→ 0, as n→∞. (3.2)

Next we will show that {xn} is a Cauchy sequence in X. From inequality
(3.2), for all ε > 0, there exists N such that

d(xn, xn+1) < ε− ϕ(ε), ∀n ≥ N.
By using assumption (1), we have,

d(xn+1, xn+2) ≤ ϕ[d(xn, xn+1)].

Therefore,
d(xn, xn+2) ≤ d(xn, xn+1) + d(xn+1, xn+2)

≤ ε− ϕ(ε) + ϕ[d(xn, xn+1)]

≤ ε− ϕ(ε) + ϕ(ε) = ε.

Using the mathematical induction, we have,

d(xn, xn+k) ≤ ε, ∀ k ∈ N∗, n ≥ N.
Therefore {xn} is a Cauchy sequence in X and hence converges to some point
(say) x in the complete metric space X.

Now we will show that x is a fixed point of the mapping F . For {xn} is a
non-decreasing sequence in X such that xn → x, we deduce

xn ≤ x, ∀n ∈ N∗.
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From assumption (1), it follows that

D(F (xn), F (x)) < ϕ[d(xn, x)]→ 0 as n→∞.
Now since xn+1 ∈ F (xn), it follows by using Lemma 2.11 that x ∈ F (x), i.e.,
x is a fixed point of the mapping F . �

Theorem 3.2. Let (X, d) be a complete metric space and satisfying:

D(Fx, Fy) < ϕ[d(x, y)], ∀x, y ∈ X, (3.3)

where ϕ : R+ → R+ is any monotone non-decreasing (not necessarily contin-
uous) function such that

lim
n→∞

ϕn(t) = 0 and lim
t→0+

ϕ(t) = 0, ∀ t > 0.

Then F has a fixed point in X.

Proof. For all x ∈ X, there exists x1 ∈ Fx such that Fx1 ⊆ F 2x. Since

d(Fx1, x1) ≤ D(Fx1, Fx) < ϕ[d(x1, x)],

there exists x2 ∈ Fx1 ⊆ F 2x = F (Fx) such that

d(x2, x1) ≤ ϕ[d(x1, x)].

Then, we have Fx2 ⊆ F 3x. Similarly, we have, xn+1 ∈ Fxn ⊆ Fn+1x such
that

d(xn+1, xn) ≤ ϕ[d(xn, xn−1)].

Next we will show that {xn} is a Cauchy sequence in X. By the structuring of
{xn} , we have

d(xn+1, xn) ≤ ϕ[d(xn, xn−1)]

≤ ϕ2[d(xn−1, xn−2)]

...

≤ ϕn[d(x1, x)]→ 0, as n→∞.
For all ε > 0, choose N so large that

d(xn+1, xn) ≤ ε− ϕ(ε), ∀n ≥ N.
Then, we have

d(xn, xn+2) ≤ d(xn, xn+1) + d(xn+1, xn+2)

≤ ε− ϕ(ε) + ϕ[d(xn, xn+1)]

< ε− ϕ(ε) + ϕ(ε) = ε.

Using the mathematical induction, we have,

d(xn, xn+k) ≤ ε, ∀ k ∈ N∗, n ≥ N.
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Therefore {xn} is a Cauchy sequence in X and hence converges to some point
(say) x0 in the complete metric space X.

Next we have to show that x0 is a fixed point of the mapping F .
From assumption (3), it follows that

D(Fxn, Fx0) < ϕ[d(xn, x0)]→ 0, as n→∞.

Now because xn+1 ∈ F (xn), we have

lim
n→∞

d(xn+1, Fx0) = 0.

It follows by using Lemma 2.11 that x0 ∈ F (x), i.e., x0 is a fixed point of the
mapping F . �

Theorem 3.3. Let (X, d) be a complete metric space and F : X → CB(X)
satisfying: for all ε > 0, there exists δ(x) > 0 such that d(x, Fx) < δ imply
F [B(x, ε)] ⊂ B(x, ε). If there exists a point u ∈ X with

lim
n→∞

D(Fn(u), Fn+1(u)) = 0.

Then exists a sequence {un} = {ui|ui ∈ F i(u), i = 1, 2, · · · } such that un → u0

and u0 is a fixed point of F in X.

Proof. Take u1 ∈ Fu, then Fu1 ⊂ F 2u = F (Fu) and take u2 ∈ Fu1 ⊆ F 2u,
then Fu2 ⊆ F 3u. Similarly, we get,

un+1 ∈ Fun ⊆ Fn+1u.

Next we will show that {xn} is a Cauchy sequence in X.
Since lim

n→∞
D(Fnu, Fn+1u) = 0, for all ε > 0, choose N so large that

D(Fnu, Fn+1u) < δ(ε), ∀n ≥ N,

then

d(un, Fun) ≤ D(Fnu, Fn+1u) < δ(ε), ∀n ≥ N.
Specifically, we have

d(uN , FuN ) < δ(ε).

So, we get

F [B(uN , ε)] ⊂ B(uN , ε).

On the other hand, for un+1 ∈ Fun, we have uN+1 ∈ B(uN , ε). Then

FuN+1 ⊆ F [B(uN , ε)] ⊂ B(uN , ε).

Therefore, uN+2 ∈ B(uN , ε). Following the same way, we have

FuN+k ⊆ F [B(uN , ε)] ⊂ B(uN , ε),
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then uN+k ∈ B(uN , ε), ∀ k ∈ N∗. So, we have

d(uN , uN+k) < ε, ∀ k ∈ N∗.

Therefore {un} is a Cauchy sequence in X and we get un → u0 ∈ X in the
complete metric space X.

Next we have to show that u0 is a fixed point of the mapping F (proof by
contradiction).
Suppose, to the contrary, that d(Fu0, u0) = a > 0. For un → u0 we have

d(Fu0, un)→ a, as n→∞.

So we could take un ∈ B(u0,
a
3 ) such that

d(Fu0, un) >
2a

3
and d(un, un+1) < δ(

a

3
).

By the assumption we have

F [B(un,
a

3
)] ⊂ B(un,

a

3
).

On the other hand, for u0 ∈ B(un,
a
3 ) we have

Fu0 ⊆ B(un,
a

3
),

a contradiction to d(Fu0, un) > 2a
3 . Thus d(Fu0, u0) = a = 0, i.e., u0 is a fixed

point of the mapping F . �

Theorem 3.4. Let (X, d) be a T0-qpm space, q a Q-function on (X, d). T :
X → 2X a multivalued map such that for all x, y ∈ X,u ∈ Tx, there exists
v ∈ Ty satisfying:

q(u, v) ≤ ϕ(max {q(x, y), q(x, u), q(y, v)})

where ϕ : R+ → R+ is any monotone non-decreasing (not necessarily contin-
uous) function such that lim

n→∞
ϕn(t) = 0 and lim

t→0+
ϕ(t) = 0, ∀ t > 0. Then for

all x0 ∈ X, there exists {xn} satisfying the following three conditions:

(a) xn+1 ∈ Txn, for all n ∈ N∗;
(b) for δ > 0, there exists nδ ∈ N such that q(xn, xm) < δ, ∀ m > n ≥ nδ;
(c) {xn} is a Cauchy sequence in the metric space (X, ds).

Proof. Following the same process with Lemma 2.12 of literature [6]. We get
a sequence {xn} ⊂ X with xn+1 ∈ Txn and for all n ∈ N

q(xn+1, xn+2) ≤ ϕ(max {q(xn, xn+1), q(xn+1, xn+2)}). (3.4)

Now we distinguish two cases.
Case 1. The same discussion with Lemma 2.12 of literature [6].
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Case 2. For all n ∈ N∗, q(xn, xn+1) > 0. Then, for the same way with Lemma
2.12 of literature [6], we have

q(xn, xn+1) ≤ ϕn(q(x0, x1)), ∀n ∈ N∗.
Since lim

n→∞
ϕn(t) = 0, ∀ t > 0, then we have

lim
n→∞

q(xn, xn+1) = 0.

So, for δ > 0, there exists Nδ so large that

q(xn, xn+1) < δ − ϕ(δ),

then, for all n > Nδ,

q(xn, xn+2) ≤ q(xn, xn+1) + q(xn+1, xn+2)

≤ δ − ϕ(δ) + ϕ(q(xn, xn+1))

< δ − ϕ(δ) + ϕ(δ) = δ.

Using the mathematical induction we have

q(xn, xn+k) < δ, ∀n > Nδ, k ∈ N∗.
In particular, q(xNδ , xn) ≤ δ and q(xNδ , xm) ≤ δ, for all n,m > Nδ. Thus by
Lemma 2.12 of this article, for ∀ ε > 0, we have ds(xn, xm) ≤ ε, for all n,m >
Nδ. Hence {xn} is a Cauchy sequence in (X, ds). This concludes the proof. �

Theorem 3.5. Let (X, d) be a T0-qpm space and q is a Q-function on (X, d),
T : X → CB(X), a multivalued map, is q-l.s.c operator and for all x, y ∈
X,u ∈ Tx, there exists v ∈ Ty satisfying:

q(u, v) ≤ ϕ(max {q(x, y), q(x, u), q(y, v)})
where ϕ : R+ → R+ is any monotone non-decreasing (not necessarily continu-
ous) function such that lim

n→∞
ϕn(t) = 0 and lim

t→0+
ϕ(t) = 0, ∀ t > 0. Then, there

exists z ∈ X such that z ∈ Tz and q(z, z) = 0.

Proof. Using the same proving way with Theorem 1 of article [6]. �

Theorem 3.6. Let (X, d) be a T0-qpm space and q is a Q-function on (X, d),
T : X → CB(X), a multivalued map, such that for all x, y ∈ X,u ∈ Tx, there
exists v ∈ Ty satisfying:

q(u, v) ≤ ϕ(max {q(x, y), q(x, u)}),
where ϕ : R+ → R+ is any monotone non-decreasing (not necessarily continu-
ous) function such that lim

n→∞
ϕn(t) = 0 and lim

t→0+
ϕ(t) = 0, ∀ t > 0. Then, there

exists z ∈ X such that z ∈ Tz and q(z, z) = 0.



Fixed point theorems for contractive set-valued mappings 9

Proof. Using the same proving way with Theorem 2 of article [6], we get a
z ∈ X such that z ∈ Tz.

Now we prove that q(z, z) = 0. Since z ∈ Tz, hence, there exists {zn} with
z1 ∈ Tz, zn+1 ∈ Tzn and lim

n→∞
d(zn, z) = 0 such that

q(z, zn) ≤ ϕ(max {q(z, zn−1), q(z, z)}), ∀n ≥ 2.

Then, there is N0 such that for any n ≥ N0, we have q(z, zn) ≤ ϕ(q(z, z)).
Thus, we obtain

lim
n→∞

q(z, zn) ≤ ϕ(q(z, z)).

By hypotheses q(z, z) > 0, we have

ϕ(q(z, z)) < q(z, z) ≤ q(z, zn) + q(zn, z).

Since lim
n→∞

d(zn, z) = 0, then lim
n→∞

q(zn, z) = 0. Thus, we obtain

lim
n→∞

q(z, zn) ≥ q(z, z).

So, we get a contradiction that lim
n→∞

q(z, zn) > lim
n→∞

q(z, zn). Thus we have

q(z, z) = 0.

�

Theorem 3.7. Let X be a topological space, K be a nonempty compact subset
of X and T : K → CB(K) be a set valued operator. If F ∈ Ψ and for all
x, y ∈ K,x 6= y, u ∈ Tx, there exists v ∈ Ty satisfying

F (u, v) < max{F (x, y),min{F (x, u), F (y, v)}}
+ λmin{F (x, v), F (u, y)},

(3.5)

where λ is an arbitrary positive real number. Then T has at least one fixed
point.

Proof. Define ϕ : K → R by ϕ(x) = inf
u∈Tx

F (x, u), x ∈ K. We shall show

that ϕ is also lsca on K. For any x0 ∈ K, there exists {xn} ⊂ K such that
xn → x0. Since Txn is close and K is compact, there exists yn ∈ Txn that
yn → y0 ∈ Tx0. For F is lsca, we have

F (x0, y0) ≤ lim
n→∞

F (xn, yn).

Then

ϕ (x0) = inf
y∈Tx0

F (x0, y) ≤ F (x0, y0)

≤ lim
n→∞

F (xn, yn) = lim
n→∞
yn∈Txn

F (xn, yn) = lim
n→∞

ϕ (xn) .
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So, ϕ is lsca on K for the arbitrary of x0. Then, by using Lemma 2.12, there
exists a point, (say, w ∈ K) such that

ϕ(w) = inf
x∈K

ϕ(x) = inf
x∈K
{ inf
u∈Tx

F (x, u)}.

Generally, We note that ϕ(w) = inf
x∈K

ϕ(x) = F (x, u0), where u0 ∈ Tw.

Next we shall prove that u0 = w. Suppose, to the contrary, that u0 6= w,
then, by using condition (3.5), for w, u0 ∈ K, u0 ∈ Tw, ∃ v ∈ Ty, for λ an
arbitrary positive real number that satisfying

F (u0, v) < max{F (w, u0),min{F (w, u0), F (u0, v)}}
+ λmin{F (w, v), F (u0, u0)}

= max{F (w, u0),min{F (w, u0), F (u0, v)}}.

Since ϕ(w) = inf
x∈K

ϕ(x), we have

F (w, u0) = ϕ(w) ≤ ϕ(u0) = inf
y∈Tu0

F (u0, y) ≤ F (u0, v).

Then,

min{F (w, u0), F (u0, v)} = F (w, u0). (3.6)

So, we deduce

F (u0, v) < F (w, u0),

a contradiction to (3.6). Thus u0 = w and w is a fixed point of T on K. �

Corollary 3.8. Let X be a compact topological space, K be a nonempty com-
pact subset of X and T : K → CB(X) be a set valued operator. If F ∈ Ψ and
for ∀x, y ∈ K,x 6= y, u ∈ Tx, there exists v ∈ Ty satisfying

F (u, v) < max{F (x, y),min{F (x, u), F (y, v)}}+ λmin{F (x, v), F (u, y)},

where λ is an arbitrary positive real number. Then T has at least one fixed
point.

Corollary 3.9. Let X be a topological space, K be a nonempty compact subset
of X and T : K → CB(X) be a set valued operator. If F ∈ Ψ is symmetric
and for ∀x, y ∈ K,x 6= y, u ∈ Tx, there exists v ∈ Ty satisfying

F (u, v) < max{F (x, y),min{F (x, u), F (y, v)}}+ λmin{F (x, v), F (u, y)},

where λ is an arbitrary positive real number. Then T has at least one fixed
point.
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Corollary 3.10. Let (X, d) be a metric space, K be a nonempty compact
subset of X and T : K → CB(x) be a set valued operator. If for ∀x, y ∈
K,x 6= y, u ∈ Tx, there exists v ∈ Ty satisfying

d(u, v) < max{d(x, y),min{d(x, u), d(y, v)}}+ λmin{d(x, v), d(u, y)},

where λ is an arbitrary positive real number. Then T has at least one fixed
point.

Proof. We can easily verify that d ∈ Ψ. Thus, by using Theorem 3.7 we get
the conclusion. �

4. Example

Cross reference to [5], we could know that a (c)-comparison function must
be a comparison function. However, the opposite is not true. Thus, Theorem
3.6 and Theorem 3.7 both are the generalize of [6]. Next we will give two
examples to show that.

Example 4.1. Let X = {0, 1, 2, 3, · · ·} and let d be the quasimetric on X
defined as: d(x, x) = 0, for all x ∈ X; d(x, y) = x, if x > y; and d(x, y) = x+y,
if x < y. Clearly (X, d) is a complete quasimetric space and d is a w-distance
on (X, d).
Now let T : X → CB(X) given as:
T0 = 0; T1 = {x ∈ N : x > 1} and Tx = {0} ∪ {y ∈ N : y > x}, x ∈ N\{1};

Consider the function ϕ given byϕ(t) =
t

1 + t
, 0 ≤ t < 2,

n, n+ 1 ≤ t < n+ 2, n ∈ N.
(4.1)

An easy computation of all different cases show that the condition of Theorem
3.6 is satisfied (but ϕ(t) isn’t a (c)-comparison function and cannot apply
Theorem 1 of [6]).
Case 1: If x = 0, y = 0, then u = 0, v = 0, we deduce that q(u, v) = 0.
Case 2: If x = 0, y = 1, then u = 0. Take v = 2 ∈ Ty, we deduce that

d(u, v) = 2 = ϕ(3) = ϕ(d(y, v)).

Case 3: If x = 0, y ∈ N\{1}, then u = 0. Take v = y + 1 ∈ Ty, we deduce
that

d(u, v) ≤ 2y = ϕ(d(y, v)).

Case 4: If x = 1, y = 0, then for all u ∈ Tx. Take v = 0 ∈ Ty, we deduce that

d(u, v) = u = ϕ(u+ 1) = ϕ(d(x, u)).
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Case 5: If x = 1, y = 1, then for all u ∈ Tx. Take v = 2 ∈ Ty, we deduce that

d(u, v) ≤ u = ϕ(d(x, u)).

Case 6: If x = 1, y = N\{1}, then for all u ∈ Tx. Take v = 0 ∈ Ty, we deduce
that

d(u, v) = u = ϕ(d(x, u).

Case 7: If x ∈ N\{1}, y = 0, then for all u ∈ Tx. Take v = 0 ∈ Ty, we deduce
that

d(u, v) = u ≤ ϕ(d(x, u)).

Case 8: If x ∈ N\{1}, y = 1, then for all u ∈ Tx. Take v = 0 ∈ Ty, we deduce
that

d(u, v) = max{u, v} ≤ max{u+ x− 1, v} = ϕ(max{d(x, u), d(y, v)}).
Case 9: If x, y ∈ N\{1}, then for all u ∈ Tx. Take v = 0 ∈ Ty, we deduce
that

d(u, v) = u < u+ x− 1 = ϕ(u+ x) = ϕ(d(x, u)).

Hence, all conditions of Theorem 3.6 are satisfied. So T has fixed point.

Example 4.2. Let X = {0, 1
4 , 2} ∪ [ 5

12 ,
3
4 ] and let d be the T0-qpm on X

defined as: {
d(x, x) = 0, d(x, 0) = 0, ∀x ∈ X,
d(x, y) = 1, otherwise.

It is clear that d is complete and the function q : X ×X → [0,∞) defined as:
q(x, x) = 0, ∀x ∈ X\{1}; q(1, 1) = 1; q(0, x) = q(x, 0) = 1

2 , ∀x ∈ X\{0};
q(1, x) = x, ∀x ∈ A; q(x, 1) = 1− x, ∀x ∈ A; q(x, y) = |x− y| , ∀x, y ∈ A

is also a Q-function. Now let T : X → CB(X) given as: T0 = 0; T1 =
{0, 1}; Tx = {0, 1+x

2 }, x ∈ A and let ϕ given as:
ϕ(t) =

t

1 + t
, 0 ≤ t < 1,

2t

3
, t ≥ 1.

(4.2)

Notice that T is not q-l.s.c. Hence we cannot apply Theorem 3.6 to this
example. We shall show that, nevertheless the conditions of Theorem 3.7 are
satisfied.
Case 1: For x ∈ {0, 1

4}, y ∈ {0,
1
4} ∪ [ 5

12 ,
3
4 ], then u = 0. Take v = 0 ∈ Ty, we

deduce that
q(u, v) = 0.

Case 2: For x ∈ {0, 1
4}, y = 2, then u = 0. Take v = 5

12 ∈ Ty, we deduce that

q(u, v) =
5

12
< ϕ(q(x, y)).
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Case 3: For 5
12 ≤ x ≤ 3

4 , y ∈ {0,
1
4} ∪ [ 5

12 ,
3
4 ], ∀u ∈ Tx. Take v = 0 ∈ Ty, and

we have if u = 0, then q(u, v) = 0; else that u = 1
4 , we deduce that

q(u, v) =
1

4
≤ x+ u

1 + x+ u
= ϕ(x+ u) = ϕ(q(x, u)).

Case 4: For 5
12 ≤ x ≤

3
4 , y = 2,∀u ∈ Tx. Take v = 5

12 ∈ Ty, we deduce that

q(u, v) ≤ 1

4
+

5

12
= ϕ(1) ≤ ϕ(q(x, y)).

Case 5: For x = 2, y ∈ {0, 1
4} ∪ [ 5

12 ,
3
4 ], ∀u ∈ Tx. Take v = 0 ∈ Ty, we deduce

that

q(u, v) = u <
2(x+ u)

3
= ϕ(q(x, u)).

Case 6: For x = 2, y = 2, ∀u ∈ Tx. Take v = 5
12 ∈ Ty, we deduce that

q(u, v) ≤ 3

4
+

5

12
<

8

3
= ϕ(q(x, y)).

Hence, all conditions of Theorem 3.7 are satisfied. So T has fixed point.
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