Nonlinear Functional Analysis and Applications Vol. 21, No. 1 (2016), pp. 15-31

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \bigodot 2016 Kyungnam University Press

STABLE SOLUTIONS AND BIFURCATION PROBLEM FOR ASYMPTOTICALLY LINEAR HELMHOLTZ EQUATIONS

Imed Abid¹, Makkia Dammak² and Ikmar Douchich³

¹University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis 09 doctor Zouhair Essafi Street 1006 Tunis, Tunisia e-mail: abidimed7@gmail.com

²University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis 09 doctor Zouhair Essafi Street 1006 Tunis, Tunisia e-mail: makkia.dammak@gmail.com

> ³University of Tunis El Manar, Faculty of Sciences of Tunis Campus Universities 2092 Tunis, Tunisia e-mail: ikmar.douchich@gmail.com

Abstract. In this note, we investigate the existence of positive solutions for the Helmholtz equation $-\Delta u + cu = \lambda f(u)$ on a bounded smooth domain of \mathbb{R}^n with Dirichlet boundary conditions. Here $\lambda > 0$, c > 0 are positive constants and f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t\to\infty} \frac{f(t)}{t} = a < \infty$. We show that there exists an extremal parameter $\lambda^* > 0$ but the extremal solution exists and it is regular provided that $\lim_{t\to\infty} f(t) - at = l < 0$.

1. INTRODUCTION

Consider the problem

$$(P_{\lambda}) \quad \begin{cases} -\Delta u + c \, u = \lambda f(u) & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \partial\Omega, \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^n , $n \geq 2$, c > 0 and $\lambda > 0$. The function f defined in $[0, \infty)$ and satisfies

$$f ext{ is } C^1$$
, positive, nondecreasing and convex (1.1)

⁰Received May 18, 2015. Revised September 29, 2015.

⁰2010 Mathematics Subject Classification: 35B65, 35B45, 35J60.

⁰Keywords: Asymptotically linear, extremal solution, stable minimal solution, regularity.

and

$$\lim_{t \to \infty} \frac{f(t)}{t} = a \in (0, +\infty).$$
(1.2)

By a solution of (P_{λ}) we mean a function $u \in C^2(\overline{\Omega})$ satisfying (P_{λ}) . In the sequel we are interested only in nonnegative solutions and for which we have considered only $\lambda > 0$. From maximum principle that if u is a nonnegative solution, then u(x) > 0 for $x \in \Omega$.

Problems of the form (P_{λ}) occur in a variety of situations. For c(x) = cte., (P_{λ}) is known as the Helmholtz problems. They arise in models of combustion [4, 5], thermal explosions [4], nonlinear heat generation [8], and the gravitational equilibrium of polytropic stars [3, 7]. In particular, the Helmholtz problem occur in the study of electromagnetic radiation, seismology, acoustics.

For c = 0, various authors have studied the bifurcation problem

$$(E_{\lambda}) \quad \begin{cases} -\Delta u &= \lambda f(u) \quad \text{in} \quad \Omega, \\ u &= 0 \quad \text{on} \quad \partial \Omega, \end{cases}$$

Brezis *et al.* have proved in [2] that there exists $0 < \lambda^* < \infty$, a critical value of the parameter λ , such that (E_{λ}) has a minimal, positive, classical solution u_{λ} for $0 < \lambda < \lambda^*$ and does not have solutions for $\lambda > \lambda^*$.

The value of a was crucial in the study of (E_{λ^*}) and of the behavior of u_{λ} when λ approaches λ^* . In the case when $a = +\infty$, it is proved in [2] that a minimal weak solution u^* exists for $\lambda = \lambda^*$. In [9], Martel proves that in this case u^* is the unique weak solution of (E_{λ^*}) . Recently, Sanchon in [11] generalizes these results for the *p*-Laplacian. When *a* is finite, Mironescu and Rădulescu proved in [10] that there exists a unique classical solution u^* of (E_{λ^*}) if and only if $\lim_{t\to\infty} (f(t) - at) < 0$.

In this paper, we deal with weak solution in the following sense.

Definition 1.1. A weak solution of (P_{λ}) is a function $u \in L^{1}(\Omega), u \geq 0$ such that $f(u) \in L^{1}(\Omega)$, and

$$-\int_{\Omega} u\Delta\zeta + \int_{\Omega} c u\,\zeta = \lambda \int_{\Omega} f(u)\zeta \tag{1.3}$$

for all $\zeta \in C^2(\overline{\Omega})$ with $\zeta = 0$ on $\partial \Omega$.

We say that u is a weak super-solution of (P_{λ}) if "=" is replaced by " \geq " for all $\zeta \in C^2(\overline{\Omega}), \zeta \geq 0$ and $\zeta = 0$ on $\partial\Omega$.

Remark 1.2. If $u \in L^1(\Omega)$ is a weak solution of (P_{λ}) and $u \in L^{\infty}(\Omega)$, we say that u is regular. By elliptic regularity, we know that regular solutions are smooth and solve (P_{λ}) in the classical sense.

For regular solutions, we introduce a notion of stability.

Definition 1.3. A regular solution u of (P_{λ}) is said to be stable if the first eigenvalue $\eta_1(c, \lambda, u)$ of the linearized operator $L_{c,\lambda,u} = -\Delta + c - \lambda f'(u)$ given by

$$\eta_1(c,\lambda,u) := \inf_{\varphi \in H^1_0(\Omega) - \{0\}} \frac{\int_{\Omega} |\nabla \varphi|^2 + \int_{\Omega} c\varphi^2 - \lambda \int_{\Omega} f'(u)\varphi^2}{\|\varphi\|_2^2},$$

is positive in $H_0^1(\Omega)$. In other words,

$$\lambda \int_{\Omega} f'(u)\varphi^2 \le \int_{\Omega} |\nabla \varphi|^2 + c \int_{\Omega} \varphi^2 \quad \text{for any} \quad \varphi \in H_0^1(\Omega).$$
(1.4)

If $\eta_1(c, \lambda, u) < 0$, the solution u is said to be unstable.

We denote by λ_1 the first eigenvalue of $L = -\Delta + c$ in Ω with Dirichlet boundary condition and φ_1 a positive normalized eigenfunction associated, that is, such that

$$\begin{cases}
-\Delta \varphi_1 + c\varphi_1 = \lambda_1 \varphi_1 & \text{in } \Omega, \\
\varphi_1 > 0 & \text{in } \Omega, \\
\varphi_1 = 0 & \text{on } \partial\Omega, \\
\|\varphi_1\|_2^2 = 1.
\end{cases}$$
(1.5)

Next, we let

 $\Lambda := \{\lambda > 0 \text{ such that } (P_{\lambda}) \text{ admits a solution} \} \text{ and } \lambda^* := \sup \Lambda \leq +\infty.$ We denote

$$r_0 := \inf_{t>0} \frac{f(t)}{t}.$$
 (1.6)

Our first main statement asserts the existence of the critical value λ^* .

Theorem 1.4. There exists a critical value $\lambda^* \in (0, \infty)$ such that the following properties hold true.

- (i) For any λ ∈ (0, λ*), problem (P_λ) has a minimal solution u_λ, which is the unique stable solution of (P_λ) and the mapping λ → u_λ is increasing.
- (ii) For any $\lambda \in (0, \frac{\lambda_1}{a})$, u_{λ} is the unique solution of problem (P_{λ}) .
- (iii) If problem (P_{λ^*}) has a solution u, then

$$u = u^* = \lim_{\lambda \to \lambda^*} u_\lambda,$$

and $\eta_1(c, \lambda^*, u^*) = 0.$

(iv) For $\lambda > \lambda^*$, the problem (P_{λ}) has no weak solution.

For the next results, let

$$l := \lim_{t \to \infty} \left(f(t) - at \right). \tag{1.7}$$

We distinguish two different situations strongly depending on the sign of l.

Theorem 1.5. Assume that $l \ge 0$. The following results hold.

- (i) $\lambda^* = \lambda_1/a$.
- (ii) Problem (P_{λ^*}) has no solution.
- (iii) $\lim_{\lambda \to \lambda^*} u_{\lambda} = \infty$ uniformly on compact subsets of Ω .

Theorem 1.6. Assume that l < 0. Then we have.

- (i) The critical value λ^* belongs to $(\frac{\lambda_1}{a}, \frac{\lambda_1}{r_0})$.
- (ii) (P_{λ^*}) has a unique solution u^* .
- (iii) The problem (P_{λ}) has an unstable solution v_{λ} for any $\lambda \in (\frac{\lambda_1}{a}, \lambda^*)$ and the sequence $(v_{\lambda})_{\lambda}$ satisfies
 - (a) $\lim_{\lambda \to \frac{\lambda_1}{a}} v_{\lambda} = \infty$ uniformly on compact subsets of Ω ,
 - (b) $\lim_{\lambda \to \lambda^*} v_{\lambda} = u^*$ uniformly in Ω .

2. Proof of Theorem 1.4

In the proof of this Theorem we shall make use of the following auxiliary results.

Lemma 2.1. ([2]) Given $g \in L^1(\Omega)$, there exists an unique $v \in L^1(\Omega)$ which is a weak solution of

$$\left\{ \begin{array}{rrrr} -\Delta\,v+c\,v&=&g\quad in\quad \Omega,\\ v&=&0\quad on\quad \partial\Omega, \end{array} \right.$$

in the sense that

$$\int_{\Omega} -v\Delta\,\zeta + \int_{\Omega} c \,\,v\,\zeta = \int_{\Omega} g\,\zeta$$

for all $\zeta \in C^2(\overline{\Omega})$ with $\zeta = 0$ on $\partial\Omega$. Moreover, there exists a constant c_0 independents of g such that

$$\|v\|_{L^1(\Omega)} \le c_0 \|g\|_{L^1(\Omega)}.$$

In addition, if $g \ge 0$ a.e in Ω , then $v \ge 0$ a.e in Ω .

Lemma 2.2. If (P_{λ}) has a weak super solution \overline{u} , then there exists a weak solution u of (P_{λ}) such that $0 \leq u \leq \overline{u}$ and u does not depend on \overline{u} .

Proof. We use a standard monotone iteration argument and maximum principle for the operator $-\Delta + c$. Let $u_0 = 0$ and u_{n+1} the solution of

$$\begin{cases} -\Delta u_{n+1} + c u_{n+1} = \lambda f(u_n) & \text{in} \quad \Omega, \\ u_{n+1} = 0 & \text{on} \quad \partial \Omega \end{cases}$$

which exists by Lemma 2.1. We prove that $0 = u_0 \leq u_1 \leq ... \leq u_n \leq ... \leq \overline{u}$ and $(u_n)_n$ converge to $u \in L^1(\Omega)$ which is a weak solution of (P_λ) . Moreover u is independent of \overline{u} by construction.

The existence of the critical value λ^* is a consequence of the following auxiliary result.

Lemma 2.3. The problem (P_{λ}) has no solution for any $\lambda > \lambda_1/r_0$, but has at least one solution provided λ is positive and small enough.

Proof. To show that (P_{λ}) has a solution, we use the barrier method and so the Lemma 2.2. To this aim, let $\xi \in C^2(\overline{\Omega}) \cap H_0^1(\Omega)$ which satisfies $-\Delta \xi + c \xi = 1$ in Ω . The choice of ξ implies that ξ is a super solution of (P_{λ}) for $\lambda \leq 1/f(||\xi||_{\infty})$. By Lemma 2.2, there exist a weak solution u of (P_{λ}) such that $0 \leq u \leq \xi$. Because $\xi \in C^2(\overline{\Omega}), u \in L^{\infty}(\Omega)$ (u is a regular solution) and then $u \in C^2(\overline{\Omega})$. It follows that problem (P_{λ}) has a solution for $\lambda \leq 1/f(||\xi||_{\infty})$.

Assume now that u is a solution of (P_{λ}) for some $\lambda > 0$. Using φ_1 given by (1.5) as a test function, we get

$$-\int_{\Omega} u\Delta\varphi_1 + \int_{\Omega} cu\varphi_1 = \lambda \int_{\Omega} f(u)\varphi_1.$$

This yields

$$(\lambda_1 - \lambda r_0) \int_{\Omega} \varphi_1 u \ge 0.$$

Since $\varphi_1 > 0$ and u > 0, we conclude that the parameter λ should belong to $(0, \lambda_1/r_0)$. This completes our proof.

As a consequence we have that λ^* is a real. Another useful result is stated in what follows.

Lemma 2.4. Assume that the problem (P_{λ}) has a solution for some $\lambda \in (0, \lambda^*)$. Then there exists a minimal solution denoted by u_{λ} for the problem (P_{λ}) . Moreover, for any $\lambda' \in (0, \lambda)$, the problem $(P_{\lambda'})$ has a solution.

Proof. Fix $\lambda \in (0, \lambda^*)$ and let u be a solution of (P_{λ}) . As above, we use the Lemma 2.2 to obtain a solution of (P_{λ}) , u_{λ} which is independent of u used as super solution (as mentioned in the proof of Lemma 2.2). Since u_{λ} is independent of the choice of u, then it is a minimal solution.

Now, if u is a solution of (P_{λ}) , then u is a super solution of the problem $(P_{\lambda'})$ for any λ' in $(0, \lambda)$ and Lemma 2.2 completes the proof.

Proof of Theorem 1.4 (i). First, we claim that u_{λ} is stable. Indeed, arguing by contradiction, we deduce that the first eigenvalue $\eta_1 = \eta_1(c, \lambda, u_{\lambda})$ is non positive. Then, there exists an eigenfunction

$$\psi \in C^2(\overline{\Omega})$$
 and $\psi = 0$ on $\partial\Omega$,

such that

$$-\Delta \psi + c\psi - \lambda f'(u_{\lambda})\psi = \eta_1 \psi \text{ in } \Omega \text{ and } \psi > 0 \text{ in } \Omega.$$

Consider $u^{\varepsilon} := u_{\lambda} - \varepsilon \psi$. Hence

$$-\Delta u^{\varepsilon} + c \, u^{\varepsilon} - \lambda f(u^{\varepsilon}) = -\eta_1 \varepsilon \psi + \lambda \Big[f(u_{\lambda}) - f(u_{\lambda} - \varepsilon \psi) - \varepsilon f'(u_{\lambda}) \psi \Big]$$
$$= \varepsilon \psi (-\eta_1 + o_{\varepsilon}(1)).$$

Since $\eta_1(c, \lambda, u_\lambda) \leq 0$ for $\varepsilon > 0$ small enough, we have

$$-\Delta u^{\varepsilon} + c \, u^{\varepsilon} - \lambda f(u^{\varepsilon}) \ge 0 \text{ in } \Omega.$$

Then, for $\varepsilon > 0$ small enough, we use the strong maximum principle (Hopf's Lemma) to deduce that $u^{\varepsilon} \ge 0$. u^{ε} is a super solution of (P_{λ}) , so by Lemma 2.2 we obtain a solution u such that $u \le u^{\varepsilon}$ and since $u^{\varepsilon} < u_{\lambda}$, then we contradict the minimality of u_{λ} .

Now, we show that (P_{λ}) has at most one stable solution. Assume the existence of another stable solution $v \neq u_{\lambda}$ of problem (P_{λ}) . Let $w := v - u_{\lambda}$, then by maximum principle w > 0 and from (1.4) taking w as a test function, we have

$$\lambda \int_{\Omega} f'(v) w^{2} \leq \int_{\Omega} \left| \nabla w \right|^{2} + \int_{\Omega} cw^{2}$$
$$= -\int_{\Omega} w \Delta w + \int_{\Omega} cw^{2} = \lambda \int_{\Omega} \left[f(v) - f(u_{\lambda}) \right] w.$$

Therefore

$$\int_{\Omega} \left[f(v) - f(u_{\lambda}) - f'(v)(v - u_{\lambda}) \right] w \ge 0.$$

Thanks to the convexity of f, the term in the brackets is non positive, hence

$$f(v) - f(u_{\lambda}) - f'(v)(v - u_{\lambda}) = 0 \text{ in } \Omega,$$

which implies that f is affine over $[u_{\lambda}, v]$ in Ω . So, there exists two real numbers \bar{a} and b such that

$$f(x) = \bar{a}x + b \quad \text{in } [0, \max_{\Omega} v].$$

Finally, since u_{λ} and v are two solutions to $-\Delta w + cw = \bar{a}w + b$, we obtain that

$$0 = \int_{\Omega} (u_{\lambda} \Delta v - v \Delta u_{\lambda}) = b \int_{\Omega} (v - u_{\lambda}) = b \int_{\Omega} w.$$

This is impossible since b = f(0) > 0 and w is positive in Ω .

Finally, by Lemma 2.4 and the definition of u_{λ} , we have that the function $\lambda \to u_{\lambda}$ is an increasing mapping.

Proof of Theorem 1.4 (ii). In this stage, we need the following results.

Proposition 2.5. Let $\Omega \subset \mathbb{R}^n$ a smooth bounded open subset of \mathbb{R}^n , $n \geq 2$. Assume that f is a function satisfying (1.1) and (1.2). If (P_{λ}) has a weak solution u, then u is a regular solution and hence a classical solution.

Proof. By convexity of f, we have $a = \sup_{t \ge 0} f'(t)$ and

$$f(t) \le at + f(0) \text{ for all } t \ge 0.$$

$$(2.1)$$

Let u a weak solution of (P_{λ}) , $f(u) \in L^{1}(\Omega)$. By elliptic regularity, $u \in L^{p}(\Omega)$, for all $p \geq 1$ such that

$$p < \frac{n}{n-2}$$
 $(p < \infty \text{ if } n = 2).$ (2.2)

Again by (2.1), $f(u) \in L^p$ for all p satisfying (2.2) so $u \in L^r(\Omega)$ for all $r \ge 1$ such that

$$r < \frac{n}{n-4}$$
 $(p \le \infty \text{ if } n=2,3 \text{ and } r < \infty \text{ if } n=4).$ (2.3)

By iteration and after $k(n) = \left[\frac{n}{2}\right] + 1$ operation, the solution u belongs to $L^{\infty}(\Omega)$. By elliptic regularity and standard bootstrap argument, $u \in C^2(\overline{\Omega})$.

Proposition 2.6. Let $\Omega \subset \mathbb{R}^n$ a smooth bounded open subset of \mathbb{R}^n , $n \geq 2$. Assume that f(t) = at + b, where a, b > 0. Then

- (i) $\lambda^* = \frac{\lambda_1}{a}$,
- (ii) The problem (P_{λ}) has no weak solution for $\lambda = \lambda^*$.

Proof. Let $0 < \lambda < \frac{\lambda_1}{a}$, the problem (P_{λ}) , given by $\begin{cases}
-\Delta u + (c - \lambda a)u = \lambda b & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$

has a unique solution in $C^2(\overline{\Omega})$. Since $\lambda a < \lambda_1$, by Maximum principle u > 0. Now let $\lambda = \frac{\lambda_1}{a}$. If the problem (2.4) has a solution u, then by multiplication

(2.4)

(2.4) by φ_1 the positive eigenfunction associated to λ_1 and introduced by (1.5) and integration by parts, it follows that $\int_{\Omega} \varphi_1 = 0$ which is impossible since $\varphi_1 > 0$ in Ω . So for f(t) = at + b, a and b > 0, we have $\lambda^* = \frac{\lambda_1}{a}$ and the equation (P_{λ^*}) has no solution.

For the proof of Theorem 1.4 (ii), let $\lambda \in (0, \frac{\lambda_1}{a})$, b = f(0) and w a solution for the problem (2.4) when f(t) = at + b. Since we have for the general function f in Theorem 1.4, that $f(w) \leq aw + f(0)$, then w is a super solution of (P_{λ}) and hence by Lemma 2.2 and Proposition 2.5, the equation (P_{λ}) has a solution. For the uniqueness, let u a solution of (P_{λ}) for a reel $\lambda \in (0, \frac{\lambda_1}{a})$. We denote $\lambda_1(L)$ the first eigenvalue of an operator L, that is $\lambda_1(-\Delta + c) = \lambda_1$. Because $a = \sup_{t \geq 0} f'(t)$, we have $-\Delta + c - \lambda f'(u) \geq -\Delta + c - \lambda a$ and so

$$\lambda_1(-\Delta + c - \lambda f'(u)) \ge \lambda_1(-\Delta + c - \lambda a)$$

that is

$$\eta_1(c,\lambda,u) \ge \lambda_1 - \lambda a > 0.$$

The solution u is stable then, by Theorem 1.4 (i), we obtain $u = u_{\lambda}$.

Proof of Theorem 1.4 (iii). Suppose that (P_{λ^*}) has a solution u. then, for every $\lambda \in (0, \lambda^*)$ we have $u_{\lambda} \leq u$ and so $u^* = \lim_{\lambda \to \lambda^*} u_{\lambda}$ is well defined in $L^1(\Omega)$ and furthermore u^* is a weak then classical solution for (P_{λ^*}) . Since $0 \leq u^* \leq u, u^*$ is a minimal solution and also satisfies (1.4) for $\lambda = \lambda^*$ so $\eta_1(c, \lambda^*, u^*) \geq 0$. Furthermore, u^* is a the unique solution for (P_{λ^*}) and we can proceed as in [9].

Now, consider the nonlinear operator

$$\begin{array}{ccc} G: (0, +\infty) \times C^{2,\alpha}(\bar{\Omega}) \cap H^1_0(\Omega) & \longrightarrow & C^{0,\alpha}(\bar{\Omega}) \\ (\lambda, u) & \longmapsto & -\Delta u + cu - \lambda f(u), \end{array}$$

where $\alpha \in (0, 1)$. Assuming that the first eigenvalue $\eta_1(c, \lambda^*, u^*)$ is positive. By the implicit function theorem applied to the operator G, it follows that problem (P_{λ}) has a solution for λ in a neighborhood of λ^* . But this contradicts the definition of λ^* so $\eta_1(c, \lambda^*, u^*) = 0$ and this completes the proof of Theorem 1.4 (iii).

Proof of Theorem 1.4 (iv). If the problem (P_{λ}) has a weak solution u for $\lambda > \lambda^*$, then by Proposition 2.5, u is a classical solution for (P_{λ}) and this contradicts the definition of λ^* .

3. Proof of Theorem 1.5

In the proof of Theorem 1.5, we shall use the following auxiliary result which is a reformulation of Theorem due to Hörmander [6] and maximum principle and it is also true for the operator $-\Delta + c$.

Lemma 3.1. Let Ω be an open bounded subset of \mathbb{R}^n , $n \geq 2$ with smooth boundary. Let (u_n) be a sequence of super harmonic nonnegative functions defined on Ω . Then the following alternative holds.

- (i) $\lim_{n \to \infty} u_n = \infty$ uniformly on compact subsets of Ω , or
- (ii) (u_n) contains a subsequence which converges in $L^1_{loc}(\Omega)$ to some func $tion \ u$.

We first prove the following result.

Proposition 3.2. Let f be a positive function satisfying (1.1) and (1.2). Then the following assertions are equivalent:

- (i) $\lambda^* = \frac{\lambda_1}{a}$. (ii) (P_{λ^*}) has no solution. (iii) $\lim_{\lambda \to \lambda^*} u_{\lambda} = \infty$ uniformly on compact subsets of Ω .

Proof. (i) \Rightarrow (ii). By contradiction. Assume that (P_{λ^*}) has a solution u. By (ii) of Theorem 1.4, $u = u^* = \lim_{\lambda \to \lambda^*} u_{\lambda}$ and $\eta_1(c, \lambda^*, u^*) = 0$. Thus there exists $\psi \in C^2(\overline{\Omega}) \cap H^1_0(\Omega)$ satisfying

$$-\Delta \psi + c\psi - \lambda^* f'(u^*)\psi = 0 \text{ and } \psi > 0 \text{ in } \Omega.$$
(3.1)

Using φ_1 given by (1.5) as a test function, we obtain

$$\int_{\Omega} (\lambda_1 - \lambda^* f'(u^*)) \varphi_1 \psi = 0.$$
(3.2)

Since $\varphi_1 > 0$, $\psi > 0$, $\lambda^* = \frac{\lambda_1}{a}$ and $a = \sup_{t>0} f'(t)$, we have $\lambda_1 - \lambda^* f'(u^*) \ge 0$. Then equality (3.2) gives $f'(u^*) = a$ in Ω . This implies that f(t) = at + bin $[0, max_{\Omega}u^*]$ for some scalar b > 0 and this impossible by Proposition 2.6. Hence (P_{λ^*}) has no solution.

 $(ii) \Rightarrow (iii)$. By contradiction, suppose that (iii) doesn't hold. By Lemma 3.1 and up to subsequence, u_{λ} converges locally in $L^{1}(\Omega)$ to a function u as $\lambda \to \lambda^*$.

Claim: u_{λ} is bounded in $L^2(\Omega)$.

Indeed, if not, we may assume that

$$u_{\lambda} = k_{\lambda} w_{\lambda}$$

with

$$\int_{\Omega} w_{\lambda}^{2} dx = 1 \quad \text{and} \quad \lim_{\lambda \to \lambda^{*}} k_{\lambda} = \infty.$$
(3.3)

We have

$$\frac{\lambda}{k_{\lambda}}f(u_{\lambda}) \to 0 \text{ in } L^{1}_{loc}(\Omega) \text{ as } \lambda \to \lambda^{*}$$

and then

$$-\Delta w_{\lambda} + cw_{\lambda} \to 0 \text{ in } L^{1}_{loc}(\Omega).$$
(3.4)

We have

$$\int_{\Omega} |\nabla w_{\lambda}|^{2} = -\int_{\Omega} \Delta w_{\lambda} w_{\lambda} = \int_{\Omega} (\frac{\lambda f(u_{\lambda})}{k_{\lambda}} - cw_{\lambda}) w_{\lambda},$$

then

$$\int_{\Omega} |\nabla w_{\lambda}|^{2} \leq \int_{\Omega} \frac{\lambda f(u_{\lambda})}{k_{\lambda}} w_{\lambda} \leq \lambda^{*} \int_{\Omega} a w_{\lambda}^{2} + \frac{f(0)}{k_{\lambda}} w_{\lambda}$$
$$\leq a\lambda^{*} + c_{0} \int_{\Omega} w_{\lambda} \leq a\lambda^{*} + c_{0} \sqrt{|\Omega|},$$

for some $c_0 > 0$ independent of λ . Then (w_{λ}) is bounded in $H_0^1(\Omega)$ and up to a subsequence, we obtain

$$w_{\lambda} \rightarrow w$$
 weakly in $H_0^1(\Omega)$ and
 $w_{\lambda} \rightarrow w$ in $L^2(\Omega)$ as $\lambda \rightarrow \lambda^*$. (3.5)

It follows by (3.4) and (3.5) that w = 0 in Ω and this contradicts (3.3). This complete the proof of the claim.

Thus u_{λ} is bounded in $L^2(\Omega)$ and with the same argument above, u_{λ} is bounded in $H_0^1(\Omega)$ and up to a subsequence, we have

$$u_{\lambda} \rightarrow u \text{ weakly in } H_0^1(\Omega) \text{ and}$$
$$u_{\lambda} \rightarrow u \text{ in } L^2(\Omega) \text{ as } \lambda \rightarrow \lambda^*,$$
$$\begin{cases} -\Delta u + cu = \lambda^* f(u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$

and this impossible by the hypothesis (ii). We remark clearly that $(iii) \Rightarrow (ii)$ and hence $(ii) \Leftrightarrow (iii)$.

(iii) \Rightarrow (i). If (iii) occurs, that (ii) also is true and we have $\lim_{\lambda \to \lambda^*} ||u_{\lambda}||_2 = \infty$. Let

$$u_{\lambda} = k_{\lambda} w_{\lambda} \text{ with } \|w_{\lambda}\|_{2} = 1.$$
(3.6)

Up to subsequence, we obtain

$$w_{\lambda} \rightharpoonup w$$
 weakly in $H_0^1(\Omega)$ and
 $w_{\lambda} \rightarrow w$ in $L^2(\Omega)$ as $\lambda \rightarrow \lambda^*$. (3.7)

We have also

$$\frac{\lambda}{k_{\lambda}}f(u_{\lambda}) \to \lambda^* a w \text{ as } \lambda \to \lambda^*,$$
(3.8)

$$-\Delta w_{\lambda} + cw_{\lambda} \rightarrow -\Delta w + cw \text{ in } L^2(\Omega)$$

and then

$$\begin{cases} -\Delta w + cw = a\lambda^* w & \text{in } \Omega, \\ w = 0 & \text{on } \partial\Omega. \end{cases}$$
(3.9)

Taking φ_1 as a test function in (3.9), we obtain

$$\lambda_1 \int_{\Omega} w\varphi_1 = \int_{\Omega} w(-\Delta\varphi_1 + c\varphi_1)) = \int_{\Omega} a\lambda^* w\varphi_1.$$

Since $\varphi_1 > 0$ and w > 0 in Ω , we have $\lambda^* = \frac{\lambda_1}{a}$ and this complete the proof of Proposition 3.2.

To finish the proof of Theorem 1.5, we need only to show that $(P_{\underline{\lambda_1}})$ has no solution. Assume that u is a solution of $(P_{\underline{\lambda_1}})$. Since

$$l := \lim_{t \to \infty} \left(f(t) - at \right) \ge 0 \text{ and } a = \sup_{t \ge 0} f'(t),$$

we have $l \in (0, \infty)$ and $f(t) - at \ge 0$ and

$$-\Delta u + cu = \frac{\lambda_1}{a} f(u) \quad \text{in} \quad \Omega. \tag{3.10}$$

Taking φ_1 as a test function in (3.10), we get f(u) = a u in Ω , which contradicts f(0) > 0. This concludes the proof of Theorem 1.5.

4. Proof of Theorem 1.6

(i) We have shown that

$$\frac{\lambda_1}{a} \le \lambda^* \le \frac{\lambda_1}{r_0}.$$

Suppose that $\lambda^* = \frac{\lambda_1}{a}$. By Proposition 3.2, we have

 $\lim_{\lambda \to \lambda^*} u_{\lambda} = \infty \text{ uniformly on compact subsets of } \Omega.$

Let u_{λ} be the minimal solution of (P_{λ}) . Then, multiplying (P_{λ}) by φ_1 and integrating, we obtain

$$\int_{\Omega} \varphi_1 \Big(\lambda_1 \, u_\lambda - \lambda \, f(u_\lambda) \Big) = \int_{\Omega} \varphi_1 \Big((\lambda_1 - a\lambda) u_\lambda - \lambda (f(u_\lambda) - au_\lambda) \Big) = 0 \quad (4.1)$$

and then

$$\lambda \int_{\Omega} \varphi_1 \Big(f(u_\lambda) - a u_\lambda \Big) \ge 0. \tag{4.2}$$

Passing to the limit in the inequality (4.2) as λ tends to λ^* , we find

$$0 \le l\lambda^* \int_{\Omega} \varphi_1 < 0,$$

which is impossible and then $\lambda^* \neq \frac{\lambda_1}{a}$.

If $\lambda^* = \frac{\lambda_1}{r_0}$, let *u* be a solution of problem (P_{λ^*}) which exists by Proposition 3.2. Multiplying (P_{λ^*}) by φ_1 and integrating by parts, we obtain

$$\lambda_1 \int_{\Omega} u\varphi_1 = \frac{\lambda_1}{r_0} \int_{\Omega} f(u)\varphi_1$$

that is

$$\int_{\Omega} (f(u) - r_0 u)\varphi_1 = 0,$$

then $f(u) = r_0 u$ in Ω , and this contradicts the fact that f(0) > 0. (ii) Since $\lambda^* > \frac{\lambda_1}{a}$, the existence of a solution to (P_{λ^*}) is assured by Proposition 3.2 and the uniqueness is given by Theorem 1.4.

(iii) In this stage, we will use the mountain pass Theorem of Ambrosetti and Rabinowitz.

Theorem 4.1. ([1]) Let E be a real Banach space and $J \in C^1(E, \mathbb{R})$. Assume that J satisfies the Palais-Smale condition and the following geometric assumptions.

(1) There exist positive constants R and ρ such that

 $J(u) \ge J(u_0) + \rho$, for all $u \in E$ with $||u - u_0|| = R$.

(2) There exists $v_0 \in E$ such that $||v_0 - u_0|| > R$ and $J(v_0) \leq J(u_0)$. Then the functional J possesses at least a critical point. The critical value is characterized by

$$c:=\inf_{g\in\Gamma}\max_{u\in g([0,1])}J(u),$$

where

$$\Gamma := \left\{ g \in C([0,1], E) \, | \, g(0) = u_0, \, g(1) = v_0 \right\}$$

and satisfies

$$c \ge J(u_0) + \rho.$$

Let

$$\begin{array}{rccc} J: & H_0^1(\Omega) & \longrightarrow & \mathbb{R} \\ & u & \longmapsto & \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{2} \int_{\Omega} c u^2 - \int_{\Omega} F(u), \end{array}$$

where

$$F(t) = \lambda \int_0^t f(s) ds$$
, for all $t \ge 0$.

We take u_0 as the stable solution u_{λ} for each $\lambda \in (\frac{\lambda_1}{a}, \lambda^*)$.

The energy functional J belongs to $C^1(H^1_0(\Omega), \mathbb{R})$ and

$$\langle J'(u), v \rangle = \int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} cuv - \lambda \int_{\Omega} f(u)v,$$

for all $u, v \in H_0^1(\Omega)$.

Since $\eta_1(\lambda, u_\lambda) \ge 0$, the function u_λ is a local minimum for J, and in order to transform it into a local strict minimum, we apply the mountain pass theorem not for J, but to the perturbed functional J_{ε} defined by

$$J_{\varepsilon}: \quad H_0^1(\Omega) \quad \longrightarrow \quad \mathbb{R}$$
$$u \qquad \longmapsto \quad J(u) + \frac{\varepsilon}{2} \Big(\int_{\Omega} |\nabla(u - u_{\lambda})|^2 + \int_{\Omega} c(u - u_{\lambda}) \Big), \qquad (4.3)$$

for all $\varepsilon \in [0, \varepsilon_0]$, where

$$\varepsilon_0 := \frac{3}{4} \frac{\lambda a - \lambda_1}{\lambda_1}$$

We observe that J_{ε} is also in $C^1(H^1_0(\Omega),\mathbb{R})$ and

$$\begin{aligned} J_{\varepsilon}'(u)v &= \int_{\Omega} \nabla u \nabla v + \int_{\Omega} cuv - \lambda \int_{\Omega} f(u)v \\ &+ \varepsilon \Big(\int_{\Omega} \nabla (u - u_{\lambda}) \nabla v + c \int_{\Omega} (u - u_{\lambda})v \Big), \end{aligned}$$

for all $u, v \in H_0^1(\Omega)$.

Using the same arguments of Mironescu and Rădulescu in [10, Lemma 9], we show in the next lemma that J_{ε} satisfies the Palais-Smale compactness condition.

Lemma 4.2. Let $(u_n) \subset E$ be a Palais-Smale sequence, that is,

$$\sup_{n\in\mathbb{N}} |J_{\varepsilon}(u_n)| < +\infty, \tag{4.3}$$

$$\|J_{\varepsilon}'(u_n)\|_{E^*} \to 0 \text{ as } n \to \infty.$$
(4.4)

Then (u_n) is relatively compact in E.

Now, we need only to check that the two geometric assumptions are fulfilled. First, since u_{λ} is a local minimum of J, there exists R > 0 such that for all $u \in E$ satisfying $||u - u_{\lambda}|| = R$, we have $J(u) \ge J(u_{\lambda})$. Then

$$J_{\varepsilon}(u) \ge J_{\varepsilon}(u_{\lambda}) + \frac{\varepsilon}{2} \int_{\Omega} |\nabla(u - u_{\lambda})|^2.$$

Since $u - u_{\lambda}$ is not harmonic, we can choose

$$\rho := \frac{2 R^2}{\varepsilon} > 0$$

and u_{λ} becomes a strict local minimal for J_{ε} , which proves (*).

Next, using the definition of φ_1 given in (1.5), we have

$$J_{\varepsilon}(t\varphi_{1}) = \frac{\lambda_{1}}{2}t^{2} + \frac{\varepsilon}{2}\lambda_{1}t^{2} - \varepsilon\lambda_{1}t\int_{\Omega}\varphi_{1}u_{\lambda} + \frac{\varepsilon}{2}\int_{\Omega}|\nabla u_{\lambda}|^{2} - \int_{\Omega}F(t\varphi_{1}), \ \forall t \in \mathbb{R}.$$

$$(4.5)$$

Recall that $\lim_{t\mapsto+\infty}(f(t)-a\,t)$ is finite, then there exists $\beta\in\mathbb{R}$ such that

$$f(t) \ge a t + \beta, \quad \forall t > 0.$$

Hence

$$F(t) \ge \frac{a\lambda}{2}t^2 + \beta\lambda t, \quad \forall t > 0.$$

This yields

$$\frac{J_{\varepsilon}(t\varphi_1)}{t^2} \leq \left(\frac{\lambda_1}{2} + \frac{\varepsilon}{2}\lambda_1 - \frac{a\lambda}{2}\right) - \frac{\varepsilon\lambda_1}{t}\int_{\Omega}\varphi_1 u_{\lambda} \\ - \frac{\beta\lambda}{t}\int_{\Omega}\varphi_1 + \frac{\varepsilon}{2t^2}\int_{\Omega}|\nabla u_{\lambda}|^2,$$

which implies that

$$\limsup_{t \to +\infty} \frac{1}{t^2} J_{\varepsilon}(t\varphi_1) \le \frac{\lambda_1 + \varepsilon_0 \lambda_1 - a \lambda}{2} < 0, \ \forall \varepsilon \in [0, \ \varepsilon_0].$$

Therefore

$$\lim_{t \to +\infty} J_{\varepsilon}(t\varphi_1) = -\infty.$$

So, there exists $v_0 \in E$ such that

$$J_{\varepsilon}(v_0) \leq J_{\varepsilon}(u_{\lambda}), \ \forall \varepsilon \in [0, \varepsilon_0],$$

and (**) is proved. Finally, for all $\varepsilon \in [0, \varepsilon_0]$, let v_{ε} (respectively. c_{ε}) be the critical point (respectively. critical value) of J_{ε} .

Remark 4.3. The fact that J_{ε} increases with ε implies that for all $\varepsilon \in [0, \varepsilon_0]$, $c_{\varepsilon} \in [c_0, c_{\varepsilon_0}[$. Then, c_{ε} is uniformly bounded. Thus, for all $\varepsilon \in [0, \varepsilon_0]$, the critical point v_{ε} satisfies $||v_{\varepsilon} - u_{\lambda}|| \ge R$.

Recall that for any $\varepsilon \in [0, \varepsilon_0]$, the function v_{ε} belongs to E and satisfies

$$-\Delta v_{\varepsilon} + cv_{\varepsilon} = \frac{\lambda}{1+\varepsilon} f(v_{\varepsilon}) + \frac{\lambda\varepsilon}{1+\varepsilon} f(u_{\lambda}) \text{ in } \Omega$$
(4.6)

and

$$J_{\varepsilon}(v_{\varepsilon}) = c_{\varepsilon}. \tag{4.7}$$

Thanks to Lemma 4.2, Remark 4.3, (4.6) and (4.7) , there exists $v \in E$ such that

$$v_{\varepsilon} \to v \text{ in } E, \text{ as } \varepsilon \to 0,$$

satisfying

$$-\Delta v + cv = \lambda f(v) \text{ in } \Omega$$

From Remark 4.3, we see that $v \neq u_{\lambda}$, which can be also proved using the same arguments of Mironescu and Rădulescu in [10]. Indeed, note that v_{ε} is a solution to (4.6) which is different from the unique stable solution u_{λ} . Then, v_{ε} is unstable, that is,

$$\eta_1\left(\frac{\lambda}{1+\varepsilon}, v_\varepsilon\right) < 0,$$

since (4.7) can be written as

$$-\Delta v_{\varepsilon} + cv_{\varepsilon} = g_{\varepsilon}(v_{\varepsilon}) + h_{\varepsilon}(x), \qquad (4.8)$$

where g_{ε} is convex, positive and h_{ε} is positive. Thus, if (4.8) has solutions satisfying $v_{\varepsilon} = 0$ on $\partial \Omega$, then it has a minimal one, say w_{ε} , which is stable. Now, thanks to Theorem 1.4, all other solutions v_{ε} of (4.8) are unstable.

The next lemma states that the limit of a sequence of unstable solutions is also unstable (the proof is similar to that of Lemma 11 in [10]).

Lemma 4.4. Let $u_n \rightharpoonup u$ in $H^2(\Omega) \cap H^1_0(\Omega)$ and $\mu_n \rightarrow \mu$ be such that $\eta_1(\mu_n, u_n) < 0$. Then, $\eta_1(\mu, u) \leq 0$.

Finally, the fact that the function v belongs to $C^4(\overline{\Omega}) \cap E$ follows from a bootstrap argument.

Proof of Theorem 1.6 (iii) (a). Thanks to Lemma 3.1, if (i) does not occur, then there is a sequence of positives scalars (μ_n) and a sequence (v_n) of unstable solutions to (P_{μ_n}) such that $v_n \to v$ in $L^1_{loc}(\Omega)$ as $\mu_n \to \lambda_1/a$ for some function v.

We first claim that (v_n) cannot be bounded in E. Otherwise, let $w \in E$ be such that, up to a subsequence,

 $v_n \rightarrow w$ weakly in E and $v_n \rightarrow w$ strongly in $L^2(\Omega)$.

Therefore,

$$-\Delta v_n + cv_n \to -\Delta w + cw \text{ in } \mathcal{D}'(\Omega) \quad \text{and} \quad f(v_n) \to f(w) \text{ in } L^2(\Omega),$$

which implies that $-\Delta w + cw = \frac{\lambda_1}{a} f(w)$ in Ω . It follows that $w \in E$ and solves $(P_{\lambda_1/a})$. From Lemma 4.2, we deduce that

$$\eta_1\left(\frac{\lambda_1}{a}, w\right) \le 0. \tag{4.9}$$

Relation (4.9) shows that $w \neq u_{\lambda_1/a}$ which contradicts the fact that $(P_{\lambda_1/a})$ has a unique solution. Now, since $-\Delta v_n + cv_n = \mu_n f(v_n)$, the unboundedness of (v_n) in E implies that this sequence is unbounded in $L^2(\Omega)$, too. To see this, let

$$v_n = k_n w_n$$
, where $k_n > 0$, $||w_n||_2 = 1$ and $k_n \to \infty$.

Then

$$-\Delta w_n + cw_n = \frac{\mu_n}{k_n} f(v_n) \to 0$$
 in $L^1_{loc}(\Omega)$.

So, we have convergence also in the sense of distributions and (w_n) is seen to be bounded in E with standard arguments. We obtain

$$-\Delta w + cw = 0$$
 and $||w||_2 = 1$.

The desired contradiction is obtained since $w \in E$.

Proof of Theorem 1.6 (iii) (b). As before, it is enough to prove the $L^2(\Omega)$ boundedness of v_{λ} near λ^* and to use the uniqueness property of u^* . Assume that $||v_n||_2 \to \infty$ as $\mu_n \to \lambda^*$, where v_n is a solution to (P_{μ_n}) . We write again $v_n = l_n w_n$. Then,

$$-\Delta w_n + cw_n = \frac{\mu_n}{l_n} f(v_n). \tag{4.10}$$

The fact that the right-hand side of (4.10) is bounded in $L^2(\Omega)$ implies that (w_n) is bounded in E. Let (w_n) be such that (up to a subsequence)

$$w_n \rightarrow w$$
 weakly in E and $w_n \rightarrow w$ strongly in $L^2(\Omega)$.

A computation already done shows that

$$-\Delta w + cw = \lambda^* aw, \quad w \ge 0 \quad \text{and} \ \|w\|_2 = 1,$$

which forces λ^* to be λ_1/a . This contradiction concludes the proof.

30

References

- A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381.
- [2] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t \Delta u = g(u)$ revisited, Adv. Diff. Eq., 1 (1996), 73–90.
- [3] S. Chandrasekar, An introduction to the Theory of Stellar Structures, Dover, New York (1957).
- [4] D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, New York: Plenum Press 1069.
- [5] I.M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Translations Heidelberg, 291(2) (1963), 295–381.
- [6] L. Hörmander, The Analysis of Linear Differential Operators I, Springer-Verlag, Berlin (1983).
- [7] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet driven by positive sources, Arch. Rachinal Mech. Anal., 49 (1973), 241–269.
- [8] D.D. Joseph and E.M. Sparrow, Nonlinear diffusion induced by nonlinear sources, Quar. J. Appl. Math., 28 (1970), 327–342.
- Y. Martel, Uniqueness of weak solution for nonlinear elliptic problems, Houston J. Math., 23 (1997), 161–168.
- [10] P. Mironescu and V. Rădulescu, The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Anal., 26 (1996), 857–875.
- M. Sanchón, Boundedness of the extremal solution of some p-Laplacian problems, Nonlinear Anal., 67 (2007), 281–294.