STABLE SOLUTIONS AND BIFURCATION PROBLEM FOR ASYMPTOTICALLY LINEAR HELMHOLTZ EQUATIONS

Imed Abid ${ }^{1}$, Makkia Dammak ${ }^{2}$ and Ikmar Douchich ${ }^{3}$
${ }^{1}$ University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis 09 doctor Zouhair Essafi Street 1006 Tunis, Tunisia e-mail: abidimed7@gmail.com
${ }^{2}$ University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis 09 doctor Zouhair Essafi Street 1006 Tunis, Tunisia
e-mail: makkia.dammak@gmail.com
${ }^{3}$ University of Tunis El Manar, Faculty of Sciences of Tunis
Campus Universities 2092 Tunis, Tunisia
e-mail: ikmar.douchich@gmail.com

Abstract

In this note, we investigate the existence of positive solutions for the Helmholtz equation $-\Delta u+c u=\lambda f(u)$ on a bounded smooth domain of \mathbb{R}^{n} with Dirichlet boundary conditions. Here $\lambda>0, c>0$ are positive constants and f is a positive nondecreasing convex function, asymptotically linear that is $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=a<\infty$. We show that there exists an extremal parameter $\lambda^{*}>0$ but the extremal solution exists and it is regular provided that $\lim _{t \rightarrow \infty} f(t)-a t=l<0$.

1. Introduction

Consider the problem

$$
\left(P_{\lambda}\right) \quad\left\{\begin{aligned}
-\Delta u+c u & =\lambda f(u) & & \text { in } \quad \Omega, \\
u & =0 & & \text { on } \quad \partial \Omega,
\end{aligned}\right.
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{n}, n \geq 2, c>0$ and $\lambda>0$. The function f defined in $[0, \infty)$ and satisfies

$$
\begin{equation*}
f \text { is } C^{1}, \text { positive, nondecreasing and convex } \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\lim _{t \longrightarrow \infty} \frac{f(t)}{t}=a \in(0,+\infty) \tag{1.2}
\end{equation*}
$$

\]

By a solution of $\left(P_{\lambda}\right)$ we mean a function $u \in C^{2}(\bar{\Omega})$ satisfying $\left(P_{\lambda}\right)$. In the sequel we are interested only in nonnegative solutions and for which we have considered only $\lambda>0$. From maximum principle that if u is a nonnegative solution, then $u(x)>0$ for $x \in \Omega$.

Problems of the form $\left(P_{\lambda}\right)$ occur in a variety of situations. For $c(x)=$ cte., $\left(P_{\lambda}\right)$ is known as the Helmholtz problems. They arise in models of combustion [4, 5], thermal explosions [4], nonlinear heat generation [8], and the gravitational equilibrium of polytropic stars [3, 7]. In particular, the Helmholtz problem occur in the study of electromagnetic radiation, seismology, acoustics.

For $c=0$, various authors have studied the bifurcation problem

$$
\left(E_{\lambda}\right) \quad\left\{\begin{aligned}
-\Delta u & =\lambda f(u) & & \text { in } \quad \Omega, \\
u & =0 & & \text { on } \quad \partial \Omega,
\end{aligned}\right.
$$

Brezis et al. have proved in [2] that there exists $0<\lambda^{*}<\infty$, a critical value of the parameter λ, such that $\left(E_{\lambda}\right)$ has a minimal, positive, classical solution u_{λ} for $0<\lambda<\lambda^{*}$ and does not have solutions for $\lambda>\lambda^{*}$.

The value of a was crucial in the study of ($E_{\lambda^{*}}$) and of the behavior of u_{λ} when λ approaches λ^{*}. In the case when $a=+\infty$, it is proved in [2] that a minimal weak solution u^{*} exists for $\lambda=\lambda^{*}$. In [9], Martel proves that in this case u^{*} is the unique weak solution of $\left(E_{\lambda^{*}}\right)$. Recently, Sanchon in [11] generalizes these results for the p-Laplacian. When a is finite, Mironescu and Rădulescu proved in [10] that there exists a unique classical solution u^{*} of $\left(E_{\lambda^{*}}\right)$ if and only if $\lim _{t \rightarrow \infty}(f(t)-a t)<0$.

In this paper, we deal with weak solution in the following sense.
Definition 1.1. A weak solution of $\left(P_{\lambda}\right)$ is a function $u \in L^{1}(\Omega), u \geq 0$ such that $f(u) \in L^{1}(\Omega)$, and

$$
\begin{equation*}
-\int_{\Omega} u \Delta \zeta+\int_{\Omega} c u \zeta=\lambda \int_{\Omega} f(u) \zeta \tag{1.3}
\end{equation*}
$$

for all $\zeta \in C^{2}(\bar{\Omega})$ with $\zeta=0$ on $\partial \Omega$.
We say that u is a weak super-solution of $\left(P_{\lambda}\right)$ if " $=$ " is replaced by " \geq " for all $\zeta \in C^{2}(\bar{\Omega}), \zeta \geq 0$ and $\zeta=0$ on $\partial \Omega$.

Remark 1.2. If $u \in L^{1}(\Omega)$ is a weak solution of $\left(P_{\lambda}\right)$ and $u \in L^{\infty}(\Omega)$, we say that u is regular. By elliptic regularity, we know that regular solutions are smooth and solve $\left(P_{\lambda}\right)$ in the classical sense.

For regular solutions, we introduce a notion of stability.
Definition 1.3. A regular solution u of $\left(P_{\lambda}\right)$ is said to be stable if the first eigenvalue $\eta_{1}(c, \lambda, u)$ of the linearized operator $L_{c, \lambda, u}=-\Delta+c-\lambda f^{\prime}(u)$ given by

$$
\eta_{1}(c, \lambda, u):=\inf _{\varphi \in H_{0}^{1}(\Omega)-\{0\}} \frac{\int_{\Omega}|\nabla \varphi|^{2}+\int_{\Omega} c \varphi^{2}-\lambda \int_{\Omega} f^{\prime}(u) \varphi^{2}}{\|\varphi\|_{2}^{2}}
$$

is positive in $H_{0}^{1}(\Omega)$. In other words,

$$
\begin{equation*}
\lambda \int_{\Omega} f^{\prime}(u) \varphi^{2} \leq \int_{\Omega}|\nabla \varphi|^{2}+c \int_{\Omega} \varphi^{2} \quad \text { for any } \quad \varphi \in H_{0}^{1}(\Omega) \tag{1.4}
\end{equation*}
$$

If $\eta_{1}(c, \lambda, u)<0$, the solution u is said to be unstable.
We denote by λ_{1} the first eigenvalue of $L=-\Delta+c$ in Ω with Dirichlet boundary condition and φ_{1} a positive normalized eigenfunction associated, that is, such that

$$
\left\{\begin{array}{rlll}
-\Delta \varphi_{1}+c \varphi_{1} & =\lambda_{1} \varphi_{1} & \text { in } & \Omega, \tag{1.5}\\
\varphi_{1} & >0 & \text { in } & \Omega, \\
\varphi_{1} & =0 & & \text { on } \\
\| \Omega, \\
\left\|\varphi_{1}\right\|_{2}^{2} & =1 . & &
\end{array}\right.
$$

Next, we let
$\Lambda:=\left\{\lambda>0\right.$ such that $\left(P_{\lambda}\right)$ admits a solution $\}$ and $\lambda^{*}:=\sup \Lambda \leq+\infty$.
We denote

$$
\begin{equation*}
r_{0}:=\inf _{t>0} \frac{f(t)}{t} . \tag{1.6}
\end{equation*}
$$

Our first main statement asserts the existence of the critical value λ^{*}.
Theorem 1.4. There exists a critical value $\lambda^{*} \in(0, \infty)$ such that the following properties hold true.
(i) For any $\lambda \in\left(0, \lambda^{*}\right)$, problem $\left(P_{\lambda}\right)$ has a minimal solution u_{λ}, which is the unique stable solution of $\left(P_{\lambda}\right)$ and the mapping $\lambda \mapsto u_{\lambda}$ is increasing.
(ii) For any $\lambda \in\left(0, \frac{\lambda_{1}}{a}\right), u_{\lambda}$ is the unique solution of problem $\left(P_{\lambda}\right)$.
(iii) If problem $\left(P_{\lambda^{*}}\right)$ has a solution u, then

$$
u=u^{*}=\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda},
$$

and $\eta_{1}\left(c, \lambda^{*}, u^{*}\right)=0$.
(iv) For $\lambda>\lambda^{*}$, the problem $\left(P_{\lambda}\right)$ has no weak solution.

For the next results, let

$$
\begin{equation*}
l:=\lim _{t \rightarrow \infty}(f(t)-a t) . \tag{1.7}
\end{equation*}
$$

We distinguish two different situations strongly depending on the sign of l.
Theorem 1.5. Assume that $l \geq 0$. The following results hold.
(i) $\lambda^{*}=\lambda_{1} / a$.
(ii) Problem $\left(P_{\lambda^{*}}\right)$ has no solution.
(iii) $\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda}=\infty$ uniformly on compact subsets of Ω.

Theorem 1.6. Assume that $l<0$. Then we have.
(i) The critical value λ^{*} belongs to $\left(\frac{\lambda_{1}}{a}, \frac{\lambda_{1}}{r_{0}}\right)$.
(ii) $\left(P_{\lambda^{*}}\right)$ has a unique solution u^{*}.
(iii) The problem $\left(P_{\lambda}\right)$ has an unstable solution v_{λ} for any $\lambda \in\left(\frac{\lambda_{1}}{a}, \lambda^{*}\right)$ and the sequence $\left(v_{\lambda}\right)_{\lambda}$ satisfies
(a) $\lim _{\lambda \rightarrow \frac{\lambda_{1}}{2}} v_{\lambda}=\infty$ uniformly on compact subsets of Ω,
(b) $\lim _{\lambda \rightarrow \lambda^{*}} v_{\lambda}=u^{*}$ uniformly in Ω.

2. Proof of Theorem 1.4

In the proof of this Theorem we shall make use of the following auxiliary results.

Lemma 2.1. ([2]) Given $g \in L^{1}(\Omega)$, there exists an unique $v \in L^{1}(\Omega)$ which is a weak solution of

$$
\left\{\begin{array}{rlll}
-\Delta v+c v & = & g \text { in } \quad \Omega, \\
v & = & 0 & \text { on } \quad \partial \Omega,
\end{array}\right.
$$

in the sense that

$$
\int_{\Omega}-v \Delta \zeta+\int_{\Omega} c v \zeta=\int_{\Omega} g \zeta
$$

for all $\zeta \in C^{2}(\bar{\Omega})$ with $\zeta=0$ on $\partial \Omega$. Moreover, there exists a constant c_{0} independents of g such that

$$
\|v\|_{L^{1}(\Omega)} \leq c_{0}\|g\|_{L^{1}(\Omega)}
$$

In addition, if $g \geq 0$ a.e in Ω, then $v \geq 0$ a.e in Ω.
Lemma 2.2. If $\left(P_{\lambda}\right)$ has a weak super solution \bar{u}, then there exists a weak solution u of $\left(P_{\lambda}\right)$ such that $0 \leq u \leq \bar{u}$ and u does not depend on \bar{u}.

Proof. We use a standard monotone iteration argument and maximum principle for the operator $-\Delta+c$. Let $u_{0}=0$ and u_{n+1} the solution of

$$
\left\{\begin{aligned}
-\Delta u_{n+1}+c u_{n+1} & =\lambda f\left(u_{n}\right) & & \text { in } \quad \Omega, \\
u_{n+1} & =0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

which exists by Lemma 2.1. We prove that $0=u_{0} \leq u_{1} \leq \ldots \leq u_{n} \leq \ldots \leq \bar{u}$ and $\left(u_{n}\right)_{n}$ converge to $u \in L^{1}(\Omega)$ which is a weak solution of $\left(P_{\lambda}\right)$. Moreover u is independent of \bar{u} by construction.

The existence of the critical value λ^{*} is a consequence of the following auxiliary result.

Lemma 2.3. The problem $\left(P_{\lambda}\right)$ has no solution for any $\lambda>\lambda_{1} / r_{0}$, but has at least one solution provided λ is positive and small enough.

Proof. To show that $\left(P_{\lambda}\right)$ has a solution, we use the barrier method and so the Lemma 2.2. To this aim, let $\xi \in C^{2}(\bar{\Omega}) \cap H_{0}^{1}(\Omega)$ which satisfies $-\Delta \xi+c \xi=1$ in Ω. The choice of ξ implies that ξ is a super solution of $\left(P_{\lambda}\right)$ for $\lambda \leq 1 / f\left(\|\xi\|_{\infty}\right)$. By Lemma 2.2, there exist a weak solution u of $\left(P_{\lambda}\right)$ such that $0 \leq u \leq \xi$. Because $\xi \in C^{2}(\bar{\Omega}), u \in L^{\infty}(\Omega)$ (u is a regular solution) and then $u \in C^{2}(\bar{\Omega})$. It follows that problem $\left(P_{\lambda}\right)$ has a solution for $\lambda \leq 1 / f\left(\|\xi\|_{\infty}\right)$.

Assume now that u is a solution of $\left(P_{\lambda}\right)$ for some $\lambda>0$. Using φ_{1} given by (1.5) as a test function, we get

$$
-\int_{\Omega} u \Delta \varphi_{1}+\int_{\Omega} c u \varphi_{1}=\lambda \int_{\Omega} f(u) \varphi_{1} .
$$

This yields

$$
\left(\lambda_{1}-\lambda r_{0}\right) \int_{\Omega} \varphi_{1} u \geq 0
$$

Since $\varphi_{1}>0$ and $u>0$, we conclude that the parameter λ should belong to ($0, \lambda_{1} / r_{0}$). This completes our proof.

As a consequence we have that λ^{*} is a real. Another useful result is stated in what follows.

Lemma 2.4. Assume that the problem $\left(P_{\lambda}\right)$ has a solution for some $\lambda \in$ $\left(0, \lambda^{*}\right)$. Then there exists a minimal solution denoted by u_{λ} for the problem $\left(P_{\lambda}\right)$. Moreover, for any $\lambda^{\prime} \in(0, \lambda)$, the problem $\left(P_{\lambda^{\prime}}\right)$ has a solution.

Proof. Fix $\lambda \in\left(0, \lambda^{*}\right)$ and let u be a solution of $\left(P_{\lambda}\right)$. As above, we use the Lemma 2.2 to obtain a solution of $\left(P_{\lambda}\right), u_{\lambda}$ which is independent of u used as super solution (as mentioned in the proof of Lemma 2.2). Since u_{λ} is independent of the choice of u, then it is a minimal solution.

Now, if u is a solution of $\left(P_{\lambda}\right)$, then u is a super solution of the problem $\left(P_{\lambda^{\prime}}\right)$ for any λ^{\prime} in $(0, \lambda)$ and Lemma 2.2 completes the proof.

Proof of Theorem 1.4 (i). First, we claim that u_{λ} is stable. Indeed, arguing by contradiction, we deduce that the first eigenvalue $\eta_{1}=\eta_{1}\left(c, \lambda, u_{\lambda}\right)$ is non positive. Then, there exists an eigenfunction

$$
\psi \in C^{2}(\bar{\Omega}) \text { and } \psi=0 \text { on } \partial \Omega,
$$

such that

$$
-\Delta \psi+c \psi-\lambda f^{\prime}\left(u_{\lambda}\right) \psi=\eta_{1} \psi \text { in } \Omega \text { and } \psi>0 \text { in } \Omega .
$$

Consider $u^{\varepsilon}:=u_{\lambda}-\varepsilon \psi$. Hence

$$
\begin{aligned}
-\Delta u^{\varepsilon}+c u^{\varepsilon}-\lambda f\left(u^{\varepsilon}\right) & =-\eta_{1} \varepsilon \psi+\lambda\left[f\left(u_{\lambda}\right)-f\left(u_{\lambda}-\varepsilon \psi\right)-\varepsilon f^{\prime}\left(u_{\lambda}\right) \psi\right] \\
& =\varepsilon \psi\left(-\eta_{1}+o_{\varepsilon}(1)\right) .
\end{aligned}
$$

Since $\eta_{1}\left(c, \lambda, u_{\lambda}\right) \leq 0$ for $\varepsilon>0$ small enough, we have

$$
-\Delta u^{\varepsilon}+c u^{\varepsilon}-\lambda f\left(u^{\varepsilon}\right) \geq 0 \text { in } \Omega .
$$

Then, for $\varepsilon>0$ small enough, we use the strong maximum principle (Hopf's Lemma) to deduce that $u^{\varepsilon} \geq 0 . u^{\varepsilon}$ is a super solution of $\left(P_{\lambda}\right)$, so by Lemma 2.2 we obtain a solution u such that $u \leq u^{\varepsilon}$ and since $u^{\varepsilon}<u_{\lambda}$, then we contradict the minimality of u_{λ}.

Now, we show that $\left(P_{\lambda}\right)$ has at most one stable solution. Assume the existence of another stable solution $v \neq u_{\lambda}$ of problem $\left(P_{\lambda}\right)$. Let $w:=v-u_{\lambda}$, then by maximum principle $w>0$ and from (1.4) taking w as a test function, we have

$$
\begin{aligned}
\lambda \int_{\Omega} f^{\prime}(v) w^{2} & \leq \int_{\Omega}|\nabla w|^{2}+\int_{\Omega} c w^{2} \\
& =-\int_{\Omega} w \Delta w+\int_{\Omega} c w^{2}=\lambda \int_{\Omega}\left[f(v)-f\left(u_{\lambda}\right)\right] w .
\end{aligned}
$$

Therefore

$$
\int_{\Omega}\left[f(v)-f\left(u_{\lambda}\right)-f^{\prime}(v)\left(v-u_{\lambda}\right)\right] w \geq 0
$$

Thanks to the convexity of f, the term in the brackets is non positive, hence

$$
f(v)-f\left(u_{\lambda}\right)-f^{\prime}(v)\left(v-u_{\lambda}\right)=0 \text { in } \Omega,
$$

which implies that f is affine over $\left[u_{\lambda}, v\right]$ in Ω. So, there exists two real numbers \bar{a} and b such that

$$
f(x)=\bar{a} x+b \quad \text { in }\left[0, \max _{\Omega} v\right] .
$$

Finally, since u_{λ} and v are two solutions to $-\Delta w+c w=\bar{a} w+b$, we obtain that

$$
0=\int_{\Omega}\left(u_{\lambda} \Delta v-v \Delta u_{\lambda}\right)=b \int_{\Omega}\left(v-u_{\lambda}\right)=b \int_{\Omega} w
$$

This is impossible since $b=f(0)>0$ and w is positive in Ω.
Finally, by Lemma 2.4 and the definition of u_{λ}, we have that the function $\lambda \rightarrow u_{\lambda}$ is an increasing mapping.

Proof of Theorem 1.4 (ii). In this stage, we need the following results.
Proposition 2.5. Let $\Omega \subset \mathbb{R}^{n}$ a smooth bounded open subset of $\mathbb{R}^{n}, n \geq 2$. Assume that f is a function satisfying (1.1) and (1.2). If $\left(P_{\lambda}\right)$ has a weak solution u, then u is a regular solution and hence a classical solution.
Proof. By convexity of f, we have $a=\sup _{t \geq 0} f^{\prime}(t)$ and

$$
\begin{equation*}
f(t) \leq a t+f(0) \text { for all } t \geq 0 \tag{2.1}
\end{equation*}
$$

Let u a weak solution of $\left(P_{\lambda}\right), f(u) \in L^{1}(\Omega)$. By elliptic regularity, $u \in L^{p}(\Omega)$, for all $p \geq 1$ such that

$$
\begin{equation*}
p<\frac{n}{n-2} \quad(p<\infty \text { if } n=2) \tag{2.2}
\end{equation*}
$$

Again by (2.1), $f(u) \in L^{p}$ for all p satisfying (2.2) so $u \in L^{r}(\Omega)$ for all $r \geq 1$ such that

$$
\begin{equation*}
r<\frac{n}{n-4} \quad(p \leq \infty \text { if } n=2,3 \text { and } r<\infty \text { if } n=4) \tag{2.3}
\end{equation*}
$$

By iteration and after $k(n)=\left[\frac{n}{2}\right]+1$ operation, the solution u belongs to $L^{\infty}(\Omega)$. By elliptic regularity and standard bootstrap argument, $u \in C^{2}(\bar{\Omega})$.

Proposition 2.6. Let $\Omega \subset \mathbb{R}^{n}$ a smooth bounded open subset of \mathbb{R}^{n}, $n \geq 2$. Assume that $f(t)=a t+b$, where $a, b>0$. Then
(i) $\lambda^{*}=\frac{\lambda_{1}}{a}$,
(ii) The problem $\left(P_{\lambda}\right)$ has no weak solution for $\lambda=\lambda^{*}$.

Proof. Let $0<\lambda<\frac{\lambda_{1}}{a}$, the problem $\left(P_{\lambda}\right)$, given by

$$
\left\{\begin{array}{rlll}
-\Delta u+(c-\lambda a) u & =\lambda b & \text { in } \quad \Omega \tag{2.4}\\
u & =0 & \text { on } \quad \partial \Omega
\end{array}\right.
$$

has a unique solution in $C^{2}(\bar{\Omega})$. Since $\lambda a<\lambda_{1}$, by Maximum principle $u>0$. Now let $\lambda=\frac{\lambda_{1}}{a}$. If the problem (2.4) has a solution u, then by multiplication
(2.4) by φ_{1} the positive eigenfunction associated to λ_{1} and introduced by (1.5) and integration by parts, it follows that $\int_{\Omega} \varphi_{1}=0$ which is impossible since $\varphi_{1}>0$ in Ω. So for $f(t)=a t+b, a$ and $b>0$, we have $\lambda^{*}=\frac{\lambda_{1}}{a}$ and the equation $\left(P_{\lambda^{*}}\right)$ has no solution.

For the proof of Theorem $1.4(\mathbf{i i})$, let $\lambda \in\left(0, \frac{\lambda_{1}}{a}\right), b=f(0)$ and w a solution for the problem (2.4) when $f(t)=a t+b$. Since we have for the general function f in Theorem 1.4, that $f(w) \leq a w+f(0)$, then w is a super solution of $\left(P_{\lambda}\right)$ and hence by Lemma 2.2 and Proposition 2.5, the equation $\left(P_{\lambda}\right)$ has a solution. For the uniqueness, let u a solution of $\left(P_{\lambda}\right)$ for a reel $\lambda \in\left(0, \frac{\lambda_{1}}{a}\right)$. We denote $\lambda_{1}(L)$ the first eigenvalue of an operator L, that is $\lambda_{1}(-\Delta+c)=\lambda_{1}$. Because $a=\sup _{t \geq 0} f^{\prime}(t)$, we have $-\Delta+c-\lambda f^{\prime}(u) \geq-\Delta+c-\lambda a$ and so

$$
\lambda_{1}\left(-\Delta+c-\lambda f^{\prime}(u)\right) \geq \lambda_{1}(-\Delta+c-\lambda a)
$$

that is

$$
\eta_{1}(c, \lambda, u) \geq \lambda_{1}-\lambda a>0 .
$$

The solution u is stable then, by Theorem 1.4 (i), we obtain $u=u_{\lambda}$.
Proof of Theorem 1.4 (iii). Suppose that $\left(P_{\lambda^{*}}\right)$ has a solution u. then, for every $\lambda \in\left(0, \lambda^{*}\right)$ we have $u_{\lambda} \leq u$ and so $u^{*}=\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda}$ is well defined in $L^{1}(\Omega)$ and furthermore u^{*} is a weak then classical solution for ($P_{\lambda^{*}}$). Since $0 \leq u^{*} \leq u, u^{*}$ is a minimal solution and also satisfies (1.4) for $\lambda=\lambda^{*}$ so $\eta_{1}\left(c, \lambda^{*}, u^{*}\right) \geq 0$. Furthermore, u^{*} is a the unique solution for ($P_{\lambda^{*}}$) and we can proceed as in [9].

Now, consider the nonlinear operator

$$
\begin{array}{rlcc}
G:(0,+\infty) \times C^{2, \alpha}(\bar{\Omega}) \cap H_{0}^{1}(\Omega) & \longrightarrow & C^{0, \alpha}(\bar{\Omega}) \\
(\lambda, u) & \longmapsto & -\Delta u+c u-\lambda f(u),
\end{array}
$$

where $\alpha \in(0,1)$. Assuming that the first eigenvalue $\eta_{1}\left(c, \lambda^{*}, u^{*}\right)$ is positive. By the implicit function theorem applied to the operator G, it follows that problem $\left(P_{\lambda}\right)$ has a solution for λ in a neighborhood of λ^{*}. But this contradicts the definition of λ^{*} so $\eta_{1}\left(c, \lambda^{*}, u^{*}\right)=0$ and this completes the proof of Theorem 1.4 (iii).

Proof of Theorem 1.4 (iv). If the problem $\left(P_{\lambda}\right)$ has a weak solution u for $\lambda>\lambda^{*}$, then by Proposition 2.5, u is a classical solution for $\left(P_{\lambda}\right)$ and this contradicts the definition of λ^{*}.

3. Proof of Theorem 1.5

In the proof of Theorem 1.5, we shall use the following auxiliary result which is a reformulation of Theorem due to Hörmander [6] and maximum principle and it is also true for the operator $-\Delta+c$.

Lemma 3.1. Let Ω be an open bounded subset of \mathbb{R}^{n}, $n \geq 2$ with smooth boundary. Let (u_{n}) be a sequence of super harmonic nonnegative functions defined on Ω. Then the following alternative holds.
(i) $\lim _{n \rightarrow \infty} u_{n}=\infty$ uniformly on compact subsets of Ω,
or
(ii) $\left(u_{n}\right)$ contains a subsequence which converges in $L_{\text {loc }}^{1}(\Omega)$ to some function u.

We first prove the following result.
Proposition 3.2. Let f be a positive function satisfying (1.1) and (1.2). Then the following assertions are equivalent:
(i) $\lambda^{*}=\frac{\lambda_{1}}{a}$.
(ii) $\left(P_{\lambda^{*}}\right)$ has no solution.
(iii) $\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda}=\infty$ uniformly on compact subsets of Ω.

Proof. (i) \Rightarrow (ii). By contradiction. Assume that $\left(P_{\lambda^{*}}\right)$ has a solution u. By (ii) of Theorem 1.4, $u=u^{*}=\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda}$ and $\eta_{1}\left(c, \lambda^{*}, u^{*}\right)=0$. Thus there exists $\psi \in C^{2}(\bar{\Omega}) \cap H_{0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
-\Delta \psi+c \psi-\lambda^{*} f^{\prime}\left(u^{*}\right) \psi=0 \text { and } \psi>0 \text { in } \Omega . \tag{3.1}
\end{equation*}
$$

Using φ_{1} given by (1.5) as a test function, we obtain

$$
\begin{equation*}
\int_{\Omega}\left(\lambda_{1}-\lambda^{*} f^{\prime}\left(u^{*}\right)\right) \varphi_{1} \psi=0 \tag{3.2}
\end{equation*}
$$

Since $\varphi_{1}>0, \psi>0, \lambda^{*}=\frac{\lambda_{1}}{a}$ and $a=\sup _{t>0} f^{\prime}(t)$, we have $\lambda_{1}-\lambda^{*} f^{\prime}\left(u^{*}\right) \geq 0$.
Then equality (3.2) gives $f^{\prime}\left(u^{*}\right)=a$ in Ω. This implies that $f(t)=a t+b$ in $\left[0, \max _{\Omega} u^{*}\right]$ for some scalar $b>0$ and this impossible by Proposition 2.6. Hence ($P_{\lambda^{*}}$) has no solution.
(ii) \Rightarrow (iii). By contradiction, suppose that (iii) doesn't hold. By Lemma 3.1 and up to subsequence, u_{λ} converges locally in $L^{1}(\Omega)$ to a function u as $\lambda \rightarrow \lambda^{*}$.
Claim: u_{λ} is bounded in $L^{2}(\Omega)$.
Indeed, if not, we may assume that

$$
u_{\lambda}=k_{\lambda} w_{\lambda}
$$

with

$$
\begin{equation*}
\int_{\Omega} w_{\lambda}^{2} d x=1 \quad \text { and } \quad \lim _{\lambda \rightarrow \lambda^{*}} k_{\lambda}=\infty \tag{3.3}
\end{equation*}
$$

We have

$$
\frac{\lambda}{k_{\lambda}} f\left(u_{\lambda}\right) \rightarrow 0 \text { in } L_{l o c}^{1}(\Omega) \text { as } \lambda \rightarrow \lambda^{*}
$$

and then

$$
\begin{equation*}
-\Delta w_{\lambda}+c w_{\lambda} \rightarrow 0 \text { in } L_{l o c}^{1}(\Omega) \tag{3.4}
\end{equation*}
$$

We have

$$
\int_{\Omega}\left|\nabla w_{\lambda}\right|^{2}=-\int_{\Omega} \Delta w_{\lambda} w_{\lambda}=\int_{\Omega}\left(\frac{\lambda f\left(u_{\lambda}\right)}{k_{\lambda}}-c w_{\lambda}\right) w_{\lambda}
$$

then

$$
\begin{aligned}
\int_{\Omega}\left|\nabla w_{\lambda}\right|^{2} & \leq \int_{\Omega} \frac{\lambda f\left(u_{\lambda}\right)}{k_{\lambda}} w_{\lambda} \leq \lambda^{*} \int_{\Omega} a w_{\lambda}^{2}+\frac{f(0)}{k_{\lambda}} w_{\lambda} \\
& \leq a \lambda^{*}+c_{0} \int_{\Omega} w_{\lambda} \leq a \lambda^{*}+c_{0} \sqrt{|\Omega|}
\end{aligned}
$$

for some $c_{0}>0$ independent of λ. Then $\left(w_{\lambda}\right)$ is bounded in $H_{0}^{1}(\Omega)$ and up to a subsequence, we obtain

$$
\begin{align*}
& w_{\lambda} \rightharpoonup w \text { weakly in } H_{0}^{1}(\Omega) \text { and } \\
& w_{\lambda} \rightarrow w \text { in } L^{2}(\Omega) \text { as } \lambda \rightarrow \lambda^{*} . \tag{3.5}
\end{align*}
$$

It follows by (3.4) and (3.5) that $w=0$ in Ω and this contradicts (3.3). This complete the proof of the claim.
Thus u_{λ} is bounded in $L^{2}(\Omega)$ and with the same argument above, u_{λ} is bounded in $H_{0}^{1}(\Omega)$ and up to a subsequence, we have

$$
\begin{gathered}
u_{\lambda} \rightharpoonup u \text { weakly in } H_{0}^{1}(\Omega) \text { and } \\
u_{\lambda} \rightarrow u \text { in } L^{2}(\Omega) \text { as } \lambda \rightarrow \lambda^{*} \\
\left\{\begin{aligned}
-\Delta u+c u=\lambda^{*} f(u) & \text { in } \Omega \\
u=0 & \text { on }
\end{aligned} \partial \Omega\right.
\end{gathered}
$$

and this impossible by the hypothesis (ii). We remark clearly that (iii) \Rightarrow (ii) and hence (ii) \Leftrightarrow (iii).
$($ iii $) \Rightarrow($ i $)$. If (iii) occurs, that (ii) also is true and we have $\lim _{\lambda \rightarrow \lambda^{*}}\left\|u_{\lambda}\right\|_{2}=\infty$. Let

$$
\begin{equation*}
u_{\lambda}=k_{\lambda} w_{\lambda} \text { with }\left\|w_{\lambda}\right\|_{2}=1 \tag{3.6}
\end{equation*}
$$

Up to subsequence, we obtain

$$
\begin{align*}
& w_{\lambda} \rightharpoonup w \text { weakly in } H_{0}^{1}(\Omega) \text { and } \\
& w_{\lambda} \rightarrow w \text { in } L^{2}(\Omega) \text { as } \lambda \rightarrow \lambda^{*} \tag{3.7}
\end{align*}
$$

We have also

$$
\begin{gather*}
\frac{\lambda}{k_{\lambda}} f\left(u_{\lambda}\right) \rightarrow \lambda^{*} a w \text { as } \lambda \rightarrow \lambda^{*}, \tag{3.8}\\
-\Delta w_{\lambda}+c w_{\lambda} \rightarrow-\Delta w+c w \text { in } L^{2}(\Omega)
\end{gather*}
$$

and then

$$
\left\{\begin{array}{rlll}
-\Delta w+c w & =a \lambda^{*} w & \text { in } \quad \Omega, \tag{3.9}\\
w & =0 & \text { on } \quad & \partial \Omega .
\end{array}\right.
$$

Taking φ_{1} as a test function in (3.9), we obtain

$$
\left.\lambda_{1} \int_{\Omega} w \varphi_{1}=\int_{\Omega} w\left(-\Delta \varphi_{1}+c \varphi_{1}\right)\right)=\int_{\Omega} a \lambda^{*} w \varphi_{1} .
$$

Since $\varphi_{1}>0$ and $w>0$ in Ω, we have $\lambda^{*}=\frac{\lambda_{1}}{a}$ and this complete the proof of Proposition 3.2.

To finish the proof of Theorem 1.5, we need only to show that $\left(P_{\frac{\lambda_{1}}{a}}\right)$ has no solution. Assume that u is a solution of $\left(P_{\frac{\lambda_{1}}{a}}\right)$. Since

$$
l:=\lim _{t \rightarrow \infty}(f(t)-a t) \geq 0 \text { and } a=\sup _{t \geq 0} f^{\prime}(t)
$$

we have $l \in(0, \infty)$ and $f(t)-a t \geq 0$ and

$$
\begin{equation*}
-\Delta u+c u=\frac{\lambda_{1}}{a} f(u) \text { in } \Omega . \tag{3.10}
\end{equation*}
$$

Taking φ_{1} as a test function in (3.10), we get $f(u)=a u$ in Ω, which contradicts $f(0)>0$. This concludes the proof of Theorem 1.5.

4. Proof of Theorem 1.6

(i) We have shown that

$$
\frac{\lambda_{1}}{a} \leq \lambda^{*} \leq \frac{\lambda_{1}}{r_{0}}
$$

Suppose that $\lambda^{*}=\frac{\lambda_{1}}{a}$. By Proposition 3.2, we have

$$
\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda}=\infty \text { uniformly on compact subsets of } \Omega \text {. }
$$

Let u_{λ} be the minimal solution of $\left(P_{\lambda}\right)$. Then, multiplying $\left(P_{\lambda}\right)$ by φ_{1} and integrating, we obtain

$$
\begin{equation*}
\int_{\Omega} \varphi_{1}\left(\lambda_{1} u_{\lambda}-\lambda f\left(u_{\lambda}\right)\right)=\int_{\Omega} \varphi_{1}\left(\left(\lambda_{1}-a \lambda\right) u_{\lambda}-\lambda\left(f\left(u_{\lambda}\right)-a u_{\lambda}\right)\right)=0 \tag{4.1}
\end{equation*}
$$

and then

$$
\begin{equation*}
\lambda \int_{\Omega} \varphi_{1}\left(f\left(u_{\lambda}\right)-a u_{\lambda}\right) \geq 0 \tag{4.2}
\end{equation*}
$$

Passing to the limit in the inequality (4.2) as λ tends to λ^{*}, we find

$$
0 \leq l \lambda^{*} \int_{\Omega} \varphi_{1}<0
$$

which is impossible and then $\lambda^{*} \neq \frac{\lambda_{1}}{a}$.
If $\lambda^{*}=\frac{\lambda_{1}}{r_{0}}$, let u be a solution of problem $\left(P_{\lambda^{*}}\right)$ which exists by Proposition 3.2. Multiplying $\left(P_{\lambda^{*}}\right)$ by φ_{1} and integrating by parts, we obtain

$$
\lambda_{1} \int_{\Omega} u \varphi_{1}=\frac{\lambda_{1}}{r_{0}} \int_{\Omega} f(u) \varphi_{1}
$$

that is

$$
\int_{\Omega}\left(f(u)-r_{0} u\right) \varphi_{1}=0
$$

then $f(u)=r_{0} u$ in Ω, and this contradicts the fact that $f(0)>0$.
(ii) Since $\lambda^{*}>\frac{\lambda_{1}}{a}$, the existence of a solution to $\left(P_{\lambda^{*}}\right)$ is assured by Proposition 3.2 and the uniqueness is given by Theorem 1.4.
(iii) In this stage, we will use the mountain pass Theorem of Ambrosetti and Rabinowitz.

Theorem 4.1. ([1]) Let E be a real Banach space and $J \in C^{1}(E, \mathbb{R})$. Assume that J satisfies the Palais-Smale condition and the following geometric assumptions.
(1) There exist positive constants R and ρ such that

$$
J(u) \geq J\left(u_{0}\right)+\rho, \text { for all } u \in E \text { with }\left\|u-u_{0}\right\|=R .
$$

(2) There exists $v_{0} \in E$ such that $\left\|v_{0}-u_{0}\right\|>R$ and $J\left(v_{0}\right) \leq J\left(u_{0}\right)$.

Then the functional J possesses at least a critical point. The critical value is characterized by

$$
c:=\inf _{g \in \Gamma} \max _{u \in g([0,1])} J(u),
$$

where

$$
\Gamma:=\left\{g \in C([0,1], E) \mid g(0)=u_{0}, g(1)=v_{0}\right\}
$$

and satisfies

$$
c \geq J\left(u_{0}\right)+\rho .
$$

Let

$$
\begin{aligned}
J: H_{0}^{1}(\Omega) & \longrightarrow \mathbb{R} \\
u & \longmapsto \frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{2} \int_{\Omega} c u^{2}-\int_{\Omega} F(u),
\end{aligned}
$$

where

$$
F(t)=\lambda \int_{0}^{t} f(s) d s, \text { for all } t \geq 0
$$

We take u_{0} as the stable solution u_{λ} for each $\lambda \in\left(\frac{\lambda_{1}}{a}, \lambda^{*}\right)$.
The energy functional J belongs to $C^{1}\left(H_{0}^{1}(\Omega), \mathbb{R}\right)$ and

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega} \nabla u \cdot \nabla v+\int_{\Omega} c u v-\lambda \int_{\Omega} f(u) v,
$$

for all $u, v \in H_{0}^{1}(\Omega)$.
Since $\eta_{1}\left(\lambda, u_{\lambda}\right) \geq 0$, the function u_{λ} is a local minimum for J, and in order to transform it into a local strict minimum, we apply the mountain pass theorem not for J, but to the perturbed functional J_{ε} defined by

$$
\begin{align*}
J_{\varepsilon}: H_{0}^{1}(\Omega) & \longrightarrow \mathbb{R} \\
u & \longmapsto J(u)+\frac{\varepsilon}{2}\left(\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2}+\int_{\Omega} c\left(u-u_{\lambda}\right)\right), \tag{4.3}
\end{align*}
$$

for all $\varepsilon \in\left[0, \varepsilon_{0}\right]$, where

$$
\varepsilon_{0}:=\frac{3}{4} \frac{\lambda a-\lambda_{1}}{\lambda_{1}} .
$$

We observe that J_{ε} is also in $C^{1}\left(H_{0}^{1}(\Omega), \mathbb{R}\right)$ and

$$
\begin{aligned}
J_{\varepsilon}^{\prime}(u) v= & \int_{\Omega} \nabla u \nabla v+\int_{\Omega} c u v-\lambda \int_{\Omega} f(u) v \\
& +\varepsilon\left(\int_{\Omega} \nabla\left(u-u_{\lambda}\right) \nabla v+c \int_{\Omega}\left(u-u_{\lambda}\right) v\right),
\end{aligned}
$$

for all $u, v \in H_{0}^{1}(\Omega)$.
Using the same arguments of Mironescu and Rădulescu in [10, Lemma 9], we show in the next lemma that J_{ε} satisfies the Palais-Smale compactness condition.

Lemma 4.2. Let $\left(u_{n}\right) \subset E$ be a Palais-Smale sequence, that is,

$$
\begin{gather*}
\sup _{n \in \mathbb{N}}\left|J_{\varepsilon}\left(u_{n}\right)\right|<+\infty, \tag{4.3}\\
\left\|J_{\varepsilon}^{\prime}\left(u_{n}\right)\right\|_{E^{*}} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{4.4}
\end{gather*}
$$

Then $\left(u_{n}\right)$ is relatively compact in E.

Now, we need only to check that the two geometric assumptions are fulfilled. First, since u_{λ} is a local minimum of J, there exists $R>0$ such that for all
$u \in E$ satisfying $\left\|u-u_{\lambda}\right\|=R$, we have $J(u) \geq J\left(u_{\lambda}\right)$. Then

$$
J_{\varepsilon}(u) \geq J_{\varepsilon}\left(u_{\lambda}\right)+\frac{\varepsilon}{2} \int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2} .
$$

Since $u-u_{\lambda}$ is not harmonic, we can choose

$$
\rho:=\frac{2 R^{2}}{\varepsilon}>0
$$

and u_{λ} becomes a strict local minimal for J_{ε}, which proves $(*)$.
Next, using the definition of φ_{1} given in (1.5), we have

$$
\begin{align*}
J_{\varepsilon}\left(t \varphi_{1}\right)= & \frac{\lambda_{1}}{2} t^{2}+\frac{\varepsilon}{2} \lambda_{1} t^{2}-\varepsilon \lambda_{1} t \int_{\Omega} \varphi_{1} u_{\lambda} \\
& +\frac{\varepsilon}{2} \int_{\Omega}\left|\nabla u_{\lambda}\right|^{2}-\int_{\Omega} F\left(t \varphi_{1}\right), \forall t \in \mathbb{R} . \tag{4.5}
\end{align*}
$$

Recall that $\lim _{t \mapsto+\infty}(f(t)-a t)$ is finite, then there exists $\beta \in \mathbb{R}$ such that

$$
f(t) \geq a t+\beta, \quad \forall t>0
$$

Hence

$$
F(t) \geq \frac{a \lambda}{2} t^{2}+\beta \lambda t, \quad \forall t>0
$$

This yields

$$
\begin{aligned}
\frac{J_{\varepsilon}\left(t \varphi_{1}\right)}{t^{2}} \leq & \left(\frac{\lambda_{1}}{2}+\frac{\varepsilon}{2} \lambda_{1}-\frac{a \lambda}{2}\right)-\frac{\varepsilon \lambda_{1}}{t} \int_{\Omega} \varphi_{1} u_{\lambda} \\
& -\frac{\beta \lambda}{t} \int_{\Omega} \varphi_{1}+\frac{\varepsilon}{2 t^{2}} \int_{\Omega}\left|\nabla u_{\lambda}\right|^{2},
\end{aligned}
$$

which implies that

$$
\limsup _{t \rightarrow+\infty} \frac{1}{t^{2}} J_{\varepsilon}\left(t \varphi_{1}\right) \leq \frac{\lambda_{1}+\varepsilon_{0} \lambda_{1}-a \lambda}{2}<0, \quad \forall \varepsilon \in\left[0, \varepsilon_{0}\right] .
$$

Therefore

$$
\lim _{t \rightarrow+\infty} J_{\varepsilon}\left(t \varphi_{1}\right)=-\infty
$$

So, there exists $v_{0} \in E$ such that

$$
J_{\varepsilon}\left(v_{0}\right) \leq J_{\varepsilon}\left(u_{\lambda}\right), \quad \forall \varepsilon \in\left[0, \varepsilon_{0}\right],
$$

and $(* *)$ is proved. Finally, for all $\varepsilon \in\left[0, \varepsilon_{0}\right]$, let v_{ε} (respectively. c_{ε}) be the critical point (respectively. critical value) of J_{ε}.

Remark 4.3. The fact that J_{ε} increases with ε implies that for all $\varepsilon \in\left[0, \varepsilon_{0}\right]$, $c_{\varepsilon} \in\left[c_{0}, c_{\varepsilon_{0}}\right.$. Then, c_{ε} is uniformly bounded. Thus, for all $\varepsilon \in\left[0, \varepsilon_{0}\right]$, the critical point v_{ε} satisfies $\left\|v_{\varepsilon}-u_{\lambda}\right\| \geq R$.

Recall that for any $\varepsilon \in\left[0, \varepsilon_{0}\right]$, the function v_{ε} belongs to E and satisfies

$$
\begin{equation*}
-\Delta v_{\varepsilon}+c v_{\varepsilon}=\frac{\lambda}{1+\varepsilon} f\left(v_{\varepsilon}\right)+\frac{\lambda \varepsilon}{1+\varepsilon} f\left(u_{\lambda}\right) \text { in } \Omega \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{\varepsilon}\left(v_{\varepsilon}\right)=c_{\varepsilon} . \tag{4.7}
\end{equation*}
$$

Thanks to Lemma 4.2, Remark 4.3, (4.6) and (4.7), there exists $v \in E$ such that

$$
v_{\varepsilon} \rightarrow v \text { in } E, \text { as } \varepsilon \rightarrow 0,
$$

satisfying

$$
-\Delta v+c v=\lambda f(v) \text { in } \Omega .
$$

From Remark 4.3, we see that $v \neq u_{\lambda}$, which can be also proved using the same arguments of Mironescu and Rădulescu in [10]. Indeed, note that v_{ε} is a solution to (4.6) which is different from the unique stable solution u_{λ}. Then, v_{ε} is unstable, that is,

$$
\eta_{1}\left(\frac{\lambda}{1+\varepsilon}, v_{\varepsilon}\right)<0,
$$

since (4.7) can be written as

$$
\begin{equation*}
-\Delta v_{\varepsilon}+c v_{\varepsilon}=g_{\varepsilon}\left(v_{\varepsilon}\right)+h_{\varepsilon}(x), \tag{4.8}
\end{equation*}
$$

where g_{ε} is convex, positive and h_{ε} is positive. Thus, if (4.8) has solutions satisfying $v_{\varepsilon}=0$ on $\partial \Omega$, then it has a minimal one, say w_{ε}, which is stable. Now, thanks to Theorem 1.4, all other solutions v_{ε} of (4.8) are unstable.

The next lemma states that the limit of a sequence of unstable solutions is also unstable (the proof is similar to that of Lemma 11 in [10]).

Lemma 4.4. Let $u_{n} \rightharpoonup u$ in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and $\mu_{n} \rightarrow \mu$ be such that $\eta_{1}\left(\mu_{n}, u_{n}\right)<0$. Then, $\eta_{1}(\mu, u) \leq 0$.

Finally, the fact that the function v belongs to $C^{4}(\bar{\Omega}) \cap E$ follows from a bootstrap argument.

Proof of Theorem 1.6 (iii) (a). Thanks to Lemma 3.1, if (i) does not occur, then there is a sequence of positives scalars $\left(\mu_{n}\right)$ and a sequence $\left(v_{n}\right)$ of unstable solutions to $\left(P_{\mu_{n}}\right)$ such that $v_{n} \rightarrow v$ in $L_{l o c}^{1}(\Omega)$ as $\mu_{n} \rightarrow \lambda_{1} / a$ for some function v.

We first claim that $\left(v_{n}\right)$ cannot be bounded in E. Otherwise, let $w \in E$ be such that, up to a subsequence,

$$
v_{n} \rightharpoonup w \text { weakly in } E \quad \text { and } \quad v_{n} \rightarrow w \text { strongly in } L^{2}(\Omega)
$$

Therefore,

$$
-\Delta v_{n}+c v_{n} \rightarrow-\Delta w+c w \text { in } \mathcal{D}^{\prime}(\Omega) \quad \text { and } \quad f\left(v_{n}\right) \rightarrow f(w) \text { in } L^{2}(\Omega),
$$

which implies that $-\Delta w+c w=\frac{\lambda_{1}}{a} f(w)$ in Ω. It follows that $w \in E$ and solves $\left(P_{\lambda_{1} / a}\right)$. From Lemma 4.2, we deduce that

$$
\begin{equation*}
\eta_{1}\left(\frac{\lambda_{1}}{a}, w\right) \leq 0 \tag{4.9}
\end{equation*}
$$

Relation (4.9) shows that $w \neq u_{\lambda_{1} / a}$ which contradicts the fact that $\left(P_{\lambda_{1} / a}\right)$ has a unique solution. Now, since $-\Delta v_{n}+c v_{n}=\mu_{n} f\left(v_{n}\right)$, the unboundedness of $\left(v_{n}\right)$ in E implies that this sequence is unbounded in $L^{2}(\Omega)$, too. To see this, let

$$
v_{n}=k_{n} w_{n}, \quad \text { where } \quad k_{n}>0, \quad\left\|w_{n}\right\|_{2}=1 \quad \text { and } \quad k_{n} \rightarrow \infty .
$$

Then

$$
-\Delta w_{n}+c w_{n}=\frac{\mu_{n}}{k_{n}} f\left(v_{n}\right) \rightarrow 0 \quad \text { in } \quad L_{l o c}^{1}(\Omega)
$$

So, we have convergence also in the sense of distributions and $\left(w_{n}\right)$ is seen to be bounded in E with standard arguments. We obtain

$$
-\Delta w+c w=0 \quad \text { and } \quad\|w\|_{2}=1
$$

The desired contradiction is obtained since $w \in E$.
Proof of Theorem 1.6 (iii) (b). As before, it is enough to prove the $L^{2}(\Omega)$ boundedness of v_{λ} near λ^{*} and to use the uniqueness property of u^{*}. Assume that $\left\|v_{n}\right\|_{2} \rightarrow \infty$ as $\mu_{n} \rightarrow \lambda^{*}$, where v_{n} is a solution to $\left(P_{\mu_{n}}\right)$. We write again $v_{n}=l_{n} w_{n}$. Then,

$$
\begin{equation*}
-\Delta w_{n}+c w_{n}=\frac{\mu_{n}}{l_{n}} f\left(v_{n}\right) \tag{4.10}
\end{equation*}
$$

The fact that the right-hand side of (4.10) is bounded in $L^{2}(\Omega)$ implies that (w_{n}) is bounded in E. Let $\left(w_{n}\right)$ be such that (up to a subsequence)

$$
w_{n} \rightharpoonup w \text { weakly in } E \quad \text { and } \quad w_{n} \rightarrow w \text { strongly in } L^{2}(\Omega)
$$

A computation already done shows that

$$
-\Delta w+c w=\lambda^{*} a w, \quad w \geq 0 \quad \text { and }\|w\|_{2}=1
$$

which forces λ^{*} to be λ_{1} / a. This contradiction concludes the proof.

References

[1] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
[2] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. Diff. Eq., 1 (1996), 73-90.
[3] S. Chandrasekar, An introduction to the Theory of Stellar Structures, Dover, New York (1957).
[4] D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, New York: Plenum Press 1069.
[5] I.M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Translations Heidelberg, 291(2) (1963), 295-381.
[6] L. Hörmander, The Analysis of Linear Differential Operators I, Springer-Verlag, Berlin (1983).
[7] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet driven by positive sources, Arch. Rachinal Mech. Anal., 49 (1973), 241-269.
[8] D.D. Joseph and E.M. Sparrow, Nonlinear diffusion induced by nonlinear sources, Quar. J. Appl. Math., 28 (1970), 327-342.
[9] Y. Martel, Uniqueness of weak solution for nonlinear elliptic problems, Houston J. Math., 23 (1997), 161-168.
[10] P. Mironescu and V. Rădulescu, The study of a bifurcation problem associated to an asymtotically linear function, Nonlinear Anal., 26 (1996), 857-875.
[11] M. Sanchón, Boundedness of the extremal solution of some p-Laplacian problems, Nonlinear Anal., 67 (2007), 281-294.

[^0]: ${ }^{0}$ Received May 18, 2015. Revised September 29, 2015.
 ${ }^{0} 2010$ Mathematics Subject Classification: 35B65, 35B45, 35J60.
 ${ }^{0}$ Keywords: Asymptotically linear, extremal solution, stable minimal solution, regularity.

