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Abstract. In this note, we investigate the existence of positive solutions for the Helmholtz

equation −∆u + cu = λf(u) on a bounded smooth domain of Rn with Dirichlet boundary

conditions. Here λ > 0, c > 0 are positive constants and f is a positive nondecreasing convex

function, asymptotically linear that is limt→∞
f(t)
t

= a < ∞. We show that there exists an

extremal parameter λ∗ > 0 but the extremal solution exists and it is regular provided that

limt→∞ f(t)− at = l < 0.

1. Introduction

Consider the problem

(Pλ)

{
−∆u+ c u = λf(u) in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn, n ≥ 2, c > 0 and λ > 0 . The
function f defined in [0,∞) and satisfies

f is C1, positive, nondecreasing and convex (1.1)
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and

lim
t−→∞

f(t)

t
= a ∈ (0,+∞). (1.2)

By a solution of (Pλ) we mean a function u ∈ C2(Ω) satisfying (Pλ). In the
sequel we are interested only in nonnegative solutions and for which we have
considered only λ > 0. From maximum principle that if u is a nonnegative
solution, then u(x) > 0 for x ∈ Ω.

Problems of the form (Pλ) occur in a variety of situations. For c(x) =
cte., (Pλ) is known as the Helmholtz problems. They arise in models of com-
bustion [4, 5], thermal explosions [4], nonlinear heat generation [8], and the
gravitational equilibrium of polytropic stars [3, 7]. In particular, the Helmholtz
problem occur in the study of electromagnetic radiation, seismology, acoustics.

For c = 0, various authors have studied the bifurcation problem

(Eλ)

{
−∆u = λf(u) in Ω,

u = 0 on ∂Ω,

Brezis et al. have proved in [2] that there exists 0 < λ∗ < ∞, a critical value
of the parameter λ, such that (Eλ) has a minimal, positive, classical solution
uλ for 0 < λ < λ∗ and does not have solutions for λ > λ∗.

The value of a was crucial in the study of (Eλ∗) and of the behavior of uλ
when λ approaches λ∗. In the case when a = +∞, it is proved in [2] that
a minimal weak solution u∗ exists for λ = λ∗. In [9], Martel proves that in
this case u∗ is the unique weak solution of (Eλ∗). Recently, Sanchon in [11]
generalizes these results for the p-Laplacian. When a is finite, Mironescu and
Rădulescu proved in [10] that there exists a unique classical solution u∗ of
(Eλ∗) if and only if lim

t→∞
(f(t)− at) < 0.

In this paper,we deal with weak solution in the following sense.

Definition 1.1. A weak solution of (Pλ) is a function u ∈ L1(Ω), u ≥ 0 such
that f(u) ∈ L1(Ω), and

−
∫

Ω
u∆ζ +

∫
Ω
cu ζ = λ

∫
Ω
f(u)ζ (1.3)

for all ζ ∈ C2(Ω) with ζ = 0 on ∂Ω.

We say that u is a weak super-solution of (Pλ) if “=” is replaced by “≥”
for all ζ ∈ C2(Ω), ζ ≥ 0 and ζ = 0 on ∂Ω.

Remark 1.2. If u ∈ L1(Ω) is a weak solution of (Pλ) and u ∈ L∞(Ω), we say
that u is regular. By elliptic regularity, we know that regular solutions are
smooth and solve (Pλ) in the classical sense.
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For regular solutions, we introduce a notion of stability.

Definition 1.3. A regular solution u of (Pλ) is said to be stable if the first
eigenvalue η1(c, λ, u) of the linearized operator Lc,λ,u = −∆ + c−λf ′(u) given
by

η1(c, λ, u) := inf
ϕ∈H1

0 (Ω)−{ 0}

∫
Ω
|∇ϕ|2 +

∫
Ω
cϕ2 − λ

∫
Ω
f ′(u)ϕ2

‖ϕ‖22
,

is positive in H1
0 (Ω). In other words,

λ

∫
Ω
f ′(u)ϕ2 ≤

∫
Ω
|∇ϕ|2 + c

∫
Ω
ϕ2 for any ϕ ∈ H1

0 (Ω). (1.4)

If η1(c, λ, u) < 0, the solution u is said to be unstable.

We denote by λ1 the first eigenvalue of L = −∆ + c in Ω with Dirichlet
boundary condition and ϕ1 a positive normalized eigenfunction associated,
that is, such that 

−∆ϕ1 + cϕ1 = λ1 ϕ1 in Ω,
ϕ1 > 0 in Ω,
ϕ1 = 0 on ∂Ω,

‖ϕ1‖22 = 1.

(1.5)

Next, we let

Λ := {λ > 0 such that (Pλ) admits a solution} and λ∗ := sup Λ ≤ +∞.

We denote

r0 := inf
t>0

f(t)

t
. (1.6)

Our first main statement asserts the existence of the critical value λ∗.

Theorem 1.4. There exists a critical value λ∗ ∈ (0,∞) such that the following
properties hold true.

(i) For any λ ∈ (0, λ∗), problem (Pλ) has a minimal solution uλ, which is
the unique stable solution of (Pλ) and the mapping λ 7→ uλ is increas-
ing.

(ii) For any λ ∈ (0, λ1a ), uλ is the unique solution of problem (Pλ).
(iii) If problem (Pλ∗) has a solution u, then

u = u∗ = lim
λ→λ∗

uλ,

and η1(c, λ∗, u∗) = 0.
(iv) For λ > λ∗, the problem (Pλ) has no weak solution.
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For the next results, let

l := lim
t→∞

(
f(t)− at

)
. (1.7)

We distinguish two different situations strongly depending on the sign of l.

Theorem 1.5. Assume that l ≥ 0. The following results hold.

(i) λ∗ = λ1/a.
(ii) Problem (Pλ∗) has no solution.

(iii) lim
λ→λ∗

uλ =∞ uniformly on compact subsets of Ω.

Theorem 1.6. Assume that l < 0. Then we have.

(i) The critical value λ∗ belongs to (λ1a ,
λ1
r0

).

(ii) (Pλ∗) has a unique solution u∗.

(iii) The problem (Pλ) has an unstable solution vλ for any λ ∈ (λ1a , λ
∗) and

the sequence (vλ)λ satisfies
(a) lim

λ→λ1
a

vλ =∞ uniformly on compact subsets of Ω,

(b) lim
λ→λ∗

vλ = u∗ uniformly in Ω.

2. Proof of Theorem 1.4

In the proof of this Theorem we shall make use of the following auxiliary
results.

Lemma 2.1. ([2]) Given g ∈ L1(Ω), there exists an unique v ∈ L1(Ω) which
is a weak solution of {

−∆ v + c v = g in Ω,
v = 0 on ∂Ω,

in the sense that ∫
Ω
−v∆ ζ +

∫
Ω
c v ζ =

∫
Ω
g ζ

for all ζ ∈ C2(Ω) with ζ = 0 on ∂Ω. Moreover, there exists a constant c0

independents of g such that

‖v‖L1(Ω) ≤ c0 ‖g‖L1(Ω).

In addition, if g ≥ 0 a.e in Ω, then v ≥ 0 a.e in Ω.

Lemma 2.2. If (Pλ) has a weak super solution u, then there exists a weak
solution u of (Pλ) such that 0 ≤ u ≤ u and u does not depend on u.
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Proof. We use a standard monotone iteration argument and maximum prin-
ciple for the operator −∆ + c. Let u0 = 0 and un+1 the solution of{

−∆un+1 + c un+1 = λf(un) in Ω,
un+1 = 0 on ∂Ω,

which exists by Lemma 2.1. We prove that 0 = u0 ≤ u1 ≤ ... ≤ un ≤ ... ≤ u
and (un)n converge to u ∈ L1(Ω) which is a weak solution of (Pλ). Moreover
u is independent of u by construction. �

The existence of the critical value λ∗ is a consequence of the following aux-
iliary result.

Lemma 2.3. The problem (Pλ) has no solution for any λ > λ1/r0, but has at
least one solution provided λ is positive and small enough.

Proof. To show that (Pλ) has a solution, we use the barrier method and so the
Lemma 2.2. To this aim, let ξ ∈ C2(Ω)∩H1

0 (Ω) which satisfies −∆ξ+c ξ = 1 in
Ω. The choice of ξ implies that ξ is a super solution of (Pλ) for λ ≤ 1/f(‖ξ‖∞).
By Lemma 2.2, there exist a weak solution u of (Pλ) such that 0 ≤ u ≤ ξ.
Because ξ ∈ C2(Ω), u ∈ L∞(Ω) (u is a regular solution) and then u ∈ C2(Ω).
It follows that problem (Pλ) has a solution for λ ≤ 1/f(‖ξ‖∞).

Assume now that u is a solution of (Pλ) for some λ > 0. Using ϕ1 given by
(1.5) as a test function, we get

−
∫

Ω
u∆ϕ1 +

∫
Ω
cuϕ1 = λ

∫
Ω
f(u)ϕ1.

This yields

(λ1 − λr0)

∫
Ω
ϕ1u ≥ 0.

Since ϕ1 > 0 and u > 0, we conclude that the parameter λ should belong to
(0, λ1/r0). This completes our proof. �

As a consequence we have that λ∗ is a real. Another useful result is stated
in what follows.

Lemma 2.4. Assume that the problem (Pλ) has a solution for some λ ∈
(0, λ∗). Then there exists a minimal solution denoted by uλ for the problem
(Pλ). Moreover, for any λ′ ∈ (0, λ), the problem (Pλ′) has a solution.

Proof. Fix λ ∈ (0, λ∗) and let u be a solution of (Pλ). As above, we use
the Lemma 2.2 to obtain a solution of (Pλ), uλ which is independent of u
used as super solution (as mentioned in the proof of Lemma 2.2). Since uλ is
independent of the choice of u, then it is a minimal solution.
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Now, if u is a solution of (Pλ), then u is a super solution of the problem
(Pλ′) for any λ′ in (0, λ) and Lemma 2.2 completes the proof. �

Proof of Theorem 1.4 (i). First, we claim that uλ is stable. Indeed, arguing
by contradiction, we deduce that the first eigenvalue η1 = η1(c, λ, uλ) is non
positive. Then, there exists an eigenfunction

ψ ∈ C2(Ω) and ψ = 0 on ∂Ω,

such that

−∆ψ + cψ − λf ′(uλ)ψ = η1ψ in Ω and ψ > 0 in Ω.

Consider uε := uλ − εψ. Hence

−∆uε + c uε − λf(uε) = −η1εψ + λ
[
f(uλ)− f(uλ − εψ)− εf ′(uλ)ψ

]
= εψ(−η1 + oε(1)).

Since η1(c, λ, uλ) ≤ 0 for ε > 0 small enough, we have

−∆uε + c uε − λf(uε) ≥ 0 in Ω.

Then, for ε > 0 small enough, we use the strong maximum principle (Hopf’s
Lemma) to deduce that uε ≥ 0. uε is a super solution of (Pλ), so by Lemma 2.2
we obtain a solution u such that u ≤ uε and since uε < uλ, then we contradict
the minimality of uλ.

Now, we show that (Pλ) has at most one stable solution. Assume the
existence of another stable solution v 6= uλ of problem (Pλ). Let w := v − uλ,
then by maximum principle w > 0 and from (1.4) taking w as a test function,
we have

λ

∫
Ω
f ′(v)w2 ≤

∫
Ω
|∇w|2 +

∫
Ω
cw2

= −
∫

Ω
w∆w +

∫
Ω
cw2 = λ

∫
Ω

[
f(v)− f(uλ)

]
w.

Therefore ∫
Ω

[
f(v)− f(uλ)− f ′(v)(v − uλ)

]
w ≥ 0.

Thanks to the convexity of f , the term in the brackets is non positive, hence

f(v)− f(uλ)− f ′(v)(v − uλ) = 0 in Ω,

which implies that f is affine over [uλ, v] in Ω. So, there exists two real numbers
ā and b such that

f(x) = āx+ b in [0,max
Ω

v].
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Finally, since uλ and v are two solutions to −∆w + cw = āw + b, we obtain
that

0 =

∫
Ω

(uλ∆v − v∆uλ) = b

∫
Ω

(v − uλ) = b

∫
Ω
w.

This is impossible since b = f(0) > 0 and w is positive in Ω.
Finally, by Lemma 2.4 and the definition of uλ, we have that the function

λ→ uλ is an increasing mapping. �

Proof of Theorem 1.4 (ii). In this stage, we need the following results.

Proposition 2.5. Let Ω ⊂ Rn a smooth bounded open subset of Rn, n ≥ 2.
Assume that f is a function satisfying (1.1) and (1.2). If (Pλ) has a weak
solution u, then u is a regular solution and hence a classical solution.

Proof. By convexity of f , we have a = sup
t≥0

f ′(t) and

f(t) ≤ at+ f(0) for all t ≥ 0. (2.1)

Let u a weak solution of (Pλ), f(u) ∈ L1(Ω). By elliptic regularity, u ∈ Lp(Ω),
for all p ≥ 1 such that

p <
n

n− 2
(p <∞ if n = 2). (2.2)

Again by (2.1), f(u) ∈ Lp for all p satisfying (2.2) so u ∈ Lr(Ω) for all r ≥ 1
such that

r <
n

n− 4
(p ≤ ∞ if n = 2, 3 and r <∞ if n = 4). (2.3)

By iteration and after k(n) = [
n

2
] + 1 operation, the solution u belongs to

L∞(Ω). By elliptic regularity and standard bootstrap argument, u ∈ C2(Ω).
�

Proposition 2.6. Let Ω ⊂ Rn a smooth bounded open subset of Rn, n ≥ 2.
Assume that f(t) = at+ b, where a, b > 0. Then

(i) λ∗ = λ1
a ,

(ii) The problem (Pλ) has no weak solution for λ = λ∗.

Proof. Let 0 < λ <
λ1

a
, the problem (Pλ), given by{
−∆u+ (c− λa)u = λb in Ω

u = 0 on ∂Ω
(2.4)

has a unique solution in C2(Ω). Since λa < λ1, by Maximum principle u > 0.

Now let λ =
λ1

a
. If the problem (2.4) has a solution u, then by multiplication
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(2.4) by ϕ1 the positive eigenfunction associated to λ1 and introduced by (1.5)
and integration by parts, it follows that

∫
Ω ϕ1 = 0 which is impossible since

ϕ1 > 0 in Ω. So for f(t) = at + b, a and b > 0, we have λ∗ =
λ1

a
and the

equation (Pλ∗) has no solution. �

For the proof of Theorem 1.4 (ii), let λ ∈ (0, λ1a ), b = f(0) and w a solution
for the problem (2.4) when f(t) = at + b. Since we have for the general
function f in Theorem 1.4, that f(w) ≤ aw+ f(0), then w is a super solution
of (Pλ) and hence by Lemma 2.2 and Proposition 2.5, the equation (Pλ) has a

solution. For the uniqueness, let u a solution of (Pλ) for a reel λ ∈ (0, λ1a ). We
denote λ1(L) the first eigenvalue of an operator L, that is λ1(−∆ + c) = λ1.
Because a = sup

t≥0
f ′(t), we have −∆ + c− λf ′(u) ≥ −∆ + c− λa and so

λ1(−∆ + c− λf ′(u)) ≥ λ1(−∆ + c− λa)

that is

η1(c, λ, u) ≥ λ1 − λa > 0.

The solution u is stable then, by Theorem 1.4 (i), we obtain u = uλ. �

Proof of Theorem 1.4 (iii). Suppose that (Pλ∗) has a solution u. then, for
every λ ∈ (0, λ∗) we have uλ ≤ u and so u∗ = lim

λ→λ∗
uλ is well defined in

L1(Ω) and furthermore u∗ is a weak then classical solution for (Pλ∗). Since
0 ≤ u∗ ≤ u, u∗ is a minimal solution and also satisfies (1.4) for λ = λ∗ so
η1(c, λ∗, u∗) ≥ 0. Furthermore, u∗ is a the unique solution for (Pλ∗) and we
can proceed as in [9].

Now, consider the nonlinear operator

G : (0,+∞)× C2,α(Ω̄) ∩H1
0 (Ω) −→ C0,α(Ω̄)

(λ, u) 7−→ −∆u+ cu− λf(u),

where α ∈ (0, 1). Assuming that the first eigenvalue η1(c, λ∗, u∗) is positive.
By the implicit function theorem applied to the operator G, it follows that
problem (Pλ) has a solution for λ in a neighborhood of λ∗. But this contradicts
the definition of λ∗ so η1(c, λ∗, u∗) = 0 and this completes the proof of Theorem
1.4 (iii). �

Proof of Theorem 1.4 (iv). If the problem (Pλ) has a weak solution u for
λ > λ∗, then by Proposition 2.5, u is a classical solution for (Pλ) and this
contradicts the definition of λ∗. �
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3. Proof of Theorem 1.5

In the proof of Theorem 1.5, we shall use the following auxiliary result which
is a reformulation of Theorem due to Hörmander [6] and maximum principle
and it is also true for the operator −∆ + c.

Lemma 3.1. Let Ω be an open bounded subset of Rn, n ≥ 2 with smooth
boundary. Let (un) be a sequence of super harmonic nonnegative functions
defined on Ω. Then the following alternative holds.

(i) lim
n→∞

un =∞ uniformly on compact subsets of Ω,
or

(ii) (un) contains a subsequence which converges in L1
loc(Ω) to some func-

tion u.

We first prove the following result.

Proposition 3.2. Let f be a positive function satisfying (1.1) and (1.2). Then
the following assertions are equivalent:

(i) λ∗ =
λ1

a
.

(ii) (Pλ∗) has no solution.
(iii) lim

λ→λ∗
uλ =∞ uniformly on compact subsets of Ω.

Proof. (i)⇒(ii). By contradiction. Assume that (Pλ∗) has a solution u. By
(ii) of Theorem 1.4, u = u∗ = lim

λ→λ∗
uλ and η1(c, λ∗, u∗) = 0. Thus there exists

ψ ∈ C2(Ω) ∩H1
0 (Ω) satisfying

−∆ψ + cψ − λ∗f ′(u∗)ψ = 0 and ψ > 0 in Ω. (3.1)

Using ϕ1 given by (1.5) as a test function, we obtain∫
Ω

(λ1 − λ∗f ′(u∗))ϕ1ψ = 0. (3.2)

Since ϕ1 > 0, ψ > 0, λ∗ =
λ1

a
and a = sup

t>0
f ′(t), we have λ1 − λ∗f ′(u∗) ≥ 0.

Then equality (3.2) gives f ′(u∗) = a in Ω. This implies that f(t) = at + b
in [0,maxΩu

∗] for some scalar b > 0 and this impossible by Proposition 2.6.
Hence (Pλ∗) has no solution.

(ii)⇒(iii). By contradiction, suppose that (iii) doesn’t hold. By Lemma
3.1 and up to subsequence, uλ converges locally in L1(Ω) to a function u as
λ→ λ∗.
Claim: uλ is bounded in L2(Ω).
Indeed, if not, we may assume that

uλ = kλwλ
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with ∫
Ω
wλ

2dx = 1 and lim
λ→λ∗

kλ =∞. (3.3)

We have
λ

kλ
f(uλ)→ 0 in L1

loc(Ω) as λ→ λ∗

and then

−∆wλ + cwλ → 0 in L1
loc(Ω). (3.4)

We have ∫
Ω
|∇wλ|2 = −

∫
Ω

∆wλwλ =

∫
Ω

(
λf(uλ)

kλ
− cwλ)wλ,

then ∫
Ω
|∇wλ|2 ≤

∫
Ω

λf(uλ)

kλ
wλ ≤ λ∗

∫
Ω
aw2

λ +
f(0)

kλ
wλ

≤ aλ∗ + c0

∫
Ω
wλ ≤ aλ∗ + c0

√
|Ω|,

for some c0 > 0 independent of λ. Then (wλ) is bounded in H1
0 (Ω) and up to

a subsequence, we obtain

wλ ⇀ w weakly in H1
0 (Ω) and

wλ → w in L2(Ω) as λ→ λ∗. (3.5)

It follows by (3.4) and (3.5) that w = 0 in Ω and this contradicts (3.3). This
complete the proof of the claim.
Thus uλ is bounded in L2(Ω) and with the same argument above, uλ is
bounded in H1

0 (Ω) and up to a subsequence, we have

uλ ⇀ u weakly in H1
0 (Ω) and

uλ → u in L2(Ω) as λ→ λ∗,{
−∆u+ cu = λ∗f(u) in Ω

u = 0 on ∂Ω

and this impossible by the hypothesis (ii). We remark clearly that (iii)⇒(ii)
and hence (ii)⇔(iii).

(iii)⇒(i). If (iii) occurs, that (ii) also is true and we have lim
λ→λ∗

‖uλ‖2 =∞.

Let

uλ = kλwλ with ‖wλ‖2 = 1. (3.6)

Up to subsequence, we obtain

wλ ⇀ w weakly in H1
0 (Ω) and

wλ → w in L2(Ω) as λ→ λ∗. (3.7)
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We have also
λ

kλ
f(uλ)→ λ∗aw as λ→ λ∗, (3.8)

−∆wλ + cwλ → −∆w + cw in L2(Ω)

and then {
−∆w + cw = aλ∗w in Ω,

w = 0 on ∂Ω.
(3.9)

Taking ϕ1 as a test function in (3.9), we obtain

λ1

∫
Ω
wϕ1 =

∫
Ω
w(−∆ϕ1 + cϕ1)) =

∫
Ω
aλ∗wϕ1.

Since ϕ1 > 0 and w > 0 in Ω, we have λ∗ =
λ1

a
and this complete the proof

of Proposition 3.2.
To finish the proof of Theorem 1.5, we need only to show that (Pλ1

a

) has no

solution. Assume that u is a solution of (Pλ1
a

). Since

l := lim
t→∞

(
f(t)− at

)
≥ 0 and a = sup

t≥0
f ′(t),

we have l ∈ (0,∞) and f(t)− at ≥ 0 and

−∆u+ cu =
λ1

a
f(u) in Ω. (3.10)

Taking ϕ1 as a test function in (3.10), we get f(u) = a u in Ω, which contradicts
f(0) > 0. This concludes the proof of Theorem 1.5. �

4. Proof of Theorem 1.6

(i) We have shown that
λ1

a
≤ λ∗ ≤ λ1

r0
.

Suppose that λ∗ = λ1
a . By Proposition 3.2, we have

lim
λ→λ∗

uλ =∞ uniformly on compact subsets of Ω.

Let uλ be the minimal solution of (Pλ). Then, multiplying (Pλ) by ϕ1 and
integrating, we obtain∫

Ω
ϕ1

(
λ1 uλ − λ f(uλ)

)
=

∫
Ω
ϕ1

(
(λ1 − aλ)uλ − λ(f(uλ)− auλ)

)
= 0 (4.1)

and then

λ

∫
Ω
ϕ1

(
f(uλ)− auλ

)
≥ 0. (4.2)
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Passing to the limit in the inequality (4.2) as λ tends to λ∗, we find

0 ≤ lλ∗
∫

Ω
ϕ1 < 0,

which is impossible and then λ∗ 6= λ1
a .

If λ∗ = λ1
r0

, let u be a solution of problem (Pλ∗) which exists by Proposition

3.2. Multiplying (Pλ∗) by ϕ1 and integrating by parts, we obtain

λ1

∫
Ω
uϕ1 =

λ1

r0

∫
Ω
f(u)ϕ1

that is ∫
Ω

(f(u)− r0u)ϕ1 = 0,

then f(u) = r0 u in Ω, and this contradicts the fact that f(0) > 0.

(ii) Since λ∗ > λ1
a , the existence of a solution to (Pλ∗) is assured by Proposition

3.2 and the uniqueness is given by Theorem 1.4.
(iii) In this stage, we will use the mountain pass Theorem of Ambrosetti and
Rabinowitz.

Theorem 4.1. ([1]) Let E be a real Banach space and J ∈ C1(E,R). As-
sume that J satisfies the Palais-Smale condition and the following geometric
assumptions.

(1) There exist positive constants R and ρ such that

J(u) ≥ J(u0) + ρ, for all u ∈ E with ‖u− u0‖ = R.

(2) There exists v0 ∈ E such that ‖v0 − u0‖ > R and J(v0) ≤ J(u0).
Then the functional J possesses at least a critical point. The critical

value is characterized by

c := inf
g∈Γ

max
u∈g([0,1])

J(u),

where

Γ :=
{
g ∈ C([0, 1], E) | g(0) = u0, g(1) = v0

}
and satisfies

c ≥ J(u0) + ρ.

Let
J : H1

0 (Ω) −→ R

u 7−→ 1

2

∫
Ω
|∇u|2 +

1

2

∫
Ω
cu2 −

∫
Ω
F (u),
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where

F (t) = λ

∫ t

0
f(s)ds, for all t ≥ 0.

We take u0 as the stable solution uλ for each λ ∈ (λ1a , λ
∗).

The energy functional J belongs to C1(H1
0 (Ω),R) and

〈J ′(u), v〉 =

∫
Ω
∇u · ∇v +

∫
Ω
cuv − λ

∫
Ω
f(u)v,

for all u, v ∈ H1
0 (Ω).

Since η1(λ, uλ) ≥ 0, the function uλ is a local minimum for J , and in order to
transform it into a local strict minimum, we apply the mountain pass theorem
not for J , but to the perturbed functional Jε defined by

Jε : H1
0 (Ω) −→ R

u 7−→ J(u) +
ε

2

(∫
Ω
|∇(u− uλ)|2 +

∫
Ω
c(u− uλ)

)
,

(4.3)

for all ε ∈ [0, ε0], where

ε0 :=
3

4

λa− λ1

λ1
.

We observe that Jε is also in C1(H1
0 (Ω),R) and

J ′ε(u)v =

∫
Ω
∇u∇v +

∫
Ω
cuv − λ

∫
Ω
f(u)v

+ ε
(∫

Ω
∇(u− uλ)∇v + c

∫
Ω

(u− uλ)v
)
,

for all u, v ∈ H1
0 (Ω).

Using the same arguments of Mironescu and Rădulescu in [10, Lemma 9],
we show in the next lemma that Jε satisfies the Palais-Smale compactness
condition.

Lemma 4.2. Let (un) ⊂ E be a Palais-Smale sequence, that is,

sup
n∈N
|Jε(un)| < +∞, (4.3)

‖J ′ε(un)‖E∗ → 0 as n→∞. (4.4)

Then (un) is relatively compact in E.

Now, we need only to check that the two geometric assumptions are fulfilled.
First, since uλ is a local minimum of J , there exists R > 0 such that for all
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u ∈ E satisfying ‖u− uλ‖ = R, we have J(u) ≥ J(uλ) . Then

Jε(u) ≥ Jε(uλ) +
ε

2

∫
Ω
|∇(u− uλ)|2.

Since u− uλ is not harmonic, we can choose

ρ :=
2 R2

ε
> 0

and uλ becomes a strict local minimal for Jε, which proves (∗).
Next, using the definition of ϕ1 given in (1.5), we have

Jε(tϕ1) =
λ1

2
t2 +

ε

2
λ1t

2 − ελ1t

∫
Ω
ϕ1uλ

+
ε

2

∫
Ω
|∇uλ|2 −

∫
Ω
F (tϕ1), ∀ t ∈ R.

(4.5)

Recall that lim
t7→+∞

(f(t)− a t) is finite, then there exists β ∈ R such that

f(t) ≥ a t+ β, ∀ t > 0.

Hence

F (t) ≥ a λ

2
t2 + β λ t, ∀ t > 0.

This yields
Jε(tϕ1)

t2
≤
(λ1

2
+
ε

2
λ1 −

a λ

2

)
− ελ1

t

∫
Ω
ϕ1uλ

− βλ

t

∫
Ω
ϕ1 +

ε

2t2

∫
Ω
|∇uλ|2,

which implies that

lim sup
t→+∞

1

t2
Jε(tϕ1) ≤ λ1 + ε0λ1 − a λ

2
< 0, ∀ ε ∈ [0, ε0].

Therefore

lim
t→+∞

Jε(tϕ1) = −∞.

So, there exists v0 ∈ E such that

Jε(v0) ≤ Jε(uλ), ∀ ε ∈ [0, ε0],

and (∗∗) is proved. Finally, for all ε ∈ [0, ε0], let vε (respectively. cε) be the
critical point (respectively. critical value) of Jε.

Remark 4.3. The fact that Jε increases with ε implies that for all ε ∈ [0, ε0],
cε ∈ [c0, cε0 [. Then, cε is uniformly bounded. Thus, for all ε ∈ [0, ε0], the
critical point vε satisfies ‖vε − uλ‖ ≥ R.
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Recall that for any ε ∈ [0, ε0], the function vε belongs to E and satisfies

−∆vε + cvε =
λ

1 + ε
f(vε) +

λε

1 + ε
f(uλ) in Ω (4.6)

and

Jε(vε) = cε. (4.7)

Thanks to Lemma 4.2, Remark 4.3, (4.6) and (4.7) , there exists v ∈ E such
that

vε → v in E, as ε→ 0,

satisfying

−∆v + cv = λf(v) in Ω.

From Remark 4.3, we see that v 6= uλ, which can be also proved using the
same arguments of Mironescu and Rădulescu in [10]. Indeed, note that vε is a
solution to (4.6) which is different from the unique stable solution uλ. Then,
vε is unstable, that is,

η1

(
λ

1 + ε
, vε

)
< 0,

since (4.7) can be written as

−∆vε + cvε = gε(vε) + hε(x), (4.8)

where gε is convex, positive and hε is positive. Thus, if (4.8) has solutions
satisfying vε = 0 on ∂Ω, then it has a minimal one, say wε, which is stable.
Now, thanks to Theorem 1.4, all other solutions vε of (4.8) are unstable.

The next lemma states that the limit of a sequence of unstable solutions is
also unstable (the proof is similar to that of Lemma 11 in [10]).

Lemma 4.4. Let un ⇀ u in H2(Ω) ∩ H1
0 (Ω) and µn → µ be such that

η1(µn, un) < 0. Then, η1(µ, u) ≤ 0.

Finally, the fact that the function v belongs to C4(Ω̄) ∩ E follows from a
bootstrap argument.

Proof of Theorem 1.6 (iii) (a). Thanks to Lemma 3.1, if (i) does not occur, then
there is a sequence of positives scalars (µn) and a sequence (vn) of unstable
solutions to (Pµn) such that vn → v in L1

loc(Ω) as µn → λ1/a for some function
v.

We first claim that (vn) cannot be bounded in E. Otherwise, let w ∈ E be
such that, up to a subsequence,

vn ⇀ w weakly in E and vn → w strongly in L2(Ω).
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Therefore,

−∆vn + cvn → −∆w + cw in D′(Ω) and f(vn)→ f(w) in L2(Ω),

which implies that −∆w + cw = λ1
a f(w) in Ω. It follows that w ∈ E and

solves (Pλ1/a). From Lemma 4.2, we deduce that

η1

(
λ1

a
,w

)
≤ 0. (4.9)

Relation (4.9) shows that w 6= uλ1/a which contradicts the fact that (Pλ1/a)
has a unique solution. Now, since −∆vn + cvn = µnf(vn), the unboundedness
of (vn) in E implies that this sequence is unbounded in L2(Ω), too. To see
this, let

vn = knwn, where kn > 0, ‖wn‖2 = 1 and kn →∞.

Then

−∆wn + cwn =
µn
kn
f(vn)→ 0 in L1

loc(Ω).

So, we have convergence also in the sense of distributions and (wn) is seen to
be bounded in E with standard arguments. We obtain

−∆w + cw = 0 and ‖w‖2 = 1.

The desired contradiction is obtained since w ∈ E. �

Proof of Theorem 1.6 (iii) (b). As before, it is enough to prove the L2(Ω)
boundedness of vλ near λ∗ and to use the uniqueness property of u∗. Assume
that ‖vn‖2 →∞ as µn → λ∗, where vn is a solution to (Pµn). We write again
vn = lnwn. Then,

−∆wn + cwn =
µn
ln
f(vn). (4.10)

The fact that the right-hand side of (4.10) is bounded in L2(Ω) implies that
(wn) is bounded in E. Let (wn) be such that (up to a subsequence)

wn ⇀ w weakly in E and wn → w strongly in L2(Ω).

A computation already done shows that

−∆w + cw = λ∗aw, w ≥ 0 and ‖w‖2 = 1,

which forces λ∗ to be λ1/a. This contradiction concludes the proof. �
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