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Abstract. Inspired by the notion of metric-like space as a generalization of partial metric

spaces, we present some results on fixed points in the framework of F -orbitally 0-σ-complete

metric-like spaces. In this paper we bring into play two alternatives of rational contraction

conditions. Some consequences are obtained and examples are presented, showing how the

given results can be used for proving the existence of (common) fixed points.

1. Introduction

Nonlinear and convex analysis have as one of their goals solving equilib-
rium problems arising in applied sciences. In fact, a lot of these problems
can be modelled in an abstract form of an equation (algebraic, functional,
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differential, integral, etc.), and this can be further transferred into a form of
a fixed point problem of a certain operator. In this context, finding solutions
of fixed point problems, or at least proving that such solutions exist and can
be approximately computed, is a very interesting area of research.

The Banach contraction principle is one of the cornerstones in the devel-
opment of nonlinear analysis, in general, and metric fixed point theory, in
particular. This principle was extended and improved in many directions and
various fixed point theorems were established. Two usual ways for extending
and improving the Banach contraction principle are obtained by:

(1) replacing the underlying metric space by certain generalized metric
space;

(2) changing the contraction condition to more general ones.

There exist many generalizations of the concept of metric spaces in the
literature. In the development of fixed point theory, one more has been added
as the notion of a partial metric space. Matthews [14] introduced this concept
as a part of the study of denotational semantics of dataflow networks. He
showed that the Banach contraction mapping theorem can be generalized to
the partial metric context for applications in program verification. Further,
Romaguera showed in [17] that in this context it is more natural to use the
so-called 0-completeness.

In 2012, Amini-Harandi [8] reintroduced the notion of metric-like space
(treated earlier by Hitzler and Seda in [9] under the name of dislocated metric
space) as a further generalization of partial metric space. In metric-like spaces,
the assumption of smallest self distance of partial metric spaces was removed
and the triangular inequality of partial metric was replaced by a weaker one.
Amini-Harandi defined the σ-completeness of metric-like spaces and obtained
some fixed point results. Further, Shukla et al. [20] introduced the notion of
0-σ-complete metric-like spaces and generalized the results of [8]. Fixed point
results in metric-like (dislocated) and some related spaces were obtained also
in [1, 2, 3, 10, 13, 19].

Completeness of the underlying space was relaxed and replaced by the so-
called orbital completeness in the papers by Browder and Petryshin [5] and

Ćirić [6]. Karapınar and Erhan [12] have extended the notions of orbitally
completeness and orbitally continuity to partial metric spaces and obtained
the corresponding fixed point results. Nashine et al. [16] proved some fixed
point theorems in orbitally 0-complete partial metric space.

On the other hand, Dass and Gupta [7] and Jaggi [11] were the first to prove
fixed point theorems in metric spaces using contractive conditions involving
rational expressions. Nashine and Erdal [15] generalized the results from [12]
and obtained fixed point results in orbitally complete partial metric spaces by
using conditions involving a rational expression.
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In this paper, motivated by the results discussed above, we extend the
results of [16] to the setting of orbitally 0-σ-orbitally complete metric-like
spaces, using contraction conditions involving rational expressions. A common
fixed point result of this kind for two self-mappings is also obtained. Some
consequences are deduced and examples are given to support the usability of
our results.

2. Preliminaries

First, we recall some definitions and facts which will be used throughout
the paper.

Definition 2.1. ([14]) A partial metric on a nonempty set X is a function
p : X ×X → R+ such that for all x, y, z ∈ X:

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space.

A basic example of a partial metric space is the pair (R+, p), where p(x, y) =
max{x, y} for all x, y ∈ R+. Other examples of partial metric spaces which
are interesting from a computational point of view may be found in [4, 14].
Obviously, one of the main features of this generalization of metric spaces is
the so-called “non-zero self-distance”. It is also a property of the following
further generalization.

Definition 2.2. ([8]) A metric-like on a nonempty set X is a function σ :
X ×X → R+ such that, for all x, y, z ∈ X,

(σ1) σ(x, y) = 0⇒ x = y;
(σ2) σ(x, y) = σ(y, x);
(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

A metric-like space is a pair (X,σ) such that X is a nonempty set and σ is a
metric-like on X.

Each metric-like σ on X generates a topology τσ on X whose base is the
family of open σ-balls

Bσ(x, ε) = {y ∈ X : |σ(x, y)− σ(x, x)| < ε}, for all x ∈ X and ε > 0.

It is obvious that each metric space is a partial metric space and each partial
metric space is a metric-like space, but the converse may not be true.
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Example 2.3. ([8]) Let X = {0, 1} and σ : X ×X → R+ be defined by

σ(x, y) =

{
2, if x = y = 0,

1, otherwise.

Then (X,σ) is a metric-like space, but it is neither a metric space nor a partial
metric space, since σ(0, 0) > σ(0, 1).

Definition 2.4. ([8, 20]) Let (X,σ) be a metric-like space. Then

(1) A sequence {xn} in X converges to a point x ∈ X if limn→∞ σ(xn, x) =
σ(x, x). The sequence {xn} is said to be σ-Cauchy if limn,m→∞ σ(xn, xm)
exists and is finite. The space (X,σ) is called complete if for each σ-
Cauchy sequence {xn}, there exists x ∈ X such that

lim
n→∞

σ(xn, x) = σ(x, x) = lim
n,m→∞

σ(xn, xm).

(2) A sequence {xn} in (X,σ) is called a 0-σ-Cauchy sequence if
limn,m→∞ σ(xn, xm) = 0. The space (X,σ) is said to be 0-σ-complete
if every 0-σ-Cauchy sequence in X converges (in τσ) to a point x ∈ X
such that σ(x, x) = 0.

Remark 2.5. ([8]) Let X = {0, 1}, let σ(x, y) = 1 for each x, y ∈ X, and let
xn = 1 for each n ∈ N . Then it is easy to see that xn → 0 and xn → 1, and
so in metric-like spaces the limit of a convergent sequence is not necessarily
unique.

Lemma 2.6. ([13]) Let (X,σ) be a metric-like space.

(a) If x, y ∈ X then σ(x, y) = 0 implies that σ(x, x) = σ(y, y) = 0.
(b) If a sequence {xn} in X converges to some x ∈ X with σ(x, x) = 0

then limn→∞ σ(xn, y) = σ(x, y) for all y ∈ X.

Remark 2.7. ([20]) If a metric-like space is σ-complete, then it is 0-σ-complete.
The converse assertion does not hold as the example given below shows.

Example 2.8. ([20]) Let X = [0, 1) ∩Q and σ : X ×X → R+ be defined by

σ(x, y) =

{
2x, if x = y,

max{x, y}, otherwise

for all x, y ∈ X . Then (X,σ) is a metric-like space. Note that (X,σ) is not
a partial metric space, as σ(1, 1) = 2 > 1 = σ(1, 0). Now, it is easy to see
that (X,σ) is a 0-σ-complete metric-like space, while it is not a σ-complete
metric-like space.
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Recall that the set O(x0;F ) = {Fnx0 : n = 0, 1, 2, . . . } is called the orbit
of a self-map F : X → X at the point x0 ∈ X. Now we introduce the notions
of 0-σ-orbital completeness and orbital continuity in metric-like spaces.

Definition 2.9. Let (X,σ) be a metric-like space and F : X → X. The
space (X,σ) is said to be F -orbitally 0-σ-complete if every 0-Cauchy sequence
contained in O(x;F ) (for some x in X) converges in X to a point z such that
σ(z, z) = 0.

Here, it can be pointed out that every 0-σ-complete metric-like space is
F -orbitally 0-σ-complete for any F , but the converse does not hold.

Definition 2.10. A self-map F defined on a partial metric space (X,σ) is said
to be orbitally continuous at a point z in X if for any sequence {xn} ⊂ O(x;F )
(for some x ∈ X), xn → z as n→∞ (in τσ) implies that Fxn → Fz as n→∞.

Clearly, every continuous self-mapping of a metric-like space is orbitally
continuous, but not conversely.

3. Fixed point results for a single mapping

In what follows, we will denote by Ω the set of functions ω : [0,∞)→ [0,∞)
satisfying the following conditions:

(Ω1) ω is continuous;
(Ω2) ω(t) < t for all t > 0.

Obviously, if ω ∈ Ω, then ω(0) = 0 and ω(t) ≤ t for all t ≥ 0.

Theorem 3.1. Let (X,σ) be an F -orbitally 0-σ-complete metric-like space,
where F : X → X is an orbitally continuous mapping. Suppose there exist
α, β, γ ∈ [0, 1) with α+ 5

2β + 3γ < 1, such that

σ(Fx, Fy) ≤ αΛ(x, y) + β∆(x, y) + γΘ(x, y), (3.1)

for all x, y ∈ O(x0, F ) (for some x0 ∈ X), where

Λ(x, y) = ω

(
σ(x, Fx)σ(y, Fy)

1 + σ(x, y)

)
, (3.2)

∆(x, y) = max

{
ω(σ(x, y)), ω(σ(x, Fx)), ω(σ(y, Fy)),

ω

(
σ(y, Fx) + σ(x, Fy)

2

)}
,

(3.3)

Θ(x, y) = min{ω(σ(x, Fx)), ω(σ(y, Fy)), ω(σ(x, Fy)), ω(σ(y, Fx))}, (3.4)

and ω ∈ Ω. Then there exists z ∈ X such that Fz = z and σ(z, z) = 0.
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Proof. Starting with the given point x0 ∈ X, define xn = Fnx0 and so xn =
Fxn−1 for n ∈ N. If there exists n0 ∈ {1, 2, . . . } such that σ(xn0 , xn0−1) =
0, then by (σ1) we have xn0−1 = xn0 = Fxn0−1. By Lemma 2.6 we get
σ(xn0−1, xn0−1) = σ(xn0 , xn0) = 0. We are done in this case.

Suppose now that σ(xn, xn+1) > 0 for all n ≥ 0. We claim that for all
n ≥ 0, we have

σ(xn+1, xn+2) ≤ hn+1σ(x0, x1), (3.5)

for some h, 0 ≤ h < 1. From (3.1) with x = xn+1 and y = xn we get

σ(xn+2, xn+1) = σ(Fxn+1, Fxn) (3.6)

≤ αΛ(xn+1, xn) + β∆(xn+1, xn) + γΘ(xn+1, xn).

By (3.2) and the properties of ω ∈ Ω, we have

Λ(xn+1, xn) = ω

(
σ(xn, xn+1)

σ(xn+1, xn+2)

1 + σ(xn+1, xn)

)
< σ(xn+1, xn+2).

By (3.3) and (3.4), we have

∆(xn+1, xn) = max

{
ω(σ(xn, xn+1)), ω(σ(xn, Fxn)), ω(σ(xn+1, Fxn+1)),

ω

(
σ(xn+1, Fxn) + σ(xn, Fxn+1)

2

)}
= max

{
ω(σ(xn, xn+1)), ω(σ(xn+1, xn+2)),

ω

(
σ(xn+1, xn+1) + σ(xn, xn+2)

2

)}
and

Θ(xn+1, xn) = min{ω(σ(xn+1, xn+2)), ω(σ(xn, xn+1)),

ω(σ(xn+1, xn+1)), ω(σ(xn, xn+2))}.
Consider the following possible cases.
(1) If ∆(xn+1, xn) = ω(σ(xn+1, xn+2)) and Θ(xn+1, xn) = ω(σ(xn+1, xn+2)),
by (3.6) and using the fact that ω(t) < t for all t > 0, we have

σ(xn+1, xn+2) < (α+ β + γ)σ(xn+1, xn+2) < σ(xn+1, xn+2),

a contradiction.
(2) If ∆(xn+1, xn) = ω(σ(xn, xn+1)) and Θ(xn+1, xn) = ω(σ(xn+1, xn+2)), we
get

σ(xn+1, xn+2) < (α+ γ)σ(xn+1, xn+2) + βσ(xn, xn+1),

that is

σ(xn+1, xn+2) <
β

1− α− γ
σ(xn, xn+1).
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(3) If ∆(xn+1, xn) = ω
(
σ(xn+1,xn+1)+σ(xn,xn+2)

2

)
and

Θ(xn+1, xn) = ω(σ(xn+1, xn+2)), we get

σ(xn+1, xn+2) < (α+ γ)σ(xn+1, xn+2) +
β

2
(σ(xn+1, xn+1) + σ(xn, xn+2)).

By (σ3), we have

σ(xn, xn+2) ≤ σ(xn, xn+1) + σ(xn+1, xn+2).

Therefore we have

σ(xn+1, xn+2) < (α+ γ)σ(xn+1, xn+2) +
β

2
(3σ(xn+1, xn+2) + σ(xn, xn+1))

which implies that

σ(xn+1, xn+2) <
β

2− 2α− 3β − 2γ
σ(xn, xn+1).

(4) If ∆(xn+1, xn) = ω(σ(xn+1, xn+2)) and Θ(xn+1, xn) = ω(σ(xn, xn+1)), by
(3.6) and using the fact that ω(t) < t for all t > 0, we have

σ(xn+1, xn+2) < (α+ β)σ(xn+1, xn+2) + γσ(xn, xn+1),

that is,

σ(xn+1, xn+2) <
γ

1− α− β
σ(xn, xn+1).

(5) If ∆(xn+1, xn) = ω(σ(xn, xn+1)) and Θ(xn+1, xn) = ω(σ(xn, xn+1)), we
get

σ(xn+1, xn+2) < ασ(xn+1, xn+2) + (β + γ)σ(xn, xn+1),

that is

σ(xn+1, xn+2) <
β + γ

1− α
σ(xn, xn+1).

(6) If ∆(xn+1, xn)=ω
(
σ(xn+1,xn+1)+σ(xn,xn+2)

2

)
and Θ(xn+1, xn)=ω(σ(xn, xn+1)),

we get

σ(xn+1, xn+2) < ασ(xn+1, xn+2) +
β

2
(σ(xn+1, xn+1) + σ(xn, xn+2))

+ γσ(xn, xn+1).

By (σ3), we have

σ(xn, xn+2) ≤ σ(xn, xn+1) + σ(xn+1, xn+2).

Therefore we have

σ(xn+1, xn+2) < ασ(xn+1, xn+2) +
β

2
(σ(xn, xn+1) + 3σ(xn+1, xn+2))

+ γσ(xn, xn+1)
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which implies that

σ(xn+1, xn+2) <
β + 2γ

2− 2α− 3β
σ(xn, xn+1).

(7) If ∆(xn+1, xn) = ω(σ(xn+1, xn+2)) and Θ(xn+1, xn) = ω(σ(xn, xn+2)), by
(3.6) and (σ3), and using the fact that ω(t) < t for all t > 0, we have

σ(xn+1, xn+2) < (α+ β)σ(xn+1, xn+2) + γ(σ(xn, xn+1) + σ(xn+1, xn+2))

= (α+ β + γ)σ(xn+1, xn+2) + γσ(xn, xn+1)

that is,

σ(xn+1, xn+2) <
γ

1− α− β − γ
σ(xn, xn+1).

(8) If ∆(xn+1, xn) = ω(σ(xn, xn+1)) and Θ(xn+1, xn) = ω(σ(xn, xn+2)), we
get

σ(xn+1, xn+2) < ασ(xn+1, xn+2) + βσ(xn, xn+1)

+ γ(σ(xn, xn+1) + σ(xn+1, xn+2))

= (α+ γ)σ(xn+1, xn+2) + (β + γ)σ(xn, xn+1),

that is

σ(xn+1, xn+2) <
β + γ

1− α− γ
σ(xn, xn+1).

(9) If ∆(xn+1, xn)=ω
(
σ(xn+1,xn+1)+σ(xn,xn+2)

2

)
and Θ(xn+1, xn)=ω(σ(xn, xn+2)),

we get

σ(xn+1, xn+2) < ασ(xn+1, xn+2) + β

(
σ(xn+1, xn+1) + σ(xn, xn+2)

2

)
+ γσ(xn, xn+2)

≤ ασ(xn+1, xn+2) +
β

2
(σ(xn, xn+1) + 3σ(xn+1, xn+2))

+ γ(σ(xn, xn+1) + σ(xn+1, xn+2))

= (α+ γ + 3
β

2
)σ(xn+1, xn+2) + (γ +

β

2
)σ(xn, xn+1).

This implies that

σ(xn+1, xn+2) <
β + 2γ

2− 2α− 3β − 2γ
σ(xn, xn+1).

Similarly the cases for Θ(xn+1, xn) = ω(σ(xn+1, xn+1)) can be discussed using
property (σ3).
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Denote

h := max
{ β

1− α− γ
,

β

2− 2α− 3β − 2γ
,

γ

1− α− β
,
β + γ

1− α
, (3.7)

β + 2γ

2− 2α− 3β
,

γ

1− α− β − γ
,

β + γ

1− α− γ
,

β + 2γ

2− 2α− 3β − 2γ

}
<

1

2
(since α+

5

2
β + 3γ < 1, by assumption).

Thus we have

σ(xn+1, xn+2) ≤ hσ(xn, xn+1) ≤ h2σ(xn−1, xn) ≤ · · · ≤ hn+1σ(x0, x1). (3.8)

We will show that {xn} is a 0-σ-Cauchy sequence. Take any m,n ∈ N.
Then, using (3.8) and the triangle inequality (σ3) for metric-like σ we have

σ(xn, xn+m) ≤ σ(xn, xn+1) + σ(xn+1, xn+m)

≤ σ(xn, xn+1) + σ(xn+1, xn+2) + σ(xn+2, xn+m).

Inductively, we have

0 ≤ σ(xn, xn+m) ≤ σ(xn, xn+1) + σ(xn+1, xn+2) + · · ·+ σ(xn+m−1, xn+m)

≤ (hn + hn+1 + · · ·+ hn+m−1)σ(x0, Fx0)

= hn(1 + h+ · · ·+ hm−1)σ(x0, Fx0)

≤ hn

1− h
σ(x0, Fx0).

Therefore, since 0 ≤ h < 1, taking the limit as n→∞, we have

lim
m,n→∞

σ(xn, xm) = 0.

Hence, we conclude that {xn} = {Fnx0} is a 0-σ-Cauchy sequence in O(x0, F ).
Since (X,σ) is F -orbitally 0-σ-complete (for x0), the sequence {Fnx0} con-
verges, say

lim
n→∞

σ(Fnx0, z) = σ(z, z) = 0. (3.9)

We shall prove that z is a fixed point of F .
Suppose that σ(z, Fz) > 0. Since F is orbitally continuous, we have

lim
n→∞

σ(FFnx0, Fz) = σ(Fz, Fz). (3.10)

By the triangle inequality (σ3), we have

σ(z, Fz) ≤ σ(z, Fn+1x0) + σ(Fn+1x0, F z)

= σ(z, xn+1) + σ(Fn+1x0, Fz).



42 H. K. Nashine, A. Gupta, Z. Kadelburg and A. K. Sharma

Passing to the limit as n→∞ and using Lemma 2.6 with (3.9) and (3.10) we
obtain

σ(z, Fz) ≤ lim
n→∞

σ(z, xn+1) + lim
n→∞

σ(Fn+1x0, F z) (3.11)

= σ(Fz, Fz).

Using (3.1) with x = Fz and y = z, we get

σ(F 2z, Fz) ≤ αω
(
σ(z, Fz)σ(Fz, F 2z)

1 + σ(Fz, z)

)
+ β∆(Fz, z) + γΘ(Fz, z) (3.12)

≤ ασ(Fz, F 2z) + β∆(Fz, z) + γΘ(Fz, z),

where

∆(Fz, z) = max

{
ω(σ(Fz, z)), ω(σ(Fz, F 2z)), ω(σ(z, Fz)),

ω

(
σ(z, F 2z) + σ(Fz, Fz)

2

)}
< max

{
σ(Fz, z), σ(Fz, F 2z),

σ(z, F 2z) + σ(Fz, Fz)

2

}
and

Θ(Fz, z) = min{ω(σ(Fz, F 2z)), ω(σ(z, Fz)), ω(σ(Fz, Fz)), ω(σ(z, F 2z))}
< min{σ(Fz, F 2z), σ(z, Fz), σ(Fz, Fz), σ(z, F 2z)}.

Consider the following possible cases.
• If ∆(Fz, z) < σ(Fz, z) and Θ(Fz, z) < σ(Fz, F 2z), then we obtain from

(3.12)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β σ(Fz, z) + γ σ(Fz, F 2z),

that is,

σ(F 2z, Fz) ≤ β

1− α− γ
σ(Fz, z).

• If ∆(Fz, z) < σ(Fz, F 2z) and Θ(Fz, z) < σ(Fz, F 2z), then we obtain
from (3.12)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β σ(Fz, F 2z) + γ σ(Fz, F 2z),

a contradiction.



Orbitally 0-σ-complete metric-like spaces 43

• If ∆(Fz, z) < σ(z,F 2z)+σ(Fz,Fz)
2 and Θ(Fz, z) < σ(Fz, F 2z), then we ob-

tain from (3.12) and (σ3)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β
σ(z, F 2z) + σ(Fz, Fz)

2
+ γ σ(Fz, F 2z),

≤ ασ(Fz, F 2z) +
β

2

(
σ(z, Fz) + 3σ(Fz, F 2z)

)
+ γ σ(Fz, F 2z),

that is,

σ(F 2z, Fz) ≤ β

2− 2α− 3β − 2γ
σ(Fz, z).

• If ∆(Fz, z) < σ(Fz, z) and Θ(Fz, z) < σ(z, Fz), then we obtain from
(3.12)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β σ(Fz, z) + γ σ(z, Fz),

that is,

σ(F 2z, Fz) ≤ β + γ

1− α
σ(Fz, z).

• If ∆(Fz, z) < σ(Fz, F 2z) and Θ(Fz, z) < σ(z, Fz), then we obtain from
(3.12)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β σ(Fz, F 2z) + γ σ(z, Fz),

that is,

σ(F 2z, Fz) ≤ γ

1− α− β
σ(Fz, z).

• If ∆(Fz, z) < σ(z,F 2z)+σ(Fz,Fz)
2 and Θ(Fz, z) < σ(z, Fz), then we obtain

from (3.12) and (σ3)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β
σ(z, F 2z) + σ(Fz, Fz)

2
+ γ σ(z, Fz)

≤ ασ(Fz, F 2z) +
β

2
(σ(z, Fz) + 3σ(Fz, F 2z)) + γ σ(z, Fz),

that is,

σ(F 2z, Fz) ≤ β + 2γ

2− 2α− 3β
σ(Fz, z).

• If ∆(Fz, z) < σ(Fz, z) and Θ(Fz, z) < σ(z, F 2z), then we obtain from
(3.12) and (σ3)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β σ(Fz, z) + γ σ(z, F 2z)

≤ ασ(Fz, F 2z) + β σ(Fz, z) + γ (σ(z, Fz) + σ(Fz, F 2z)),

that is,

σ(F 2z, Fz) ≤ β + γ

1− α− γ
σ(Fz, z).
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• If ∆(Fz, z) < σ(Fz, F 2z) and Θ(Fz, z) < σ(z, F 2z), then we obtain from
(3.12) and (σ3)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β σ(Fz, F 2z) + γ (σ(z, Fz) + σ(Fz, F 2z)),

that is,

σ(F 2z, Fz) ≤ γ

1− α− β − γ
σ(Fz, z).

• If ∆(Fz, z) < σ(z,F 2z)+σ(Fz,Fz)
2 and Θ(Fz, z) < σ(z, F 2z), then we obtain

from (3.12) and (σ3)

σ(F 2z, Fz) ≤ ασ(Fz, F 2z) + β
σ(z, F 2z) + σ(Fz, Fz)

2

+ γ (σ(z, Fz) + σ(Fz, F 2z))

≤ ασ(Fz, F 2z) +
β

2
(σ(z, Fz) + 3σ(Fz, F 2z))

+ γ (σ(z, Fz) + σ(Fz, F 2z)),

that is,

σ(F 2z, Fz) ≤ β + 2γ

2− 2α− 3β − 2γ
σ(Fz, z).

Similarly the cases for Θ(xn+1, xn) < ω(σ(xn+1, xn+1)) can be discussed using
property (σ3). Using (3.7) we conclude that

σ(Fz, F 2z) ≤ hσ(z, Fz). (3.13)

Notice that due to (σ3) we have

σ(Fz, Fz) ≤ 2σ(F 2z, Fz). (3.14)

Combining (3.11), (3.13) and (3.14), we get

σ(Fz, z) ≤ σ(Fz, Fz) ≤ 2σ(F 2z, Fz) ≤ 2hσ(Fz, z) < σ(Fz, z),

since 2h < 1 and σ(Fz, z) > 0. A contradiction.
Hence, σ(Fz, z) = 0. Therefore z is a fixed point of F and, by Lemma 2.6,

σ(Fz, Fz) = 0. The proof is complete. �

The uniqueness of fixed point can be obtained under the following condi-
tions.

Proposition 3.2. Suppose that (X,σ) and F satisfy the conditions of Theo-

rem 3.1 and, moreover, σ(z, Fz) = 0 for each fixed point z of F in O(x0;F ).

Then the fixed point of F is unique in O(x0;F ).
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Proof. Assume that for some u, v ∈ O(x0;F ), σ(u, Fu) = σ(v, Fv) = 0. Re-
place x by u and y by v in (3.1) to obtain

σ(u, v) = σ(Fu, Fv) ≤ αΛ(u, v) + β∆(u, v) + γΘ(u, v),

where

Λ(u, v) = ω

(
σ(v, Fv)σ(u, Fu)

1 + σ(u, v)

)
= 0,

∆(u, v) = max

{
ω(σ(u, v)), ω(σ(u, Fu)), ω(σ(v, Fv)), ω

(
σ(v, Fu)+σ(u, Fv)

2

)}
= max

{
ω(σ(u, v)), 0, 0, ω

(
σ(v, u) + σ(u, v)

2

)}
< σ(u, v),

Θ(u, v) = min{ω(σ(u, Fu)), ω(σ(v, Fv)), ω(σ(u, Fv)), ω(σ(v, Fu))} = 0.

Therefore we get

σ(u, v) ≤ β σ(u, v),

which is only possible if σ(u, v) = 0, that is u = v. �

We demonstrate the use of Theorem 3.1 with the help of the following
example.

Example 3.3. Let X = [0,+∞) be equipped with the metric-like σ given by

σ(x, y) =

{
3x, if x = y,

max{x, y}, otherwise.

for x, y ∈ X. A mapping F : X → X is given by

Fx =

{
1
5x

2, x ∈ [0, 1],

5x, x > 1,

and ω ∈ Ω is given by ω(t) = 1
5 t. Let α = 1

10 , β = 1
5 and γ = 1

10 (hence,

α+ 5
2β + 3γ < 1). Taking x0 = 1 we have that

O(x0;F ) ⊂
{

1

5k
: k ∈ N ∪ {0}

}
, O(x0;F ) = O(x0;F ) ∪ {0}.

All the conditions of Theorem 3.1 and Proposition 3.2 are satisfied. In partic-
ular, we shall check the contractive condition (3.1).
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Suppose first that x = 1
5m , y = 1

5n and, e.g., n > m. Then

Λ(x, y) =
1

5
·

1
5n ·

1
5m

1 + 1
5m

=
1

5
· 1

5n(5m + 1)
,

∆(x, y) =
1

5
max

{
1

5m
,

1

5m
,

1

5n
,
1

2

(
1

5n
+ max

{
1

5m
,

1

52n+1

})}
=

1

5
· 1

5m
,

Θ(x, y) =
1

5
min

{
1

5m
,

1

5n
,

1

5m
,max

{
1

5n
,

1

52m+1

}}
=

1

5
· 1

5n

and

σ(Fx, Fy) = σ

(
1

52m+1
,

1

52n+1

)
=

1

52m+1
≤ 1

5
· 1

5
· 1

5m
= β∆(x, y)

< αΛ(x, y) + β∆(x, y) + γΘ(x, y).

Suppose now that x = y = 1
5n . Then

Λ(x, y) =
1

5
·

1
5n ·

1
5n

1 + 3
5n

=
1

5n+1(5n + 3)
,

∆(x, y) =
1

5
max

{
3

5n
,

1

5n
,

1

5n
,

1

5n

}
=

3

5n+1
,

Θ(x, y) =
1

5
min

{
1

5n
,

1

5n
,

1

5n
,

1

5n

}
=

1

5n+1

and

σ(Fx, Fy) =
3

52n+1
≤ 1

5
· 3

5n+1
= β∆(x, y)

< αΛ(x, y) + β∆(x, y) + γΘ(x, y).

If x or y is equal to 0, (3.1) also holds. Thus, condition (3.1) is fulfilled for all

x, y ∈ O(x0;F ).
Therefore, Theorem 3.1 can be applied to conclude that F has a fixed point

(which is z = 0). Moreover, it is unique in O(x0;F ).
Note that the contractive condition (3.1) is not satisfied for all x, y ∈ X

(e.g., it does not hold if x = 2, y = 3). Hence, this example shows that our
results can be applied when, e.g., the results of paper [20] cannot.

3.1. Consequences. In this subsection, we derive some fixed point results
from our main result given by Theorem 3.1.

Corollary 3.4. Let (X,σ) and F : X → X satisfy all the conditions of
Theorem 3.1, except that condition (3.1) is replaced by

σ(Fx, Fy) ≤ αΛ(x, y) + β∆1(x, y) + γΘ1(x, y),
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for all x, y ∈ O(x0;F ), where

∆1(x, y) = ω

(
max

{
σ(x, y), σ(x, Fx), σ(y, Fy),

σ(y, Fx) + σ(x, Fy)

2

})
,

Θ1(x, y) = ω

(
min

{
σ(x, Fx), σ(y, Fy), σ(x, Fy), σ(y, Fx)

})
and ω ∈ Ω is nondecreasing. Then the same conclusions hold as in Theorem
3.1.

Proof. It follows from Theorem 3.1 by observing that if ω is nondecreasing,
we have

∆(x, y) = ω

(
max

{
σ(x, y), σ(x, Fx), σ(y, Fy),

σ(y, Fx) + σ(x, Fy)

2

})
and

Θ(x, y) = ω

(
min

{
σ(x, Fx), σ(y, Fy), σ(x, Fy), σ(y, Fx)

})
.

�

Corollary 3.5. Let (X,σ) and F : X → X satisfy all the conditions of
Theorem 3.1, except that condition (3.1) is replaced by

σ(Fx, Fy) ≤ αω
(
σ(y, Fy)σ(x, Fx)

1 + σ(x, y)

)
+ β ω(σ(x, y))

+ γ min{ω(σ(x, Fx)), ω(σ(y, Fy)), ω(σ(x, Fy)), ω(σ(y, Fx))},

for all x, y ∈ O(x0;F ), where ω ∈ Ω. Then the same conclusions hold as in
Theorem 3.1.

Corollary 3.6. Let (X,σ) and F : X → X satisfy all the conditions of
Theorem 3.1, except that condition (3.1) is replaced by

σ(Fx, Fy) ≤ αω
(
σ(y, Fy)σ(x, Fx)

1 + σ(x, y)

)
+ β max{ω(σ(x, y)), ω(σ(x, Fx)), ω(σ(y, Fy))},

for all x, y ∈ O(x0;F ) and some α, β satisfying α+ 5
2β < 1 and ω ∈ Ω. Then

the same conclusions as in Theorem 3.1 hold.

Corollary 3.7. Let (X,σ) and F : X → X satisfy all the conditions of
Theorem 3.1, except that condition (3.1) is replaced by

σ(Fx, Fy) ≤ a1
(
σ(y, Fy)σ(x, Fx)

1 + σ(x, y)

)
+ a2σ(x, y) + a3σ(x, Fx) + a4σ(y, Fy),
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for all x, y ∈ O(x0;F ) and some positive constants aj with a1+ 5
2(a2+a3+a4) <

1. Then the same conclusions as in Theorem 3.1 hold.

Corollary 3.8. Let (X,σ) and F : X → X satisfy all the conditions of
Theorem 3.1, except that condition (3.1) is replaced by

σ(Fx, Fy) ≤ a1
(
σ(y, Fy)σ(x, Fx)

1 + σ(x, y)

)
+ a2σ(x, y) + a3σ(x, Fx) + a4σ(y, Fy)

+ a5

(
σ(y, Fx) + σ(x, Fy)

2

)
,

for all x, y ∈ O(x0;F ) and some positive constants aj with a1 + 5
2(a2 + a3 +

a4 + a5) < 1. Then the same conclusions as in Theorem 3.1 hold.

4. Common fixed point results for a pair of mappings

Sastry et al. [18] extended the concepts mentioned in the Preliminaries to
two and three mappings and employed them to prove common fixed point
results for commuting mappings. In what follows, we collect such definitions
for two maps in metric-like spaces.

Definition 4.1. Let S, F be two self-mappings defined on a metric-like space
(X,σ).

(1) If for a point x0 ∈ X, a sequence {xn} in X is such that x2n+1 = Sx2n,
x2n+2 = Fx2n+1, n = 0, 1, 2, . . . , then the set O(x0;S, F ) = {xn : n =
1, 2, . . . } is called the orbit of (S, F ) at x0.

(2) The space (X,σ) is said to be (S, F )-orbitally 0-σ-complete at x0 if
every 0-σ-Cauchy sequence in O(x0;S, F ) converges to a point z in X
such that σ(z, z) = 0.

(3) The maps S, F are said to be orbitally continuous at x0 if they are
continuous on O(x0;S, F ).

The main result of this section is the following:

Theorem 4.2. Let (X,σ) be a metric-like space. Let S, F : X → X be given
two mappings satisfying

σ(Fx, Sy) ≤ α σ(x, Fx)σ(y, Sy)

1 + σ(x, y)
+ β σ(x, y) (4.1)

+ γ [σ(x, Fx) + σ(y, Sy)] + δ [σ(x, Sy) + σ(y, Fx)],

for all x, y ∈ O(x0;S, F ) (for some x0), where α, β, γ, δ are nonnegative reals
with α+β+2γ+4δ < 1. We assume that (X,σ) is (S, F )-orbitally 0-σ-complete
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at x0. Then S and F have a common fixed point z ∈ X such that σ(z, z) = 0.

If, moreover, each common fixed point z of S and F in O(x0;F, S) satisfies

that σ(z, z) = 0, then the common fixed point of S and F in O(x0;F, S) is
unique.

Proof. First of all we show that, if S or F has a fixed point z such that
σ(z, z) = 0, then it is a common fixed point of S and T . Indeed, let z ∈ X
be such that Sz = z and σ(z, z) = 0 and assume σ(z, Fz) > 0. If we use the
inequality (4.1) with x = y = z we have

σ(Fz, z) = σ(Fz, Sz) ≤ (γ + δ)σ(z, Fz),

a contradiction, since γ + δ < 1. Thus σ(z, Fz) = 0 and so z is a common
fixed point of S and F .

Starting with the given point x0, consider the sequence {xn} in X given by

x2n+1 = Sx2n and x2n+2 = Fx2n+1 for n ∈ {0, 1, . . . }.

If σ(xn0 , Sxn0) = 0 or σ(xn0 , Fxn0) = 0 for some n0, then the proof is finished.
So without loss of generality we can suppose that the successive terms of {xn}
are distinct.

Next, we claim that {xn} is a 0-σ-Cauchy sequence in the metric-like space
O(x0;S, F ). For this we show that

σ(xn+1, xn) ≤
(

β + γ + δ

1− α− γ − 3δ

)n
σ(x1, x0), for n ∈ N. (4.2)

Indeed, from (4.1) and using property (σ3) of the metric-like, we have

σ(x2, x1) = σ(Fx1, Sx0)

≤ ασ(x1, Fx1)σ(x0, Sx0)

1 + σ(x1, x0)
+ βσ(x1, x0)

+ γ[σ(x1, Fx1) + σ(x0, Sx0)] + δ[σ(x1, Sx0) + σ(x0, Fx1)]

=
ασ(x1, x2)σ(x0, x1)

1 + σ(x1, x0)
+ βσ(x1, x0)

+ γ[σ(x1, x2) + σ(x0, x1)] + δ[σ(x1, x1) + σ(x0, x2)]

≤ ασ(x1, x2) + βσ(x1, x0) + γ[σ(x1, x2) + σ(x0, x1)]

+ δ[3σ(x1, x2) + σ(x0, x1)].

This implies that

σ(x2, x1) ≤
(

β + γ + δ

1− α− γ − 3δ

)
σ(x1, x0).
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In a similar way one can prove that

σ(x3, x2) ≤
(

β + γ + δ

1− α− γ − 3δ

)
σ(x2, x1).

It follows by induction that (4.2) holds for each n ∈ N. Setting λn :=

σ(xn, xn+1), n ∈ N0 and h := β+γ+δ
1−α−γ−3δ < 1, we get that the sequence {λn} is

decreasing and

λn ≤ hλn−1 ≤ h2λn−2 ≤ · · · ≤ hnλ0. (4.3)

If λ0 = 0 then σ(x0, x1) = 0, which is excluded. Therefore, let λ0 > 0. Then,
for each n ≥ m we have, in view of the triangular inequality (σ3) and using
(4.3), that

0 ≤ σ(xn, xn+m) ≤ σ(xn, xn−1) + σ(xn−1, xn−2) + · · ·+ σ(xm+1, xm)

≤ (hn−1 + hn−2 + · · ·+ hm)σ(x0, x1)

≤ hm

1− h
σ(x0, x1).

Thus, limm,n→∞ σ(xn, xm) = 0. This implies that {xn} is a 0-σ-Cauchy se-
quence in the metric-like space O(x0;S, F ). Since X is (S, F )-orbitally 0-σ-
complete at x0, there exists a z ∈ X with limn→∞ xn = z.

Applying the contractive condition (4.1), putting the values for x = x2n−1
and y = z we have:

σ(z, Sz) ≤ σ(z, x2n) + σ(Fx2n−1, Sz)

≤ σ(z, x2n) +
ασ(x2n−1, Fx2n−1)σ(z, Sz)

1 + σ(x2n−1, z)
+ βσ(x2n−1, z)

+ γ[σ(x2n−1, Fx2n−1) + σ(z, Sz)] + δ[σ(z, Fx2n−1) + σ(x2n−1, Sz)]

= σ(z, x2n) +
ασ(x2n−1, x2n)σ(z, Sz)

1 + σ(z, xn)
+ βσ(x2n−1, z)

+ γ[σ(x2n−1, x2n) + σ(z, Sz)] + δ[σ(z, x2n) + σ(x2n−1, Sz)].

Taking the limit as n→∞ in the above inequality and using Lemma 2.6, we
get

σ(z, Sz) ≤ (γ + δ)σ(z, Sz) ≤ (α+ β + 2γ + 4δ)σ(z, Sz),

that is, σ(z, Sz) = 0 (since α+ β+ 2γ + 4δ < 1) and then Sz = z. Hence, z is
a fixed point of S such that σ(z, z) = 0 and so also a common fixed point of
F and S.

Now, suppose that the each common fixed point z of F and S in O(x0;S, F )
satisfies that σ(z, z) = 0. We claim that there is a unique common fixed point

of T and S in O(x0;S, F ). Assume to the contrary that σ(u, Su) = σ(u, Fu) =
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0 and σ(v, Sv) = σ(v, Fv) = 0 but u 6= v. By supposition, we can replace x
by u and y by v in (4.1) to obtain

σ(u, v) = σ(Fu, Sv)

≤ ασ(u, Fu)σ(v, Sv)

1 + σ(u, v)
+ βσ(u, v)

+ γ[σ(u, Fu) + σ(v, Sv)] + δ[σ(u, Sv) + σ(v, Tu)]

= (β + 2δ)σ(u, v),

a contradiction, since β + 2δ < 1. Hence, u = v. �

We state the following consequence of Theorem 4.2.

Corollary 4.3. Let (X,σ) be a metric-like space such that X is F -orbitally
0-σ-complete at some point x0 of X, where F : X → X is a given mapping
satisfying

σ(Fx, Fy) ≤ ασ(x, Fx)σ(y, Fy)

1 + σ(x, y)
+ βσ(x, y)

+ γ[σ(x, Fx) + σ(y, Fy)] + δ[σ(x, Fy) + σ(y, Fx)],

for all x, y ∈ O(x0;F ), where α, β, γ, δ are nonnegative reals with α+β+2γ+
4δ < 1. Then F has a fixed point. If, moreover, each fixed point z of F in
O(x0;F ) satisfies that σ(z, z) = 0, then such fixed point is unique.

The following example shows how Theorem 4.2 can be used.

Example 4.4. Let the set X = [0,+∞) be equipped with the metric-like

σ(x, y) =

{
2x, if x = y,

max{x, y}, otherwise.

Consider the following self-mappings on X:

Fx =

{
1
4x, 0 ≤ x ≤ 1,

4x, x > 1,
Sx =

{
1
5x, 0 ≤ x ≤ 1,

5x, x > 1.

Take x0 = 1. Then it is easy to show that

O(x0;S, F ) ⊂
{

1

4k · 5l
: k, l ∈ N ∪ {0}

}
and O(x0;S, F ) = O(x0;S, F )∪{0}.



52 H. K. Nashine, A. Gupta, Z. Kadelburg and A. K. Sharma

Take α = 1
6 , β = γ = δ = 1

12 . Then α + β + 2γ + 4δ < 1 and the contractive
condition (4.1), for x, y ∈ O(x0;S, F ), takes the form

σ(Fx, Sy) ≤ 1

6

xy

1 + σ(x, y)
+

1

12
σ(x, y) +

1

12
(x+ y) (4.4)

+
1

12
[σ(x, Sy) + σ(y, Fx)].

Denote by R the right-hand side of (4.4) and consider the following possible
cases.
Case I: If x ≥ y. Then

R =
1

6

xy

1 + x
+

1

12
x+

1

12
(x+ y) +

1

12
(x+ max{y, x3})

≥ 3 · 1

12
x =

1

4
x = σ(Fx, Sy).

Case II: 3
4y ≤ x < y. Then

R =
1

6

xy

1 + y
+

1

12
y +

1

12
(x+ y) +

1

12
(x+ y) ≥ y

4
>
x

4
= σ(Fx, Sy).

Case III: x < 4
5y. Then

R =
1

6

xy

1 + y
+

1

12
y +

1

12
(x+ y) +

1

12
(max{x, y5}+ y)

≥ y

4
>
y

5
= σ(Fx, Sy).

Case IV: If y ≥ x
3 . Then

R =
1

6

xy

1 + x
+

1

12
y +

1

12
(x+ y) +

1

12
(max{x, y5}+ y)

≥ 3 · 1

12
y ≥ y

4
>
x

4
= σ(Fx, Sy).

Similarly, for x = y one gets that

σ(Fx, Sx) ≤ 1

6

σ(x, Fx)σ(x, Sx)

1 + σ(x, x)
+

1

12
σ(x, x) +

1

12
[σ(x, Fx) + σ(x, Sx)]

+
1

12
[σ(x, Sx) + σ(x, Fx)],
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σ(
1

4
x,

1

5
x) ≤ 1

6

σ(x, 14x)σ(x, 15x)

1 + σ(x, x)
+

1

12
· 2x+

1

12
[σ(x,

1

4
x) + σ(x,

1

5
x)],

+
1

12
[σ(x,

1

5
x) + σ(x,

1

4
x)],

1

4
x ≤ 1

6

x · x
1 + 2x

+
1

12
· 2x+

1

12
· 2x+

1

12
· 2x,

1

4
x ≤ 1

6

x2

1 + 2x
+
x

2
.

If x or y is equal to 0, (4.4) also holds. Thus, condition (4.4) is fulfilled for all

x, y ∈ O(x0;S, F ). Hence, all the conditions of Theorem 4.2 are satisfied and
S, F have a unique common fixed point (which is z = 0).

Note that S and F do not satisfy the contractive condition (4.1) in the
whole X. Also, this condition is not satisfied in X equipped with the standard
metric d(x, y) = |x − y| (and with the same values for α, β, γ, δ). Indeed, in
this case the condition (4.1) takes the form

d(Fx, Sy) ≤ 1

6

d(x, Fx)d(y, Sy)

1 + d(x, y)
+

1

12
d(x, y) +

1

12
[d(x, Fx) + d(y, Sy)] (4.5)

+
1

12
[d(x, Sy) + d(y, Fx)].

Denote by L and R, respectively, the left-hand and right-hand sides of the
contraction condition (4.5) and take x, y > 1, i.e.,

L = d(Fx, Sy) = |4x− 5y|
and

R =
1

6

|x− Fx||y − Sy|
1 + |x− y|

+
1

12
|x− y|+ 1

12
[|x− Fx|+ |y − Sy|]

+
1

12
[|x− Sy|+ |y − Fx|].

Then

R =
1

6

|x− 4x||y − 5y|
1 + |x− y|

+
1

12
|x− y|+ 1

12
[|x− 4x|+ |y − 5y|]

+
1

12
[|x− 5y|+ |y − 4x|].

≤ 2xy

1 + |x− y|
+

1

12
|x− y|+ 1

12
[3x+ 4y] +

1

12
[5x+ 6y].

≤ 2xy

1 + |x− y|
+

1

12
[9x+ 11y].

This shows that L � R and the contraction condition (4.1) is not satisfied in
the metric space (X, d).
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