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Abstract. In this paper, we propose the concept of locally invexity property of a set, ρ-

projective map and studied various basic results of it via a operator functional to extend the

results studied by Ramı́k and Vlach [12] in starshaped region. The Lipschitz property of a

multivalued map is studied under certain conditions.

1. Introduction

Earlier convex analysis, convex set was the important domain for the re-
searchers to study the optimization problems and various type of applicational
problems. Later the researchers, such as Ramı́k and Vlach [12] concentrated
on starshaped region. In 1981, the notion of invex function was introduced
by Hanson [9] to generalize the concept of convex function. He has applied
the property of invex function to generalize the results studied in optimization
theory. Later the researchers has included various type of function of invex-
ity concepts to study the optimization problems. From the property of invex
function, the researchers developed the concept of invex set. For reference, we
refer Behera and Das [2], Das and Behera [6], Weir and Jeyakumar [13], Weir
and Mond [14], to name only a few.

In this paper we have defined the concept of locally invex set via a operator
functional and proved some basic properties of it to extend the results for
starshaped region proved by Ramı́k and Vlach [12].
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For our need we recall the definition of starshaped region.

Definition 1.1. ([12]) Let X be a subset of Rn, y ∈ X. The set X is starshaped
from y if for every x ∈ X, we have the line segment joining x and y, i.e.,
tx+ (1− t)y ∈ X. The set of all points y ∈ X such that X is starshaped from
y is called the Kernel of X and it is denoted by Ker(X). The set X is said to
be a starshaped region if Ker(X) is nonempty, or X empty.

2. Results on locally η-invex set

Hanson [9] has defined the invex set as follows.

Definition 2.1. (η-invex set) The set K ⊂ Rn is said to be invex with respect
to η if there exists a vector function η : K×K → Rn such that for all x, y ∈ K,

y + tη(x, y) ∈ K,

for all t ∈ [0, 1].

Let X be subset of a topological vector space E and η : X ×X → X be a
vector function. We define the following definitions for our need.

Definition 2.2. Let X be subset of a topological vector space E and η :
X ×X → X be a vector valued function. Let

l(x, y) = {` ∈ (0, 1] : 〈S(x, y), η(x, y)〉 ≤ `, S ∈ X∗, x, y ∈ X} 6= ∅.

X is said to be

1. η-locally invex at y ∈ X, there exists a positive number ` ∈ l(x, y)
such that

y + tη(x, y) ∈ K for all t ∈ (0, `),

2. η-locally invex if for all x, y ∈ X, there exists a positive number ` ∈
l(x, y) such that

y + tη(x, y) ∈ K for all t ∈ (0, `).

Definition 2.3. Let X be subset of a topological vector space E and η :
X ×X → X be a vector valued function. Let

l(x, y) = {` ∈ (0, 1] : 〈S(x, y), η(x, y)〉 ≤ `, S ∈ X∗, x, y ∈ X} 6= ∅.

Assume φ : K → l(x, y) such that φ(y) ∈ (0, `). Then define

1. The η-locally invex path joining x and y in X is defined by

IPη(x, y) = {z : z = y + φ(y)η(x, y)} ,
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2. the η-locally kernel of X is defined by

Kerη(X) = {y ∈ X : IPη(x, y) ⊂ X, x ∈ X} ,
3. (a) X is locally η-starshaped invex from y ∈ X if for every x ∈ X if

for every x ∈ X, we have IPη(x, y) ⊂ X for all x ∈ X,
(b) X is locally η-starshaped invex, if there exists a y ∈ X such

that IPη(x, y) ⊂ X for all x ∈ X; Alternatively, X is η-invex if
Kerη(X) 6= ∅,

(c) X is locally η-invex if IPη(x, y) ⊂ X for all x, y ∈ X.

Remark 2.4. Let E = Rn. The starshaped set reduces from η-invex set and
Ker(X) reduces from Kerη(X) if η(x, y) = x− y.

Proposition 2.5. Let X be subset of a topological vector space and η : X ×
X → X be any vector valued map. Then the kernel Kerη(X) is η-invex.

Proof. If X is not η-invex, then there is no y ∈ X such that IPη(x, y) ⊂ X for
any x ∈ X, i.e.,

Kerη(X) = {y ∈ X : IPη(x) ⊂ X,x ∈ X} = ∅,

so is η-invex. Let X be η-invex, x1, x2 ∈ Kerη(X) and φ(x2) ∈ l(x1, x2), then

z = x2 + φ(x2)η(x1, x2) ∈ X.
By contradiction, we show that z ∈ Kerη(X). On the opposite, let there is a
u ∈ X and φ(z) ∈ l(u, z) such that

v = z + φ(z)η(u, z) 6∈ X.
Since u ∈ X,x2 ∈ Kerη(X), we have x2 + φ(x3)η(u, x2) ∈ X for φ(x3) ∈
l(u, x2). Let there exist a φ(x4) ∈ l(u, x2) such that

w = x2 + φ(x4)η(u, x2) ∈ X,
then

v = x1 + φ(y1)η(w, x1) ∈ X
for some φ(y1) ∈ l(w, x1) because w ∈ X and x1 ∈ Kenη(X) which leads to a
contradiction. This completes the proof. �

Definition 2.6. LetX be subset of a topological vector space and η : X×X →
X be any vector valued map. Let A and B be two locally η-invex subsets of
X. Then η is said to be locally distributive on A+B if for x, y ∈ A+B with
x = u+ v and y = a+ b where u, a ∈ A and v, b ∈ B, we have

η(x, y) = η(u, a) + η(v, b) ∈ X.
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Example 2.7. Let X be subset of a topological vector space and η : X ×
X → X be any vector valued map. Let A and B be two subsets of X. Let
P : X → X be a linear map and ρ-projective [10], i.e., P 2 = ρP where ρ > 0.
Let η be defined by η(x, y) = P 2(x) − P 2(y) for x, y ∈ X, then η is locally
distributive on A+B which is shown as follows.

For x, y ∈ A+B, there exist u, a ∈ A and v, b ∈ B such that x = u+ v and
y = a+ b. Since

η(x, y) = η(u+ v, a+ b)

= P 2(u+ v)− P 2(a+ b)

= ρP (u+ v)− ρP (a+ b)

= ρ[P (u) + P (v)− P (a)− P (b)]

= P 2(u)− P 2(a) + P 2(v)− P 2(b)

= η(u, a) + η(v, b),

η is distributive on A+B.

Now we define the following definition:

Definition 2.8. Let X be subset of a topological vector space and ηi : X ×
X → X be the family of vector valued maps where I is the index set. The
vector valued map η : X ×X → X covers ηi, i ∈ I, if X is locally η-invex with
respect to ηi, i ∈ I then X is locally η-invex with respect to η.

Theorem 2.9. Let X be subset of a topological vector space. Let η1 : X×X →
X and η2 : X×X → X be any vector valued maps. Let A and B be two locally
invex subsets of X with respect to η1 and η2 respectively. Let η : X ×X → X
be the vector valued map covers both η1 and η2. If η is distributive on A+B,
then

(a) Kerη(A) +Kerη(B) ⊆ Kerη(A+B),
(b) Kerη(αA) = αKerη(A) for all α ∈ R if η satisfying η(αv, αu) =

αη(v, u) for all u, v ∈ A.

Proof. Since η covers both η1 and η2, so both A and B are locally η-invex on
X. Firstly, if A is nonempty and B is empty, the proof is trivial because since
A+B = A, Kerη(A) +Kerη(B) = Kerη(A) +∅ = Kerη(A) = Kerη(A+B).
For inclusion, let us take y ∈ Kerη(A) + Kerη(B), then there exists a a ∈
Kerη(A) and b ∈ Kerη(B) such that y = a+ b. Let φ : X → l(x, y) such that
φ(y) ∈ (0, `) (Definition 2.2). Since a ∈ Kerη(A) and b ∈ Kerη(B), we have
a + φ(z)η(u, a) ∈ A for all u ∈ A and z ∈ X, and b + φ(z)η(v, b) ∈ B for all
v ∈ B and z ∈ X. To prove y ∈ Kerη(A+B), we show that y+ φ(z)η(x, y) ∈
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A + B for all z ∈ X, and x = u + v ∈ A + B taken arbitrarily. Since η is
distributive on A+B, we have

y + φ(z)η(x, y) = (a+ b) + φ(z)η(u+ v, a+ b)

= a+ b+ φ(z)(η(u+ a) + η(v + b))

= a+ φ(z)η(u, a) + b+ φ(z)η(v, b) ∈ A+B,

for all x = u+ v ∈ A+B and z ∈ X, implying y ∈ Kerη(A+B). Hence

Kerη(A) +Kerη(B) ⊆ Kerη(A+B).

Secondly, let y ∈ αKerη(A), then there exists a u ∈ Kerη(A) such that y = αu.
Since u ∈ Kerη(A), we have u + φ(z)η(v, u) for all v ∈ A and z ∈ X. Let
x ∈ αA, then x = αv for all v ∈ A. Since α satisfying η(αv, αu) = αη(v, u)
for all u, v ∈ A, we have

y + φ(z)η(x, y) = αu+ φ(z)η(αv, αu)

= αu+ αφ(z)η(v, u)

= α(u+ φ(z)η(v, u) ∈ αA,
for all x ∈ αA and z ∈ X. Thus y ∈ Kerη(αA), implying

αKerη(A) ⊂ Kerη(αA).

Let α 6= 0. Replacing α by 1
α and A by αA in the above inclusion equation,

we get
1

α
Kerη(αA) ⊂ Kerη(

1

α
αA).

For y ∈ Kerη(αA), we have

u =
1

α
y ∈ 1

α
Kerη(αA) ⊂ Kerη(A).

Therefore, u ∈ Kerη(A), implying y = αu ∈ αKerη(A). Thus

Kerη(αA) ⊂ αKerη(A).

Hence
Kerη(αA) = αKerη(A).

This completes the proof of the theorem. �

Example 2.10. Let X be subset of a topological vector space and η : X×X →
X be any vector valued map. Let A and B be two subset of X. Let P : X → X
be a linear map and ρ-projective, i.e., P 2 = ρP where ρ > 0. Let η be defined
by η(x1, x2) = P 2(x1)− P 2(x2) for x1, x2 ∈ X, then

η(αu, αv) = P 2(αu)− P 2(αv) = ρ(αP (u)− αP (v))

= α(P 2(u)− P 2(v)) = αη(u, v),
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since P is linear. By the above example η is distributive on A+ B. Since all
the conditions of η satisfies, by Theorem 2.9, we have

(a) Kerη(A) +Kerη(B) ⊆ Kerη(A+B),
(b) Kerη(αA) = αKerη(A) for all α ∈ R.

Corollary 2.11. Let X be subset of a topological vector space and ηi : X×X →
X be the family of vector valued maps where I is the index set. Let Ki, i ∈ I
be the family of ηi-invex subsets of X. Let η : X×X → X be the vector valued
map covers each ηi, i ∈ I. If η is distributive on

∑
i∈I Ki, then∑

i∈I
Kerη(Ki) ⊆ Kerη

(∑
i∈I

Ki

)
.

Proof. By Theorem 2.9, ifA andB are η1-invex and η2-invex onX respectively,
and η covers both η1 and η2, then

Kerη(A) +Kerη(B) ⊆ Kerη(A+B).

Taking A = K1 and B = K2, we have

2∑
i=1

Kerη(Ki) ⊆ Kerη

(
2∑
i=1

Ki

)
.

For generality, assume that y ∈
∑

i∈I Ki, then there exist a yi ∈
∑

i∈I Ki

such that y =
∑

i∈I yi. Since for each i ∈ I, yi ∈ Kerη(Ki), we have yi +
φ(z)η(xi, yi) ∈ Ki for all xi ∈ Ki and φ : X → l(x, y) such that φ(y) ∈ (0, `),
by Definition 2.2. To prove y ∈ Kerη(

∑
i∈I Ki), we show that

y + φ(z)η(x, y) ∈
∑
i∈I

Ki,

for all z ∈ X, and x =
∑

i∈I xi ∈
∑

i∈I Ki, taken arbitrarily. Since η is
distributive on A+B, we have

y + φ(z)η(x, y) =
∑
i∈I

yi + φ(z)η

(∑
i∈I

xi,
∑
i∈I

yi

)
=

∑
i∈I

(yi + φ(z)η(xi, yi)) ∈
∑
i∈I

Ki,

for all x ∈
∑

i∈I Ki and z ∈ X, implying y ∈ Kerη(
∑

i∈I Ki). Hence∑
i∈I

(Kerη(Ki) ⊆ Kerη

(∑
i∈I

Ki

)
.

This completes the proof. �
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An intersection of locally η-invex (non-convex) sets do not need to be η-
invex as the intersection may be disconnected. However, the following result
holds.

Proposition 2.12. Let X be subset of a topological vector space and ηi :
X ×X → X be the family of vector valued maps where I is the index set. Let
Ki, i ∈ I be the family of ηi-invex subsets of X. Let η : X × X → X be the
vector valued map covers each ηi, i ∈ I. Then

⋂
i∈I

Kerη(Ki) ⊂ Kerη

(⋂
i∈I

Ki

)
.

Proof. Since Ki, i ∈ I is the family of ηi-invex subsets of X and η covers ηi
for each i ∈ I, so each Ki is η-invex on X. Let y ∈

⋂
i∈I Kerη(Ki), then

y ∈ Kerη(Ki) for each i ∈ I. Since Kerη(Ki) ⊂ Ki for each i ∈ I, we have⋂
i∈I

Kerη(Ki) ⊂ Ki.

Thus y ∈
⋂
i∈I(Ki). Thus for φ : X → l(x, y) such that φ(y) ∈ (0, `), by

Definition 2.2, and for all x ∈
⋂
i∈I(Ki),

y + φ(z)η(x, y) ∈
⋂
i∈I

Ki,

for all z ∈ X, implying y ∈ Kerη(
⋂
i∈I(Ki)). Hence

⋂
i∈I

Kerη(Ki) ⊂ Kerη

(⋂
i∈I

Ki

)
.

This completes the proof. �

Corollary 2.13. Let X be subset of a topological vector space and ηi : X×X →
X be the family of vector valued maps where I is the index set. Let Ki, i ∈ I be
the family of ηi-invex subsets of X such that

⋂
i∈I Ki 6= ∅. Let η : X×X → X

be the vector valued map covers each ηi, i ∈ I. Then
⋂
i∈I Ki is η-invex in X

if
⋂
i∈I Kerη(Ki) 6= ∅.

Proof. Since
⋂
i∈I Kerη(Ki) 6= ∅, assume y ∈

⋂
i∈I Kerη(Ki). By Proposition

2.12, we have ⋂
i∈I

Kerη(Ki) ⊂ Kerη

(⋂
i∈I

Ki

)
,
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so y ∈ Kerη(
⋂
i∈I Ki). For φ : X → l(x, y) such that φ(z) ∈ (0, `), by

Definition 2.2, and for all x ∈
⋂
i∈I Ki, we have

y + φ(z)η(x, y) ∈
⋂
i∈I

Ki.

Hence
⋂
i∈I Ki is η-invex on X. This completes the proof. �

3. η-Lipschitz

Lipschitz functions appear nearly everywhere in mathematics. Typically,
the Lipschitz condition is first encountered in the elementary theory of ordi-
nary differential equations, where it is used in existence theorems. For our
convenience we define the Lipschitz condition on η-invex sets.

Definition 3.1. Let X and Y be topologival vector spaces. Let S : X×X →
L(X,Y ) be multilinear map and η : X ×X → X be vector valued. Then S is
said to be η-Lipschitz with rank k ∈ R+ if

‖〈S(z, x)− S(z, y), η(x, y)〉‖ ≤ k · ‖η(x, y)‖
and

‖〈S(x, z)− S(y, z), η(x, y)〉‖ ≤ k · ‖η(x, y)|‖
for all z ∈ IPη(X) and x, y ∈ X.

Example 3.2. Let X = R, Y = R2. Let S : X ×X → L(X,Y ) be defined by

S(u, v) =

[
u
v

]
for all u, v ∈ X and 〈S(u, v), z〉 = S(u, v) · z, where z ∈ X.
Now

‖〈S(z, x)− S(z, y), η(x, y)〉‖ ≤ ‖S(z, x)− S(z, y)‖ · ‖η(x, y)‖

=

∥∥∥∥[zx
]
−
[
z
y

]∥∥∥∥ · ‖η(x, y)‖

=

∥∥∥∥[ 0
x− y

]∥∥∥∥ · ‖η(x, y)‖

≤ k · ‖η(x, y)‖ ,
where k is the matrix norm.

Theorem 3.3. Let X and Y be topological vector spaces. Let S : X ×X →
L(X,Y ) be multilinear map and η : X × X → X be vector valued. Let
| ‖〈S(z, y)〉‖ ≤ k for all z ∈ IPη(X) and for any fixed y, and similarly
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‖〈S(x, z)〉‖ ≤ k for all z ∈ IPη(X) and for any fixed x. Then S is η-Lipschitz
with respect to η.

Proof. For any x, y ∈ X and z ∈ IPη(X) then

〈S(z, y), η(x, y)〉 ≤ ‖S(z, y)‖ · ‖η(x, y)‖
≤ k · ‖η(x, y)‖ ,

implying S is η-Lipschitz on X. This completes the proof of the theorem. �

Theorem 3.4. Let X and Y be topological vector spaces. Let S : X ×
X → L(X,Y ) be multilinear map and η : X × X → X be vector valued.
Let ‖〈S(z, y)〉‖ ≤ k for all z ∈ IPη(X) and for any fixed y, and similarly
‖〈S(x, z)〉‖ ≤ k for all z ∈ IPη(X) and for any fixed x. Then ‖S‖ · ‖φ(y)‖ ≤ k
if ‖η(x, y)‖ < 1 for all x, y ∈ X.

Proof. For any x, y ∈ X and z ∈ IPη(X) then

‖〈S(z, y), η(x, y)〉‖ ≤ ‖S(z, y)‖ · ‖η(x, y)‖
≤ ‖S‖ · ‖z − y‖ · ‖η(x, y)‖
≤ ‖S‖ · ‖η(x, y)‖2 · ‖φ(y)‖

⇒ ‖S‖ · ‖η(x, y)‖2 · ‖φ(y)‖ ≤ ‖S‖ · ‖φ(y)‖ .
This completes the proof of the theorem. �

Theorem 3.5. Let X be a topological vector space. Assume S : X ×X → X∗

be η-Lipschitz with rank k and ‖η(x, y)‖ ≤ `
k for any ` ∈ (0, 1) if and only if

` ∈ l(x, y).

Proof. Since S is η-lipschitz with rank k, so

〈S(x, y), η(x, y)〉 ≤ ‖〈S(x, y), η(x, y)〉‖
≤ k ‖η(x, y)‖

≤ k · `
k

= `.

This completes the necessary part. Similarly, assume ` ∈ l(x, y),
Then 〈S(x, y), η(x, y)〉 ≤ `, that is

‖〈S(x, y), η(x, y)〉‖ ≤ `

⇒ ‖S(x, y)‖ · ‖η(x, y)‖ ≤ `

⇒ ‖η(x, y)‖ ≤ `

k
.

This completes the sufficient part and completes the proof of the theorem. �
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