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Abstract. In this paper, we consider the initial and boundary value problem for a nonlinear
wave equation, with the source term containing a nonlinear integral, associated with homo-
geneous Dirichlet boundary conditions. We establish here a high order iterative scheme in
order to get a convergent sequence at a rate of order N to a local unique weak solution of
the above problem. This scheme shows that the convergence can be obtained with a high

rate if the nonlinear term in the original equation is smooth enough.

1. INTRODUCTION

In this paper, we consider the initial and boundary value problem for a
nonlinear wave equation, with the source term containing a nonlinear integral,
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associated with homogeneous Dirichlet boundary conditions as follows

Uy — 8% (u(x, t)ug) + Aug = f(x, t,u) + fot gz, t,s,u(z, s))ds, (1.1)
O<az<1.0<t<T,

u(0,t) = u(l,t) =0, (1.2)

u(z,0) = tp(x), u(z,0) = a1 (x), (1.3)

where pu, f, g, Ug, %1 are given functions and A # 0 is a given constant.
Eq. (1.1) constitutes a case, relatively simpler, of a more general equation,
namely

Ugt — % (u(z, tyu,ug)uy) = F(x, tu,ug,ur), 0 <z <1, 0<t<T. (1.4)

In the special cases, when the functions p, F' have the simple forms, Eq. (1.4)
with various initial-boundary conditions has been studied by many authors, see
[1], [2], [4]-[11], [13]-[15] and references therein. In these works, the existence
and properties of solutions have received much attention.

In [13], Santos studied the asymptotic behavior of solution of Eq. (1.4)
with F(z,t,u,ug,us) = 0, p(z,t,u,u,) = pu(t), associated with the Dirichlet
boundary condition at x = 0 and a boundary condition of memory type at
xr =1, that is u(1,t) + f(f g(t — s)u(s)ug(1,8)ds =0, t > 0.

In [8], by combining the linearization method for the nonlinear term, the
Faedo-Galerkin method and the weak compactness method, the existence of

a unique weak solution of an initial and boundary value problem for the non-

linear wave equation u; — % (u(m, t,u, Hux||2)ux> = F(z,t,u, uy, us) with the

nonhomogeneous boundary conditions is proved. We note, however, the re-
current sequence obtained here converges only at a rate of order 1. It is well
known that, Newton’s method and its variants are used to solve nonlinear
operator equations or systems of nonlinear equations, see [12] and references

therein. In case lim wu, = u, one speaks of convergence of order N if
n—oo

[un+1 — ul < Cluy — U|N

for some C > 0 and all large N. In the special cases N = 1 with C' < 1 and
N = 2 one also speaks of linear and quadratic convergence, respectively, see
[3]. Based on the ideas about recurrence relations of these methods, a high
order iterative scheme can be constructed for solving the nonlinear operator
equation, see [9]-[11], [14], [15].

Motivated by results for wave equations in [6]-[8], and based on the use of a
high order iterative scheme in [9]-[11], [14], [15], in this paper, we will establish
a similar scheme to get the convergence of order N for Prob. (1.1)-(1.3). To
achieve this purpose, we define a recurrent sequence {u,, } associated with Eq.
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(1.1) as follows

Puy O (,u(w,t)au—m) )\%

ot2 N i’)x ot ox .
= k:_() %T{($atvum 1) (um umfl) (15)

—i—ZiV:_OI %fot [gkk(az t, S, Um—1(2,8)) | (um(x, $) —um_l(x,s))k ds,

0<zxz<1 0<t<T, with u,, satisfying (1.2), (1.3). The first term wuy
is chosen as ug = 0. If u € C([0,1] x Ry), f € CN([0,1] x Ry x R), and
g € CF([0,1] x A x R), with A = {(t,s) € RZ : s < t}, we prove that the
sequence {u,, } converges at rate of order N to a weak unique solution of Prob.
(1.1)-(1.3). The main result is given in Theorems 2.1 and 2.3. In our proofs,
the fixed point method and Faedo-Galerkin method are used.

2. A HIGH ORDER ITERATIVE SCHEME

First, we put 2 = (0,1) and denote the usual function spaces used in this
paper by the notations LP = LP(Q2), H™ = H™ (). Let (-,-) be either the
scalar product in L? or the dual pairing of a continuous linear functional and
an element of a function space. The notation ||-|| stands for the norm in L2,
|||l x is the norm in the Banach space X, and X' is the dual space of X.

We denote by LP(0,7; X), 1 < p < oo for the Banach space of real functions
u: (0,7) — X measurable, such that

1/p
Hu||Lp(0TX (f() || u(t) Hp dt) <oo for 1<p<oo

and
[ull oo 0,1, x) = esssup [[u(t)| x for p = oco.
o<t<T

Let u(t). /() = w(t) = i(0). w/(6) = wn(t) = i(t) 1) = (). use(t) =
Au(t), denote u(zx, t), St (x,t), Gz (2, 1), g’;‘(x t), 2 7 (:17 t), respectively With
f € C*(0,1] xRy xR), f f(z,t,u), weput Dy f = 9L, Dof = 9L Dyf = 9
and D*f = D" D5?D5® f; a = (o, o, az) € 73, la| = a1 + s + a3z = k,

OOO)f D O)f f

Similarly, with g € Ck([O 1] x A x R) A = {(t s) € R% : s <t}, g =
g(z,t,s u) we put Dig = (%7 Dyg = 8t7 Ds3g = 85’ Dyg = 99 and DPg =
D]..Df*g; B = (Br,.... Ba) € Z, Bl = Br+...+ B = F, D(Oooo)g =Dy =
g. With p = u(z,t), we also put Dip = g—g, Doy = %‘t‘.

We shall use the following norm on H'!

1/2
oll s = (ol + lloa]1)

U
02
ot
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It is well known that the imbedding H' < C%(Q) is compact and for all
ve HY,
”UHCO@) < \/§HU”H1 :

Furthermore, on H} = {v € H' : v(0) = v(1) = 0}, two norms v — ||v|| ;1
and v — ||v;|| are equivalent and

[vllco@y < llvall forall ve H}. (2.1)
We make the following assumptions:
(Hi) (to,u1) € (Hy N H?) x H{;
(Hy) f € C°0,1] x Ry x R) such that
(i) £(0,£,0) = f(1,t,0) =0, ¥t > 0,
(ii) Dif € C°([0,1] x Ry xR), 0<4 < N,
(iii) D1Dyf € CO([0,1] x Ry xR), 1 <i < N —1;
(H3) g€ CN([0,1] x A x R) such that
(i) ¢(0,t,8,0) = g(1,t,50)=0,V(ts) € A={(ts) e R : s < t},
(ii) Dige C°[0,1] x AxR),0<i<N,
(iii) D1Dig € C([0,1] x A xR), 1 <i< N —1;
(Hy) pe€ C?([0,1] x Ry) and there exists constant pg > 0 such that
u(x,t) > po for all (x,t) € [0,1] x Ry.
Fix T > 0. For each M > 0 given, we set the constants Ko(M, f), Km(f),
Ko(M, g), Kn(g), Ko(u), K () as follows
Ko(M, f) =sup{|f(z,t,u)| : 0 <2 <1,0<t<T* |ul <M},
Kun(f) = o Ko(M, Dy f) + 305" Ko(M, DiD f),
Ko(M, g) =sup{|g(z,t,s,u)|: 0 <2 <1,0< s <t <T* |ul < M},
Ku(9) = Yo/t Ko(M, Dig) + 327" Ko(M, D1 Dig),

Ko(u) = llellcoo,gx o) = sup lu(x, 1),
(2,)€[0,1] x[0,77]

K () = llloaopsory = 3 Ko (DiDjn).
\ i+7<2
For every T € (0,7*] and M > 0, we put

W(M,T)={veL>®0,T; Ht N H?) : vy € L>=(0,T; H}), va € L*(Qr),

with [0l e omsm1nm2) » Vil Looorimny > Vsl L2 (gp) < MY,
Wi (M,T) = {veW(M,T) : vy € L®(0,T; L?)},
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in which Q7 = Q x (0,7).
Now, we establish the recurrent sequence {u,,}. The first term is chosen as
ug = 0, suppose that

U1 € Wi(M,T), (2.2)

we associate problem (1.1)-(1.3) with the following problem.
Find u,, € W1 (M,T) (m > 1) satisfying the linear variational problem

Uy (£), w) + () e (), wa) + Auz, (), w)
,  Vw € Hy, (2.3)

where

b, (z,t)
— vaol zl,le(a; tyUm—1) (U — Upm—1)"
—i—ZfVOlzl, 0 [D4g(x t, S, Um—1(T, s))] (U (z, $) —um_l(a:,s))ids (2.4)

= Zj;() [ j(x,t, wpm— 1)um—i—f0 (2,1, 8, Um—1 (2, ) )t (z, 5)ds

and

Aj (Jj)taum 1) Z'fvjl g (1)3) Déf(l‘ t um—l)uir:jl’

Bj(a:,t,s,um,l) :Zz ]1%D49($ t S, Um— 1) :7:]1

(2.5)

Then we have the following theorem.

Theorem 2.1. Let (Hy)-(Hs) hold. Then there exist a constant M > 0
depending on ug, U1, i and a constant T > 0 depending on g, @1, 4, f, g
such that, for ug = 0, there exists a recurrent sequence {u,} C Wy(M,T)
defined by (2.3) and (2.4).

Proof. The proof of Theorem 2.1 consists three steps.
Step 1. (The Faedo-Galerkin approximation) Let {w;} be a basis of H{,
formed by eigenfunction w; of the operator —A = —68722 s —Awy = Nw;, wy €
HiNH? wi(x) = V2sin(jrz), \j = (jm)?, j=1, 2, 3,---

We find an approximate solution of Prob. (2.3), (2.4) in the form

uP) =5 B (tw;, (2.6)

j=1"mj
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where the coefficients cfs; satisfy the following system of linear differential
equations
i) (8), w; ) + ((Oul (), wia ) + A () (6), ;)
= (o), w;), 1< <k, (27)
u (0) = diow, ifn (0) = g,
in which
Uy = Z?Zl agk)wj — 1 strongly in H} N H?, 2.8
U = Z?:l B](-k)wj — 1 strongly in H{, '
and
oW (z, 1)

= S0 ED () (uly) = )
+Zij\i61 71, fg [Dflg(x,t,s,um,l(x,s))] (u,(ﬁ)(:c,s)fum,l(x,s))ids (2.9)
S i [Aj(x,t,um_l) (uﬁ,’i))j
—I—ﬁ Bj(z,t, 8, um—1(,s)) (uﬁ,’f)(x,s))j ds] )
The system (2.7) can be written in the form

ML) + 05 ()l + A1) = (1), 1 <5 <k,

mi mj mj —J =

(o) =, o) = g,

mj

where
(1) = (O wi, wye), @01 = (@ (1), wy) 1< j <k (211)

Using the Banach’s contraction principle, it is not difficult to show that (2.10)

has a unique solution ¢\ (t) in [0, Téf)], with certain T\ € (0, T]. Therefore,

mj
(2.7) has a unique solution ulh) (t) in [O,Tr(f)].
(k)

The following estimates allow one to take 7, R independent of m and k

[2]. By such a priori estimates of uP (t), it can be extended outside |0, T )] and
then, a solution defined in [0, 7] will be obtained.

Step 2. (A priori estimates) First, for all j = 1,--- |k, multiplying (2.7); by
(k)
myj

¢ 5(t), summing on j, and integrating with respect to the time variable from
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0 to t, we have

xP ) = xP0) - 2a J! HuS!?(s)HstJerg <<I>$,]f)(s),u7gf)(s)>ds

(2.12)
2
ugf?c(x, 3)‘ dz,

—i—fo ds |, //(a:,s)

where
0 =[] + |vido]

Next, by replacing w; in (2.7)1 by —wjzs, we obtain that

(isr s )+ (& (HOUSLO) wiee ) + A (W0, wyo)
= (Oh () wia), 1<j<H,

similar to (2.7)1, it gives

0

2
= Vi 0) = 2 [ (| alh)

) dr  (2.13)

Umzx ($, 3)

(s) 2ds+f0tdsf01 '(z, 5)

-2 fo </¢I(s),u$,]f2m(s)>ds+2fg <<I>£,]fg)c s), uﬁff;( )>ds,

where

vl (1)

(k) (t)‘z.

We note that the equation (2.7) can be written as follows

iy
= @m(t),wj , 1<j<k

(k)

Hence, it follows after replacing w; with i, (t) and integrating that

8% (u(s)u%%(s)) Hst
“ds 43! H@ﬁfi)(s)’fds

i) as <5 g

+3)2 fot Hugf)(s)

(2.14)
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Combining (2.12), (2.13) and (2.14) lead to
S (t)
k k - (k 2
=XVt + v P ) + f(f Hugn)(s)u ds

- 5’7(7’1“)(0) —l—fotds o W(z,s “umx x s)‘ + ‘ugfg)m(x,s)f] dx

wegfof a-ni(ol ol)e o,
2 J (as)ili ), () ds 3 J¢ ]| 2 ((s)uib(s)) || as

+3 Jo H‘I)gfi)(S)H ds +2 [y (O (s), 0 (5) ) ds

+2 Ji (@(s), il (s) ) ds

S50) + 5, 1

We shall estimate, respectively the following integrals and ng ) (0) on the right-
hand side of (2.15).
First integral I;: By

S0 2 o ([0 + o] ). (2.16)

we have

I = fg ds 0 w(z,s) Uumz z,s ‘ + ‘ugfg);x(as,s)ﬂ dx
ﬁf( ) Jo (HF%W H +”Fummm )H2> ds (2.17)
1) Jy Sho < LKW f, {1+ (s(’”( ))N_l} ds.

Second integral I :

IN

‘:‘,_.

2
L=3)2 ! Hu,(fi) (s) " as

< 3)\2 fo s)ds < 32 fo [1 n (S(k)(s)>N1] ds. (2.18)
Third integral I3 :
= <Hu5ﬁ)(s)H2 + Ha,(fi;(s)HQ) ds
(2.19)

<207 f1SW) (s)ds < 2|\ [ [ (S,Si“)(s))Nl] ds.
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Fourth integral I, :

Li=-2[; <uz( Yishn(s), ugi?m(s)> ds

= 2 (112 (0yuna(0), ulika(0)) — 2 (praltuish(t), ulika())
2y (% (ra(s)ulih(®) . uliho(s) ) ds

We shall estimate I il) and [ f) as follows:
Estimate 14(1) :

Iil) =-2 <ux( )u%’i;(t), ugf;x > < 2K (p Humx ’ Humm H

< U] + 28204 ) [ H

< 3 |obidatt)|[ + 220 [lonal + i 852050 5]

< 3 st 2820 [2 +2tf0 Joteeo" o]
< 1) 4 2K2(u )[2||u0,m\| +2t [ 5Lk s)ds}

< AR () oke | + SSW (1) + AR ()T [5 SW(s)ds.

Estimate If) :
k k
=25 (3 (o) o)
= 2 i ()b s) 4 pal)ils), uiEhe(s)) s

ot o] + st ]) it

- (k) (k)

Ho

140
Hence, we deduce from (2.20)-(2.22) that

L < 2t (0)iohas onar) + 4K2(1) || oke | + LS5 (2)

F2R () (27K () + 200 [

14 < s£f>(s)>N_1] ds.

73

(2.20)

(2.21)

—

2.22)

(2.23)
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Fifth integral I :

—3f0 o ( (s)ulk) (s ))H2d$
<ty o] + o]

(2.24)
k
< K2 fy 1+ ( Sﬁrﬂ(s)) ] ds.
To estimate integrals Ig, I7, Ig, we use the following Lemma.
Lemma 2.2. We have
0 [lo ]
L N—-1 B i N—1T
< an 1+< S (t)> +Bar 1+< sﬁ%)) ds,
- - (2.25)
() ez
N-1 ~ i N—1T]
< an 1+< s£’§>(t)> + B i 1+( sﬁ’f’@)) ds,
where ép and By are defined as follows
an = K (f) o050 bi Bar = Karlg) s b,
1+ M+ YN 20 (14 M +4) MY, i =0, (2.26)
bi - 9i—1 1+M+i .
20 1+ Mdi 1<i<N-1.
1! \//T%) ’ Sts

Proof. (i) Using the inequalities (a+b)P < 2= (aP 4-bP), for alla, b > 0, p > 1
and s* <1457 Vs >0, Vi, g, 0 <17 <gq, we have

1 i
7(‘ “f”um 1)
=0

§1+ YA (Humm H‘i‘M) <1+ Z QZ 1 <Humm H +Ml>

Z

i
N-1 . (k) .
<14+ ) ‘21'!1 ( Sn/;o(t)> + M

i=1

14 Nz_l 9i—1 MZ- 4 Nz_l 2i-1 1 S(k) (t) '
- 7! = 7! \/:‘TEL) m

i=1
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1+ < Sﬁ,’?(t))lv_l] : (2.27)

with b;, 0 < i < N — 1 defined by (2.26). Hence

N-1_ ® t O ON—1_
< zbi( sm<t)> <0
=0 1=0

o (1)
Ny (k) i
< > |aDsf(z t um—1)(um’ — tm-1)
i=0

N-1 , i
+ % 3y | [Diglat.s,umn)] (ulf) (2.5) — una (2, 9))
=0

3 4 (] )|

1=0

ds

SKM(f)[

+Eu(9) [y []jgolll' (‘uq(q]i)(:r, s)’ + |um—1(z, s)|)z} ds (2.28)

14 ( Sé’f’(t))N_ll

14 ( sg’f)(s))N_l

1+( s,(,’:)(t)>N1 1+< sf,?(s))Nl] ds,

it implies that Lemma 2.2 (i) holds.
(ii) We also have

N-1 _

< Km(f) 220 b

1=0

- N-1_
+KM(Q) ;} b; fO ds

< am

+5Mf0t

O (1)

= Dy f(z,t,um—1) + D3 f(x,t, um—1) V-1
+NZ_1121, {[Dngf(x, t, Um-1) —l—Dé'Hf(x, t, Um )Vum_l](ugf)—um_l)i
+Rm, t, um,l)i(ugi) - um,l)i_l(u%; - Vum,l)}
+ fot [D1g(.) + Dag(.)Vup—1(x, s)] ds

—|—N§11Z1,fg {[DlDig(.)+Di+1g(.)Vum1 (z, s)] (uﬂf) (z,8)—Uma (z, 8)>Z

+Dig(.)i (u;’j) (x,8) —Um (z, s))i_l(u,gig)c(x, $)—Vum1(z, s))} ds,
(2.29)
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in which ¢(.) = g(z,t, s, um—1(z, s)), hence

ch%’i%(t)H

N1 (k) '
< Kar () IVma )+ X B ()0 191 ]) o852 T

VK (f) Hug:; Vi

} T Bar(e) (1 4+ [Vamr ()] ds

7

N-1 B
5 R (14 19l [o856) ~ P

has

< k(D0 + S H{run a0 (o] +ar) )

+iK (g Humz — Vum—1

YK (f) (Hu%’il(t)H +M) }+f0 Kar(g) (1 + M) ds
N-1 -
+T 1 {KM 9)(1+ M) (Hum )

+iku(o) (o) + 31)} as

N-—1 i
= Kul) & 1(1+ M +1) (Hum H+M)
N-1 7
+R () f1 XA+ ) (Hu,,’ii(s)H + M) ds,

where Vuy,—1 = Vupy—1(t), or Vuy,—1 = Vuy—1(s). Note that

N-1 i
Y+ ([[uldo)]| + )

S(k)(t)
( Ho + M
= N\ 9i—1 S 0) i i
igoa(lnLMsz)Q i + M
N-1
)
=0

F(L+M+i) 27 M Y & (14 M+i) 21 IM ( Snf)(t)>
=0 0

1=0 .
N— ?
<Y A1+ M4

!
1
=0

IN

i=1 i=1 Ho

Ty = N oi-1_1 (k) i
= WM+ 5 (LM +i) M43 5 (1M +i0) 27— 1/ S (1)
1

1:0
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hence
H@%’ii(t) H

N-1._
< Ky (f) Z b;

1+ < Sﬁ’f’(t))N_ll

N-1
_ 2.32
+K (g zbfo 1+( S (s )) ds (2:32)
- N-1 ~ p N-1
A |14 ( SM(t)) + Bar fL |1+ ( Sr(n)(s)) ] ds.
It implies that Lemma 2.2 (ii) holds. Therefore, Lemma 2.2 is proved. g
Now, the integrals Ig, I7, Ig are estimated as follows.
. 2
Is =3 |, H(I) S)H ds
N-172
<6a2, [ [ + (v%’f > ] ds
(2.33)

<1263,y [1+ (580) V] ds+1233, i [s f5 (1 (S58m) V) ar s
<1282, [! [1+<S(’“ (s) ]ds+6ﬁMT2 st <1+(S( )(r )>Nl>d7

<6(2a3,+ B2,72) Jy [1 + (s ))N_l} ds;

+6BMf0[f0<1+<\/5T> )dT]2dS
)

I; = 2f0t <<I>£,]§)(s),u$7]f)(s)>ds < 2f0t H@g,’i)(s)H Hugf)(s)u ds

1+< s(’“(s))Nl] S (s)ds

2800 1S58 (s 1+< S},’f)(r)>N1] dr
1+( Sf,’?(s))N_l 2 1+< S(k)(s))N_ll ds>2

< 2ayy fO

< 2 [

dS—i—Q,@M (f()
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< 4y ! 1+(S£f)(s)>N ]ds+4ﬁMtf0 [1+( S (s ))N_l]ds
) o (2.34)
§4(dM+5MT*> fg [1—1— (Snlf)(s)> } ds
and
Ig = 2f6e <<I>£Zf§c(s) u7(m)c(s)>d5 < 2f0 H@gﬁx (s) H Humx )H ds
- N 1 (2.35)
<4 (@ +AuT.) Jy [1 (s (s ]ds.
Combining (2.15)-(2.19), (2.23), (2.24) and (2.23)-(2.35), we have
SW(t) < 285(0) + 4 (12(0)iioke, Gokas) + SK(1) ons ||
(2.36)
+TC (M fo ( (s ) ds,
where
Cr(M) = LK (1) + 33 + 2|\ + 2K () (27K () + 222
(2.37)

+%f{2(#)+6< a3, + 63T, )+8<OéM+5MT)

By means of the convergences (2.8) we can deduce the existence of a constant
M > 0 independent of k& and m such that

25’1(7? (0) +4 <Um(0)ﬂ0kaza a()kaca:> + 8K2(N) ”a0kx||2 < MTQa (2'38)

for all m, k € N. Finally, it follows from (2.36) and (2.38) that
(k) M2 t (o), \\V
SW(t) < M2 4 TCH (M) + Cr (M) ] (sm (s)) ds, (2.39)

for0<t< T,(,f ) < T. Then, by solving a nonlinear Volterra integral inequality
(2.39) (based on the methods in [4]), the following lemma is proved.

Lemma 2.3. There exist a constant T > 0 independent of k and m such that
S < M2, vte[0,T], Y m, keN. (2.40)

By Lemma 2.3, we can take constant TT(f ) = T for all k and m € N. Thus,
we have

W e WM, T), ¥m, keN. (2.41)
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Step 3. (Convergence) Thanks to (2.41), there exists a subsequence {ugnf] )}
of {ugi)}, still denoted by {ugf)} such that

(k) — Um in  L>(0,T; H N H?) weakly*,

(k) —up, in L>(0,T; H}) weakly*, (2.42)

( ) ull, in L%(Qr) weakly, '
U, € W(M T).

Using the compactness lemma of Lions ([4], p.57) and applying Fischer - Riesz

theorem, from (2.42), there exists a subsequence of {ugf) }, denoted by the same
symbol satisfying

{ uln) — uy, strong in L*(0,T; HY) and ae. in Qr, (2.43)

(k) — ! strong in L*(Qr) and a.e. in Q7.

On the other hand, by L>(0,T; Hi N H?) — L*(Qr) and using the in-
equality

la? —b| < jMI™a—b|, Ya, be[-M,M], VM >0, VjeN, (2.44)
we deduce from (2.41) that

(( 0 o, ‘<]M31‘g§)—um, 0<j<N-1 (2.45)
Therefore, (2.43) and (2.45) give
() = ul, strong in L2(Qr). (2.46)

We note that
A (2, by w1 ()] < Kar(f) SN M0 = Dy(M),
(

=3  gl(i—j)!
|Bj(2,t, 5,um1(s))| < Kar(g) LI M, (2.47)
(

=D;j(M), 0<j<N-1.
By (2.4), (2.9) and (2.47), we obtain

10 wie] <535 Py 0 -
SN T D (M) H( (7 _ i, o (2.48)
Hence, we have
H@,(j;) - (I)m‘ i‘4’(QT) (2.49)
<2N S (D20 + T2D2)) ||l — i ( . |
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It leads to
o — @, strong in L3(Qr). (2.50)
Passing to limit in (2.7), (2.8), we have u,, satisfying (2.3), (2.4) in L?(0,T).
On the other hand, it follows from (2.3); and (2.42)4 that

ul =2 (u(x,t)%m) — iy, + @, € L0, T; L2).

Hence, u,, € Wi(M,T) and Theorem 2.1 is proved. O

Next, the main result is given by the following theorem. We consider the
space W1 (T'), defined by

Wi(T) = {v e L>®(0,T; H}) : v' € L*°(0,T; L?)}, (2.51)
then W7 (T) is a Banach space with respect to the norm

HU||W1(T) = ||U||Loo(o,T;H5) + HU,HLOO(O,T;L?)‘ (2.52)

Theorem 2.4. Let (Hy)-(Hy) hold. Then, there exist constants M > 0 and
T > 0 such that the problem (1.1)-(1.3) has a unique weak solution u €
Wi (M,T) and the recurrent sequence {un,}, defined by (2.3)-(2.4), converges
at a rate of order N to the solution u strongly in the space W1(T) in sense

= iy () < Cllttm—1 = ulliyy ) » (2.53)

for allm > 1, where C is a suitable constant. On the other hand, the following
estimate is fulfilled

l[um = ully, () < CrpN™, for allm € N, (2.54)
where Cr and 0 < B < 1 are the constants depending only on T'.

Proof. (Existence of a solution) We shall prove that {u,,} is a Cauchy sequence
in Wi(T'). Indeed, we put v, = Up+1 — Up. Then vy, satisfies the variational
problem

(v (8), w) + () Vma (1), wa) + A(vy, (£), w)
= (Pm41(t) = Pm(t),w), Vw € Hy, (2.55)

vm(0) = v/, (0) = 0.

Taking w = v/, in (2.55), after integrating in ¢, we have

pm(t) < 2|A|f0 ()2 ds + [ ds Ji 1, )] 02, 5)d
t / - (2.56)
+2 [y [Pmi1(s) — Pon(s)] |07, (s) ]| ds = 1;1 Ty

where

(1) = ety (O + | Vom0 (2.57)
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Next, we need to estimate the integrals on the right side of (2.56) as follows

J1 =2 [y ()% ds < 2|\ [ pm(s)ds, (2.58)

t 1 -, t
Jo= [y ds [y |1/ (z,8)| v2, (2, s)dz < ;TloK(M) Jo Pm(s)ds. (2.59)
Using Taylor’s expansion of the functions f(x,t,um) = f(x,t, Um—1 + Vm-1)
and g(x,t,s,um) = g(z,t,$, Um—1 + vm—1) around the point u,,_1 up to order
N, we obtain

f($7t7um)_f($at7um—1) ZN ! 1le(.%' by U — 1) :n 1
+N|D}Vf(x t, Om— 1) —1»

g(l’,t, 87 um) - g($7t7 Saum—l) = Z’f\;ll %Dzlg(x?t? SJ um—l)vf,infl

+%Dz]1\[g(xv ta S, 5m71)vn]\{_17

(2.60)

where
Om—1 = 5m71($,t) = Um_1+ 0101, 0< 1 <1
and
5m—1 = (5m_1($, S) = Um—1 + 927)m—1, 0< 92 < 1.
Hence, it follows from (2.4) and (2.60) that
D1z, t) — O (2, 1)
=yt j,D?,f(x ty U )08, + 2 DY f (2, t, 6 )0N ) (2.61)
—1—25\7113, 0 D4g(x t, 8, Um VL, ds—i—N, fo DY g(z,t,s, om YN _ds.

Therefore, we have

[Prmt1(t) = @ (D) ,
< Knr(f) 2357 3 loma ()] + %KM( P lom—, 1Y

+Ku(9) it Jo Noma ()" ds+ 5y Kar(9) o lomer, z(s)l| " ds
< K (D) ST M@ + Kt () om [ (2.62)

+7:J% (O EM S o (8)ds+ 3T R ar(9) [0m— 1[Iy o)

<05 @) + 1) [y A om(8)ds + 1 (|1l o)

where
o = LKy (f) S S,
N =i
N
2 > i 2.63
(): 1‘0 M(g)zl%M 17 ( )
0y = i (K (f) + TR (g))
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Then we deduce from (2.56), (2.58), (2.59) and (2.62) that
pm(t) < (2101 + 5K (1)) Jy pm(5)ds

+2 Jy (77T \/lT(SH‘TZT Jo V/pm(T)dr
0 o1 I, (1) ) /o (s

4
< T [om-1 | o7y + 1% fi pm(s)ds,

(2.64)

where 77?) =2|A\|+ %K( )-1-277(1) +2T77(T)+77”Er3)- By using Gronwall’s lemma,
(2.64) leads to

N
HUmHW1(T) < pr ”Um—1||W1(T) J (2.65)

where ur = (1 + \/%) \/ Tnéf”) exp (Tyéf”).

=1
Choosing T' > 0 enough small such that § = Mpupr ' < 1, it follows from
(2.65) that, for all m and p,

e, = wrnspllyp, oy < (1= B)~H(pr) 718N (2.66)

Hence, {un,} is a Cauchy sequence in Wi(T'). Then there exists u € Wy (T)
such that

Uy — w  strong in W (T). (2.67)

Note that u,, € Wi(M,T'), then there exists a subsequence {um;} of {um}
such that

um]. —u in L°(0,T; H} N H?) weakly*,
L u’ in  L>(0,T; H}) weakly*,
N (2.68)
—> u” in L*(Qr) weakly,
u G W(M T).

On the other hand
@t = £ () = Ji 9oty s,u(s)ds|
NGttt ()=t w®) |+ | D5 Tty t) =)
[ 9o b5 wmoa(5))ds = fi 9Cot,u(s))ds
[ A (22t w1 (5))] (i (5) = w1 (5))" s

< (e (F)+TEni(9)llamr =l o+ 505 & ltm— i )| -
(2.69)




On a high order iterative scheme for a nonlinear wave equation 83

Therefore, it implies from (2.67) and (2.69) that
D, (t) = f(-,t,u(t)) +f(f g(-,t,s,u(s))ds strong in L*>(0,T;L?). (2.70)
Finally, passing to limit in (2.3) and (2.4) as m = m; — oo, there exists
u € W(M,T) satisfying the equation
(u" (), w) + (p(t)ua(t), we) + Mw/ (1), w)
= (s tu(),w)+ (fy 9ot uls)ds, w),
for all w € H} and the initial condition
u(0) = to, u'(0) = .
(Uniqueness) Applying a similar argument used in the proof of Theorem 2.1,
u € Wi(M,T) is a unique local weak solution of Pro. (1.1)-(1.3).

Passing to the limit in (2.66) as p — oo for fixed m, we get (2.54). Also with
a similar argument, (2.53) follows. Theorem 2.4 is proved completely. O

(2.71)
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