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Abstract. In this paper, we consider the initial and boundary value problem for a nonlinear

wave equation, with the source term containing a nonlinear integral, associated with homo-

geneous Dirichlet boundary conditions. We establish here a high order iterative scheme in

order to get a convergent sequence at a rate of order N to a local unique weak solution of

the above problem. This scheme shows that the convergence can be obtained with a high

rate if the nonlinear term in the original equation is smooth enough.

1. Introduction

In this paper, we consider the initial and boundary value problem for a
nonlinear wave equation, with the source term containing a nonlinear integral,
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associated with homogeneous Dirichlet boundary conditions as follows

utt − ∂
∂x (µ(x, t)ux) + λut = f(x, t, u) +

∫ t
0 g(x, t, s, u(x, s))ds,

0 < x < 1, 0 < t < T,
(1.1)

u(0, t) = u(1, t) = 0, (1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where µ, f, g, ũ0, ũ1 are given functions and λ 6= 0 is a given constant.
Eq. (1.1) constitutes a case, relatively simpler, of a more general equation,

namely

utt − ∂
∂x (µ(x, t, u, ux)ux) = F (x, t, u, ux, ut), 0 < x < 1, 0 < t < T. (1.4)

In the special cases, when the functions µ, F have the simple forms, Eq. (1.4)
with various initial-boundary conditions has been studied by many authors, see
[1], [2], [4]-[11], [13]-[15] and references therein. In these works, the existence
and properties of solutions have received much attention.

In [13], Santos studied the asymptotic behavior of solution of Eq. (1.4)
with F (x, t, u, ux, ut) ≡ 0, µ(x, t, u, ux) = µ(t), associated with the Dirichlet
boundary condition at x = 0 and a boundary condition of memory type at

x = 1, that is u(1, t) +
∫ t

0 g(t− s)µ(s)ux(1, s)ds = 0, t > 0.
In [8], by combining the linearization method for the nonlinear term, the

Faedo-Galerkin method and the weak compactness method, the existence of
a unique weak solution of an initial and boundary value problem for the non-

linear wave equation utt− ∂
∂x

(
µ(x, t, u, ‖ux‖2)ux

)
= F (x, t, u, ux, ut) with the

nonhomogeneous boundary conditions is proved. We note, however, the re-
current sequence obtained here converges only at a rate of order 1. It is well
known that, Newton’s method and its variants are used to solve nonlinear
operator equations or systems of nonlinear equations, see [12] and references
therein. In case lim

n→∞
un = u, one speaks of convergence of order N if

|un+1 − u| ≤ C|un − u|N

for some C > 0 and all large N. In the special cases N = 1 with C < 1 and
N = 2 one also speaks of linear and quadratic convergence, respectively, see
[3]. Based on the ideas about recurrence relations of these methods, a high
order iterative scheme can be constructed for solving the nonlinear operator
equation, see [9]-[11], [14], [15].

Motivated by results for wave equations in [6]-[8], and based on the use of a
high order iterative scheme in [9]-[11], [14], [15], in this paper, we will establish
a similar scheme to get the convergence of order N for Prob. (1.1)-(1.3). To
achieve this purpose, we define a recurrent sequence {um} associated with Eq.
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(1.1) as follows

∂2um
∂t2
− ∂

∂x

(
µ(x, t)∂um∂x

)
+ λ∂um∂t

=
∑N−1

k=0
1
k!
∂kf
∂uk

(x, t, um−1) (um − um−1)k

+
∑N−1

k=0
1
k!

∫ t
0

[
∂kg
∂uk

(x, t, s, um−1(x, s))
]
(um(x, s)− um−1(x, s))k ds,

(1.5)

0 < x < 1, 0 < t < T, with um satisfying (1.2), (1.3). The first term u0

is chosen as u0 ≡ 0. If µ ∈ C1([0, 1] × R+), f ∈ CN ([0, 1] × R+ × R), and
g ∈ Ck([0, 1] × ∆ × R), with ∆ = {(t, s) ∈ R2

+ : s ≤ t}, we prove that the
sequence {um} converges at rate of order N to a weak unique solution of Prob.
(1.1)-(1.3). The main result is given in Theorems 2.1 and 2.3. In our proofs,
the fixed point method and Faedo-Galerkin method are used.

2. A high order iterative scheme

First, we put Ω = (0, 1) and denote the usual function spaces used in this
paper by the notations Lp = Lp(Ω), Hm = Hm (Ω). Let 〈·, ·〉 be either the
scalar product in L2 or the dual pairing of a continuous linear functional and
an element of a function space. The notation ‖·‖ stands for the norm in L2,
‖·‖X is the norm in the Banach space X, and X ′ is the dual space of X.

We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of real functions
u : (0, T )→ X measurable, such that

‖u‖Lp(0,T ;X) =
(∫ T

0 ‖u(t)‖pX dt
)1/p

<∞ for 1 ≤ p <∞

and

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u(t)‖X for p =∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = 5u(t), uxx(t) =

∆u(t), denote u(x, t), ∂u∂t (x, t), ∂
2u
∂t2

(x, t), ∂u∂x(x, t), ∂
2u
∂x2

(x, t), respectively. With

f ∈ Ck([0, 1]×R+×R), f = f(x, t, u), we put D1f = ∂f
∂x , D2f = ∂f

∂t , D3f = ∂f
∂u

and Dαf = Dα1
1 Dα2

2 Dα3
3 f ; α = (α1, α2, α3) ∈ Z3, |α| = α1 + α2 + α3 = k,

D(0,0,0)f = D(0)f = f.
Similarly, with g ∈ Ck([0, 1] × ∆ × R), ∆ = {(t, s) ∈ R2

+ : s ≤ t}, g =

g(x, t, s, u), we put D1g = ∂g
∂x , D2g = ∂g

∂t , D3g = ∂g
∂s , D4g = ∂g

∂u and Dβg =

Dβ1
1 ...Dβ4

4 g; β = (β1, ..., β4) ∈ Z4, |β| = β1 + ...+β4 = k, D(0,0,0,0)g = D(0)g =

g. With µ = µ(x, t), we also put D1µ = ∂µ
∂x , D2µ = ∂µ

∂t .

We shall use the following norm on H1

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
.
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It is well known that the imbedding H1 ↪→ C0(Ω) is compact and for all
v ∈ H1,

‖v‖C0(Ω) ≤
√

2 ‖v‖H1 .

Furthermore, on H1
0 = {v ∈ H1 : v(0) = v(1) = 0}, two norms v 7−→ ‖v‖H1

and v 7−→ ‖vx‖ are equivalent and

‖v‖C0(Ω) ≤ ‖vx‖ for all v ∈ H1
0 . (2.1)

We make the following assumptions:

(H1) (ũ0, ũ1) ∈
(
H1

0 ∩H2
)
×H1

0 ;

(H2) f ∈ C0([0, 1]× R+ × R) such that

(i) f(0, t, 0) = f(1, t, 0) = 0, ∀t ≥ 0,

(ii) Di
3f ∈ C0([0, 1]× R+ × R), 0 ≤ i ≤ N,

(iii) D1D
i
3f ∈ C0([0, 1]× R+ × R), 1 ≤ i ≤ N − 1;

(H3) g ∈ CN ([0, 1]×∆× R) such that

(i) g(0, t, s, 0) = g(1, t, s, 0) = 0, ∀(t, s) ∈ ∆ = {(t, s) ∈ R2
+ : s ≤ t},

(ii) Di
4g ∈ C0([0, 1]×∆× R), 0 ≤ i ≤ N,

(iii) D1D
i
4g ∈ C0([0, 1]×∆× R), 1 ≤ i ≤ N − 1;

(H4) µ ∈ C2([0, 1]× R+) and there exists constant µ0 > 0 such that

µ(x, t) ≥ µ0 for all (x, t) ∈ [0, 1]× R+.

Fix T ∗ > 0. For each M > 0 given, we set the constants K0(M,f), KM (f),

K̄0(M, g), K̄M (g), K̃0(µ), K̃(µ) as follows

K0(M,f) = sup{|f(x, t, u)| : 0 ≤ x ≤ 1, 0 ≤ t ≤ T ∗, |u| ≤M},

KM (f) =
∑N

i=0K0(M,Di
3f) +

∑N−1
i=1 K0(M,D1D

i
3f),

K̄0(M, g) = sup{|g(x, t, s, u)| : 0 ≤ x ≤ 1, 0 ≤ s ≤ t ≤ T ∗, |u| ≤M},

K̄M (g) =
∑N

i=0 K̄0(M,Di
4g) +

∑N−1
i=1 K̄0(M,D1D

i
4g),

K̃0(µ) = ‖µ‖C0([0,1]×[0,T ∗]) = sup
(x,t)∈[0,1]×[0,T ∗]

|µ(x, t)| ,

K̃(µ) = ‖µ‖C2([0,1]×[0,T ∗]) =
∑

i+j≤2
K̃0

(
Di

1D
j
2µ
)
.

For every T ∈ (0, T ∗] and M > 0, we put
W (M,T ) = {v ∈ L∞(0, T ;H1

0 ∩H2) : vt ∈ L∞(0, T ;H1
0 ), vtt ∈ L2(QT ),

with ‖v‖L∞(0,T ;H1
0∩H2) , ‖vt‖L∞(0,T ;H1

0 ) , ‖vtt‖L2(QT ) ≤M},

W1(M,T ) = {v ∈W (M,T ) : vtt ∈ L∞(0, T ;L2)},
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in which QT = Ω× (0, T ).
Now, we establish the recurrent sequence {um}. The first term is chosen as

u0 ≡ 0, suppose that

um−1 ∈W1(M,T ), (2.2)

we associate problem (1.1)-(1.3) with the following problem.
Find um ∈W1(M,T ) (m ≥ 1) satisfying the linear variational problem

〈u′′m(t), w〉+ 〈µ(t)umx(t), wx〉+ λ〈u′m(t), w〉
= 〈Φm(t), w〉 , ∀w ∈ H1

0 ,

um(0) = ũ0, u
′
m(0) = ũ1,

(2.3)

where

Φm(x, t)

=
∑N−1

i=0
1
i!D

i
3f(x, t, um−1)(um − um−1)i

+
∑N−1

i=0
1
i!

∫ t
0

[
Di

4g(x, t, s, um−1(x, s))
]

(um(x, s)− um−1(x, s))i ds

=
∑N−1

j=0

[
Aj(x, t, um−1)ujm +

∫ t
0 Bj(x, t, s, um−1(x, s))ujm(x, s)ds

] (2.4)

and  Aj(x, t, um−1) =
∑N−1

i=j
(−1)i−j

j!(i−j)!D
i
3f(x, t, um−1)ui−jm−1,

Bj(x, t, s, um−1) =
∑N−1

i=j
(−1)i−j

j!(i−j)!D
i
4g(x, t, s, um−1)ui−jm−1.

(2.5)

Then we have the following theorem.

Theorem 2.1. Let (H1)-(H4) hold. Then there exist a constant M > 0
depending on ũ0, ũ1, µ and a constant T > 0 depending on ũ0, ũ1, µ, f, g
such that, for u0 ≡ 0, there exists a recurrent sequence {um} ⊂ W1(M,T )
defined by (2.3) and (2.4).

Proof. The proof of Theorem 2.1 consists three steps.
Step 1. (The Faedo-Galerkin approximation) Let {wj} be a basis of H1

0 ,

formed by eigenfunction wj of the operator −∆ = − ∂2

∂x2
: −∆wj = λjwj , wj ∈

H1
0 ∩H2, wj(x) =

√
2 sin(jπx), λj = (jπ)2, j = 1, 2, 3, · · · .

We find an approximate solution of Prob. (2.3), (2.4) in the form

u
(k)
m (t) =

∑k
j=1 c

(k)
mj(t)wj , (2.6)
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where the coefficients c
(k)
mj satisfy the following system of linear differential

equations 
〈
ü

(k)
m (t), wj

〉
+
〈
µ(t)u

(k)
mx(t), wjx

〉
+ λ

〈
u̇

(k)
m (t), wj

〉
=
〈

Φ
(k)
m (t), wj

〉
, 1 ≤ j ≤ k,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k,

(2.7)

in which  ũ0k =
∑k

j=1 α
(k)
j wj −→ ũ0 strongly in H1

0 ∩H2,

ũ1k =
∑k

j=1 β
(k)
j wj −→ ũ1 strongly in H1

0 ,
(2.8)

and

Φ
(k)
m (x, t)

=
∑N−1

i=0
1
i!D

i
3f(x, t, um−1)(u

(k)
m − um−1)i

+
∑N−1

i=0
1
i!

∫ t
0

[
Di

4g(x, t, s, um−1(x, s))
](
u

(k)
m (x, s)−um−1(x, s)

)i
ds

=
∑N−1

j=0

[
Aj(x, t, um−1)

(
u

(k)
m

)j
+
∫ t

0 Bj(x, t, s, um−1(x, s))
(
u

(k)
m (x, s)

)j
ds

]
.

(2.9)

The system (2.7) can be written in the form c̈
(k)
mj(t) +

∑k
i=1 µij(t)c

(k)
mi (t) + λċ

(k)
mj(t) = Φ

(k)
mj(t), 1 ≤ j ≤ k,

c
(k)
mj(0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j ,

(2.10)

where

µij(t) = 〈µ(t)wix, wjx〉 , Φ
(k)
mj(t) =

〈
Φ

(k)
m (t), wj

〉
, 1 ≤ i, j ≤ k. (2.11)

Using the Banach’s contraction principle, it is not difficult to show that (2.10)

has a unique solution c
(k)
mj(t) in [0, T

(k)
m ], with certain T

(k)
m ∈ (0, T ]. Therefore,

(2.7) has a unique solution u
(k)
m (t) in [0, T

(k)
m ].

The following estimates allow one to take T
(k)
m = T independent of m and k

[2]. By such a priori estimates of u
(k)
m (t), it can be extended outside [0, T

(k)
m ] and

then, a solution defined in [0, T ] will be obtained.
Step 2. (A priori estimates) First, for all j = 1, · · · , k, multiplying (2.7)1 by

ċ
(k)
mj(t), summing on j, and integrating with respect to the time variable from
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0 to t, we have

X
(k)
m (t) = X

(k)
m (0)− 2λ

∫ t
0

∥∥∥u̇(k)
m (s)

∥∥∥2
ds+ 2

∫ t
0

〈
Φ

(k)
m (s), u̇

(k)
m (s)

〉
ds

+
∫ t

0 ds
∫ 1

0 µ
′(x, s)

∣∣∣u(k)
mx(x, s)

∣∣∣2 dx, (2.12)

where

X
(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥2
+
∥∥∥√µ(t)u

(k)
mx(t)

∥∥∥2
.

Next, by replacing wj in (2.7)1 by −wjxx, we obtain that〈
ü

(k)
mx(t), wjx

〉
+
〈
∂
∂x

(
µ(t)u

(k)
mx(t)

)
, wjxx

〉
+ λ

〈
u̇

(k)
mx(t), wjx

〉
=
〈

Φ
(k)
mx(t), wjx

〉
, 1 ≤ j ≤ k,

similar to (2.7)1, it gives

Y
(k)
m (t)

= Y
(k)
m (0)− 2λ

∫ t
0

∥∥∥u̇(k)
mx(s)

∥∥∥2
ds+

∫ t
0 ds

∫ 1
0 µ
′(x, s)

∣∣∣u(k)
mxx(x, s)

∣∣∣2 dx
−2
∫ t

0

〈
µx(s), u

(k)
mxx(s)

〉
ds+ 2

∫ t
0

〈
Φ

(k)
mx(s), u̇

(k)
mx(s)

〉
ds,

(2.13)

where

Y
(k)
m (t) =

∥∥∥u̇(k)
mx(t)

∥∥∥2
+
∥∥∥√µ(t)u

(k)
mxx(t)

∥∥∥2
.

We note that the equation (2.7) can be written as follows〈
ü

(k)
m (t), wj

〉
−
〈
∂
∂x

(
µ(t)u

(k)
mx(t)

)
, wj

〉
+ λ

〈
u̇

(k)
m (t), wj

〉
=
〈

Φ
(k)
m (t), wj

〉
, 1 ≤ j ≤ k.

Hence, it follows after replacing wj with ü
(k)
m (t) and integrating that

∫ t
0

∥∥∥ü(k)
m (s)

∥∥∥2
ds ≤ 3

∫ t
0

∥∥∥ ∂
∂x

(
µ(s)u

(k)
mx(s)

)∥∥∥2
ds

+3λ2
∫ t

0

∥∥∥u̇(k)
m (s)

∥∥∥2
ds+ 3

∫ t
0

∥∥∥Φ
(k)
m (s)

∥∥∥2
ds.

(2.14)
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Combining (2.12), (2.13) and (2.14) lead to

S
(k)
m (t)

= X
(k)
m (t) + Y

(k)
m (t) +

∫ t
0

∥∥∥ü(k)
m (s)

∥∥∥2
ds

= S
(k)
m (0) +

∫ t
0 ds

∫ 1
0 µ
′(x, s)

[∣∣∣u(k)
mx(x, s)

∣∣∣2 +
∣∣∣u(k)
mxx(x, s)

∣∣∣2] dx
+3λ2

∫ t
0

∥∥∥u̇(k)
m (s)

∥∥∥2
ds− 2λ

∫ t
0

(∥∥∥u̇(k)
m (s)

∥∥∥2
+
∥∥∥u̇(k)

mx(s)
∥∥∥2
)
ds

−2
∫ t

0

〈
µx(s)u̇

(k)
mx(s), u̇

(k)
mxx(s)

〉
ds+ 3

∫ t
0

∥∥∥ ∂
∂x

(
µ(s)u

(k)
mx(s)

)∥∥∥2
ds

+3
∫ t

0

∥∥∥Φ
(k)
m (s)

∥∥∥2
ds+ 2

∫ t
0

〈
Φ

(k)
m (s), u̇

(k)
m (s)

〉
ds

+2
∫ t

0

〈
Φ

(k)
mx(s), u̇

(k)
mx(s)

〉
ds

= S
(k)
m (0) +

∑8
j=1 Ij .

(2.15)

We shall estimate, respectively the following integrals and S
(k)
m (0) on the right-

hand side of (2.15).
First integral I1: By

S
(k)
m (t) ≥ µ0

(∥∥∥u(k)
mx(t)

∥∥∥2
+
∥∥∥u(k)

mxx(t)
∥∥∥2
)
, (2.16)

we have

I1 =
∫ t

0 ds
∫ 1

0 µ
′(x, s)

[∣∣∣u(k)
mx(x, s)

∣∣∣2 +
∣∣∣u(k)
mxx(x, s)

∣∣∣2] dx
≤ 1

µ0
K̃(µ)

∫ t
0

(∥∥∥√µ(s)u
(k)
mx(s)

∥∥∥2
+
∥∥∥√µ(s)u

(k)
mxx(s)

∥∥∥2
)
ds

≤ 1
µ0
K̃(µ)

∫ t
0 S

(k)
m (s)ds ≤ 1

µ0
K̃(µ)

∫ t
0

[
1 +

(
S

(k)
m (s)

)N−1
]
ds.

(2.17)

Second integral I2 :

I2 = 3λ2
∫ t

0

∥∥∥u̇(k)
m (s)

∥∥∥2
ds

≤ 3λ2
∫ t

0 S
(k)
m (s)ds ≤ 3λ2

∫ t
0

[
1 +

(
S

(k)
m (s)

)N−1
]
ds.

(2.18)

Third integral I3 :

I3 = −2λ
∫ t

0

(∥∥∥u̇(k)
m (s)

∥∥∥2
+
∥∥∥u̇(k)

mx(s)
∥∥∥2
)
ds

≤ 2 |λ|
∫ t

0 S
(k)
m (s)ds ≤ 2 |λ|

∫ t
0

[
1 +

(
S

(k)
m (s)

)N−1
]
ds.

(2.19)
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Fourth integral I4 :

I4 = −2
∫ t

0

〈
µx(s)u̇

(k)
mx(s), u̇

(k)
mxx(s)

〉
ds

= 2
〈
µx(0)u

(k)
mx(0), u

(k)
mxx(0)

〉
− 2

〈
µx(t)u

(k)
mx(t), u

(k)
mxx(t)

〉
+2
∫ t

0

〈
∂
∂s

(
µx(s)u

(k)
mx(s)

)
, u

(k)
mxx(s)

〉
ds

= 2 〈µx(0)ũ0kx, ũ0kxx〉+ I
(1)
4 + I

(2)
4 .

(2.20)

We shall estimate I
(1)
4 and I

(2)
4 as follows:

Estimate I
(1)
4 :

I
(1)
4 = −2

〈
µx(t)u

(k)
mx(t), u

(k)
mxx(t)

〉
≤ 2K̃(µ)

∥∥∥u(k)
mx(t)

∥∥∥∥∥∥u(k)
mxx(t)

∥∥∥
≤ 1

2

∥∥∥u(k)
mxx(t)

∥∥∥2
+ 2K̃2(µ)

∥∥∥u(k)
mx(t)

∥∥∥2

≤ 1
2

∥∥∥u(k)
mxx(t)

∥∥∥2
+ 2K̃2(µ)

[
‖ũ0kx‖+

∫ t
0

∥∥∥u̇(k)
mx(s)

∥∥∥ ds]2

≤ 1
2

∥∥∥u(k)
mxx(t)

∥∥∥2
+ 2K̃2(µ)

[
2 ‖ũ0kx‖2 + 2t

∫ t
0

∥∥∥u̇(k)
mx(s)

∥∥∥2
ds

]
≤ 1

2S
(k)
m (t) + 2K̃2(µ)

[
2 ‖ũ0kx‖2 + 2t

∫ t
0 S

(k)
m (s)ds

]
≤ 4K̃2(µ) ‖ũ0kx‖2 + 1

2S
(k)
m (t) + 4K̃2(µ)T ∗

∫ t
0 S

(k)
m (s)ds.

(2.21)

Estimate I
(2)
4 :

I
(2)
4 = 2

∫ t
0

〈
∂
∂s

(
µx(s)u

(k)
mx(s)

)
, u

(k)
mxx(s)

〉
ds

= 2
∫ t

0

〈
µ̇x(s)u

(k)
mx(s) + µx(s)u̇

(k)
mx(s), u

(k)
mxx(s)

〉
ds

≤ 2K̃(µ)
∫ t

0

(∥∥∥u(k)
mx(s)

∥∥∥+
∥∥∥u̇(k)

mx(s)
∥∥∥)∥∥∥u(k)

mxx(s)
∥∥∥ ds

≤ 2K̃(µ)
∫ t

0

(√
S
(k)
m (s)
µ0

+

√
S

(k)
m (s)

)√
S
(k)
m (s)
µ0

ds

= 2K̃(µ)
1+
√
µ0

µ0

∫ t
0 S

(k)
m (s)ds.

(2.22)

Hence, we deduce from (2.20)-(2.22) that

I4 ≤ 2 〈µx(0)ũ0kx, ũ0kxx〉+ 4K̃2(µ) ‖ũ0kx‖2 + 1
2S

(k)
m (t)

+2K̃(µ)
(

2T ∗K̃(µ) +
1+
√
µ0

µ0

) ∫ t
0

[
1 +

(√
S

(k)
m (s)

)N−1
]
ds.

(2.23)
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Fifth integral I5 :

I5 = 3
∫ t

0

∥∥∥ ∂
∂x

(
µ(s)u

(k)
mx(s)

)∥∥∥2
ds

≤ 3K̃2(µ)
∫ t

0

[∥∥∥u(k)
mx(s)

∥∥∥+
∥∥∥u(k)

mxx(s)
∥∥∥]2

ds

≤ 6
µ0
K̃2(µ)

∫ t
0

[
1 +

(√
S

(k)
m (s)

)N−1
]
ds.

(2.24)

To estimate integrals I6, I7, I8, we use the following Lemma.

Lemma 2.2. We have

(i)
∥∥∥Φ

(k)
m (t)

∥∥∥
L∞

≤ α̃M

[
1+

(√
S

(k)
m (t)

)N−1
]

+ β̃M
∫ t

0

[
1+

(√
S

(k)
m (s)

)N−1
]
ds,

(ii)
∥∥∥Φ

(k)
mx(t)

∥∥∥
≤ α̃M

[
1+

(√
S

(k)
m (t)

)N−1
]

+β̃M
∫ t

0

[
1+

(√
S

(k)
m (s)

)N−1
]
ds,

(2.25)

where α̃M and β̃M are defined as follows
α̃M = KM (f)

∑N−1
i=0 b̃i, β̃M = K̄M (g)

∑N−1
i=0 b̃i,

b̃i =

 1 +M +
∑N−1

i=1
2i−1

i! (1 +M + i)M i, i = 0,

2i−1

i!
1+M+i√

µi0
, 1 ≤ i ≤ N − 1.

(2.26)

Proof. (i) Using the inequalities (a+b)p ≤ 2p−1(ap+bp), for all a, b > 0, p ≥ 1
and si ≤ 1 + sq, ∀s ≥ 0, ∀i, q, 0 ≤ i ≤ q, we have

N−1∑
i=0

1
i!

(∣∣∣u(k)
m

∣∣∣+ |um−1|
)i

≤ 1 +
N−1∑
i=1

1
i!

(∥∥∥u(k)
mx(t)

∥∥∥+M
)i
≤ 1 +

N−1∑
i=1

2i−1

i!

(∥∥∥u(k)
mx(t)

∥∥∥i +M i

)

≤ 1 +
N−1∑
i=1

2i−1

i!

(√S
(k)
m (t)
µ0

)i
+M i


= 1 +

N−1∑
i=1

2i−1

i! M
i +

N−1∑
i=1

2i−1

i!
1√
µi0

(√
S

(k)
m (t)

)i
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≤
N−1∑
i=0

b̃i

(√
S

(k)
m (t)

)i
≤

N−1∑
i=0

b̃i

[
1 +

(√
S

(k)
m (t)

)N−1
]
, (2.27)

with b̃i, 0 ≤ i ≤ N − 1 defined by (2.26). Hence∣∣∣Φ(k)
m (x, t)

∣∣∣
≤

N−1∑
i=0

∣∣∣ 1
i!D

i
3f(x, t, um−1)(u

(k)
m − um−1)i

∣∣∣
+
N−1∑
i=0

1
i!

∫ t
0

∣∣∣∣[Di
4g(x, t, s, um−1)

] (
u

(k)
m (x, s)− um−1(x, s)

)i∣∣∣∣ ds
≤ KM (f)

[
N−1∑
i=0

1
i!

(∣∣∣u(k)
m

∣∣∣+ |um−1|
)i]

+K̄M (g)
∫ t

0

[
N−1∑
i=0

1
i!

(∣∣∣u(k)
m (x, s)

∣∣∣+ |um−1(x, s)|
)i]

ds

≤ KM (f)
N−1∑
i=0

b̃i

[
1 +

(√
S

(k)
m (t)

)N−1
]

+K̄M (g)
N−1∑
i=0

b̃i
∫ t

0

[
1 +

(√
S

(k)
m (s)

)N−1
]
ds

≤ α̃M

[
1 +

(√
S

(k)
m (t)

)N−1
]

+ β̃M
∫ t

0

[
1 +

(√
S

(k)
m (s)

)N−1
]
ds,

(2.28)

it implies that Lemma 2.2 (i) holds.

(ii) We also have

Φ
(k)
mx(x, t)

= D1f(x, t, um−1) +D3f(x, t, um−1)∇um−1

+
N−1∑
i=1

1
i!

{[
D1D

i
3f(x, t, um−1)+Di+1

3 f(x, t, um−1)∇um−1

]
(u

(k)
m −um−1)i

+f(x, t, um−1)i(u
(k)
m − um−1)i−1(u

(k)
mx −∇um−1)

}
+
∫ t

0 [D1g(.) +D4g(.)∇um−1(x, s)] ds

+
N−1∑
i=1

1
i!

∫ t
0

{[
D1D

i
4g(.)+Di+1

4 g(.)∇um−1(x, s)
](
u

(k)
m (x, s)−um−1(x, s)

)i
+Di

4g(.)i
(
u

(k)
m (x, s)−um−1(x, s)

)i−1(
u

(k)
mx(x, s)−∇um−1(x, s)

)}
ds,

(2.29)
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in which g(.) = g(x, t, s, um−1(x, s)), hence∥∥∥Φ
(k)
mx(t)

∥∥∥
≤ KM (f)(1+‖∇um−1‖)+

N−1∑
i=1

1
i!

{
KM (f)(1+‖∇um−1‖)

∥∥∥u(k)
mx−∇um−1

∥∥∥i
+iKM (f)

∥∥∥u(k)
mx −∇um−1

∥∥∥i}+
∫ t

0 K̄M (g) (1 + ‖∇um−1(s)‖) ds

+
N−1∑
i=1

1
i!

∫ t
0

{
K̄M (g) (1 + ‖∇um−1‖)

∥∥∥u(k)
mx(s)−∇um−1

∥∥∥i
+iK̄M (g)

∥∥∥u(k)
mx(s)−∇um−1

∥∥∥i} ds
≤ KM (f) (1 +M) +

N−1∑
i=1

1
i!

{
KM (f) (1 +M)

(∥∥∥u(k)
mx(t)

∥∥∥+M
)i

+iKM (f)
(∥∥∥u(k)

mx(t)
∥∥∥+M

)i}
+
∫ t

0 K̄M (g) (1 +M) ds

+
N−1∑
i=1

1
i!

∫ t
0

{
K̄M (g) (1 +M)

(∥∥∥u(k)
mx(s)

∥∥∥+M
)i

+iK̄M (g)
(∥∥∥u(k)

mx(s)
∥∥∥+M

)i}
ds

= KM (f)
N−1∑
i=0

1
i! (1 +M + i)

(∥∥∥u(k)
mx(t)

∥∥∥+M
)i

+K̄M (g)
∫ t

0

N−1∑
i=0

1
i! (1 +M + i)

(∥∥∥u(k)
mx(s)

∥∥∥+M
)i
ds,

(2.30)

where ∇um−1 = ∇um−1(t), or ∇um−1 = ∇um−1(s). Note that

N−1∑
i=0

1
i! (1 +M + i)

(∥∥∥u(k)
mx(t)

∥∥∥+M
)i

≤
N−1∑
i=0

1
i! (1 +M + i)

[(√
S
(k)
m (t)
µ0

)
+M

]i

≤
N−1∑
i=0

1
i! (1 +M + i) 2i−1

(√S
(k)
m (t)
µ0

)i
+M i


=

N−1∑
i=0

1
i! (1+M+i) 2i−1M i+

N−1∑
i=0

1
i! (1+M+i) 2i−1 1√

µi0

(√
S

(k)
m (t)

)i
= 1+M+

N−1∑
i=1

2i−1

i! (1+M+i)M i+
N−1∑
i=1

1
i!(1+M+i) 2i−1 1√

µi0

(√
S

(k)
m (t)

)i
=

N−1∑
i=0

b̃i

(√
S

(k)
m (t)

)i
≤

N−1∑
i=0

b̃i

[
1 +

(√
S

(k)
m (t)

)N−1
]
,

(2.31)
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hence∥∥∥Φ
(k)
mx(t)

∥∥∥
≤ KM (f)

N−1∑
i=0

b̃i

[
1 +

(√
S

(k)
m (t)

)N−1
]

+K̄M (g)
N−1∑
i=0

b̃i
∫ t

0

[
1 +

(√
S

(k)
m (s)

)N−1
]
ds

= α̃M

[
1 +

(√
S

(k)
m (t)

)N−1
]

+ β̃M
∫ t

0

[
1 +

(√
S

(k)
m (s)

)N−1
]
ds.

(2.32)

It implies that Lemma 2.2 (ii) holds. Therefore, Lemma 2.2 is proved. �

Now, the integrals I6, I7, I8 are estimated as follows.

I6 = 3
∫ t

0

∥∥∥Φ
(k)
m (s)

∥∥∥2
ds

≤ 6α̃2
M

∫ t
0

[
1 +

(√
S

(k)
m (s)

)N−1
]2

ds

+6β̃2
M

∫ t
0

[∫ s
0

(
1 +

(√
S

(k)
m (τ)

)N−1
)
dτ

]2

ds

≤ 12α̃2
M

∫ t
0

[
1+
(
S

(k)
m (s)

)
N−1
]
ds+12β̃2

M

∫ t
0

[
s
∫ s

0

(
1+
(
S

(k)
m (τ)

)
N−1
)
dτ
]
ds

≤ 12α̃2
M

∫ t
0

[
1+
(
S

(k)
m (s)

)N−1
]
ds+6β̃2

MT
2
∗
∫ t

0

(
1+
(
S

(k)
m (τ)

)N−1
)
dτ

≤ 6
(

2α̃2
M + β̃2

MT
2
∗

) ∫ t
0

[
1 +

(
S

(k)
m (s)

)N−1
]
ds;

(2.33)

I7 = 2
∫ t

0

〈
Φ

(k)
m (s), u̇

(k)
m (s)

〉
ds ≤ 2

∫ t
0

∥∥∥Φ
(k)
m (s)

∥∥∥∥∥∥u̇(k)
m (s)

∥∥∥ ds
≤ 2α̃M

∫ t
0

[
1 +

(√
S

(k)
m (s)

)N−1
]√

S
(k)
m (s)ds

+2β̃M
∫ t

0

√
S

(k)
m (s)ds

∫ s
0

[
1 +

(√
S

(k)
m (τ)

)N−1
]
dτ

≤ 2α̃M
∫ t

0

[
1+

(√
S

(k)
m (s)

)N−1
]2

ds+2β̃M

(∫ t
0

[
1+

(√
S

(k)
m (s)

)N−1
]
ds

)2
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≤ 4α̃M
∫ t

0

[
1+
(
S

(k)
m (s)

)N−1
]
ds+4β̃M t

∫ t
0

[
1+
(
S

(k)
m (s)

)N−1
]
ds

≤ 4
(
α̃M + β̃MT∗

) ∫ t
0

[
1 +

(
S

(k)
m (s)

)N−1
]
ds

(2.34)

and

I8 = 2
∫ t

0

〈
Φ

(k)
mx(s), u̇

(k)
mx(s)

〉
ds ≤ 2

∫ t
0

∥∥∥Φ
(k)
mx(s)

∥∥∥∥∥∥u̇(k)
mx(s)

∥∥∥ ds
≤ 4

(
α̃M + β̃MT∗

) ∫ t
0

[
1 +

(
S

(k)
m (s)

)N−1
]
ds.

(2.35)

Combining (2.15)-(2.19), (2.23), (2.24) and (2.23)-(2.35), we have

S
(k)
m (t) ≤ 2S

(k)
m (0) + 4 〈µx(0)ũ0kx, ũ0kxx〉+ 8K̃2(µ) ‖ũ0kx‖2

+TC1(M) + C1(M)
∫ t

0

(
S

(k)
m (s)

)N
ds,

(2.36)

where

C1(M) = 1
µ0
K̃(µ) + 3λ2 + 2 |λ|+ 2K̃(µ)

(
2T ∗K̃(µ) +

1+
√
µ0

µ0

)
+ 6
µ0
K̃2(µ) + 6

(
2α̃2

M + β̃2
MT

2
∗

)
+ 8

(
α̃M + β̃MT∗

)
.

(2.37)

By means of the convergences (2.8) we can deduce the existence of a constant
M > 0 independent of k and m such that

2S
(k)
m (0) + 4 〈µx(0)ũ0kx, ũ0kxx〉+ 8K̃2(µ) ‖ũ0kx‖2 ≤ M2

4 , (2.38)

for all m, k ∈ N. Finally, it follows from (2.36) and (2.38) that

S
(k)
m (t) ≤ M2

4 + TC1(M) + C1(M)
∫ t

0

(
S

(k)
m (s)

)N
ds, (2.39)

for 0 ≤ t ≤ T (k)
m ≤ T. Then, by solving a nonlinear Volterra integral inequality

(2.39) (based on the methods in [4]), the following lemma is proved.

Lemma 2.3. There exist a constant T > 0 independent of k and m such that

S
(k)
m (t) ≤M2, ∀ t ∈ [0, T ], ∀ m, k ∈ N. (2.40)

By Lemma 2.3, we can take constant T
(k)
m = T for all k and m ∈ N. Thus,

we have

u
(k)
m ∈W (M,T ), ∀ m, k ∈ N. (2.41)
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Step 3. (Convergence) Thanks to (2.41), there exists a subsequence {u(kj)
m }

of {u(k)
m }, still denoted by {u(k)

m } such that
u

(k)
m → um in L∞(0, T ;H1

0 ∩H2) weakly*,

u̇
(k)
m → u′m in L∞(0, T ;H1

0 ) weakly*,

ü
(k)
m → u′′m in L2(QT ) weakly,
um ∈W (M,T ).

(2.42)

Using the compactness lemma of Lions ([4], p.57) and applying Fischer - Riesz

theorem, from (2.42), there exists a subsequence of {u(k)
m }, denoted by the same

symbol satisfying{
u

(k)
m → um strong in L2(0, T ;H1

0 ) and a.e. in QT ,

u̇
(k)
m → u′m strong in L2(QT ) and a.e. in QT .

(2.43)

On the other hand, by L∞(0, T ;H1
0 ∩ H2) ↪→ L∞(QT ) and using the in-

equality∣∣aj − bj∣∣ ≤ jM j−1 |a− b| , ∀ a, b ∈ [−M,M ], ∀M > 0, ∀ j ∈ N, (2.44)

we deduce from (2.41) that∣∣∣(u(k)
m )j − ujm

∣∣∣ ≤ jM j−1
∣∣∣u(k)
m − um

∣∣∣ , 0 ≤ j ≤ N − 1. (2.45)

Therefore, (2.43) and (2.45) give

(u
(k)
m )j → ujm strong in L2(QT ). (2.46)

We note that

|Aj(x, t, um−1(t))| ≤ KM (f)
∑N−1

i=j
M i−j

j!(i−j)! ≡ D̄j(M),

|Bj(x, t, s, um−1(s))| ≤ K̄M (g)
∑N−1

i=j
M i−j

j!(i−j)!
≡ D̃j(M), 0 ≤ j ≤ N − 1.

(2.47)

By (2.4), (2.9) and (2.47), we obtain∥∥∥Φ
(k)
m (t)− Φm(t)

∥∥∥ ≤∑N−1
j=0 D̄j(M)

∥∥∥(u
(k)
m (t))j − ujm(t)

∥∥∥
+
∑N−1

j=0

√
TD̃j(M)

∥∥∥(u
(k)
m )j − ujm

∥∥∥
L2(QT )

.
(2.48)

Hence, we have∥∥∥Φ
(k)
m − Φm

∥∥∥2

L2(QT )

≤ 2N
∑N−1

j=0

(
D̄2
j (M) + T 2D̃2

j (M)
)∥∥∥(u

(k)
m )j − ujm

∥∥∥2

L2(QT )
.

(2.49)
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It leads to

Φ
(k)
m → Φm strong in L2(QT ). (2.50)

Passing to limit in (2.7), (2.8), we have um satisfying (2.3), (2.4) in L2(0, T ).
On the other hand, it follows from (2.3)1 and (2.42)4 that

u′′m = ∂
∂x

(
µ(x, t)∂um∂x

)
− λu′m + Φm ∈ L∞(0, T ;L2).

Hence, um ∈W1(M,T ) and Theorem 2.1 is proved. �

Next, the main result is given by the following theorem. We consider the
space W1(T ), defined by

W1(T ) = {v ∈ L∞(0, T ;H1
0 ) : v′ ∈ L∞(0, T ;L2)}, (2.51)

then W1(T ) is a Banach space with respect to the norm

‖v‖W1(T ) = ‖v‖L∞(0,T ;H1
0 ) + ‖v′‖L∞(0,T ;L2) . (2.52)

Theorem 2.4. Let (H1)-(H4) hold. Then, there exist constants M > 0 and
T > 0 such that the problem (1.1)-(1.3) has a unique weak solution u ∈
W1(M,T ) and the recurrent sequence {um}, defined by (2.3)-(2.4), converges
at a rate of order N to the solution u strongly in the space W1(T ) in sense

‖um − u‖W1(T ) ≤ C ‖um−1 − u‖NW1(T ) , (2.53)

for all m ≥ 1, where C is a suitable constant. On the other hand, the following
estimate is fulfilled

‖um − u‖W1(T ) ≤ CTβN
m
, for all m ∈ N, (2.54)

where CT and 0 < β < 1 are the constants depending only on T .

Proof. (Existence of a solution) We shall prove that {um} is a Cauchy sequence
in W1(T ). Indeed, we put vm = um+1 − um. Then vm satisfies the variational
problem 

〈v′′m(t), w〉+ 〈µ(t)vmx(t), wx〉+ λ〈v′m(t), w〉
= 〈Φm+1(t)− Φm(t), w〉 , ∀ w ∈ H1

0 ,

vm(0) = v′m(0) = 0.

(2.55)

Taking w = v′m in (2.55), after integrating in t, we have

ρm(t) ≤ 2 |λ|
∫ t

0 ‖v
′
m(s)‖2 ds+

∫ t
0 ds

∫ 1
0 |µ

′(x, s)| v2
mx(x, s)dx

+2
∫ t

0 ‖Φm+1(s)− Φm(s)‖ ‖v′m(s)‖ ds ≡
3∑

k=1

Jk,
(2.56)

where

ρm(t) = ‖v′m(t)‖2 +
∥∥∥√µ(t)vmx(t)

∥∥∥2
. (2.57)
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Next, we need to estimate the integrals on the right side of (2.56) as follows

J1 = 2 |λ|
∫ t

0 ‖v
′
m(s)‖2 ds ≤ 2 |λ|

∫ t
0 ρm(s)ds, (2.58)

J2 =
∫ t

0 ds
∫ 1

0 |µ
′(x, s)| v2

mx(x, s)dx ≤ 1
µ0
K̃(µ)

∫ t
0 ρm(s)ds. (2.59)

Using Taylor’s expansion of the functions f(x, t, um) = f(x, t, um−1 + vm−1)
and g(x, t, s, um) = g(x, t, s, um−1 + vm−1) around the point um−1 up to order
N , we obtain

f(x, t, um)− f(x, t, um−1) =
∑N−1

i=1
1
i!D

i
3f(x, t, um−1)vim−1

+ 1
N !D

N
3 f(x, t, δm−1)vNm−1,

g(x, t, s, um)− g(x, t, s, um−1) =
∑N−1

i=1
1
i!D

i
4g(x, t, s, um−1)vim−1

+ 1
N !D

N
4 g(x, t, s, δ̃m−1)vNm−1,

(2.60)

where

δm−1 = δm−1(x, t) = um−1 + θ1vm−1, 0 < θ1 < 1

and

δ̃m−1 = δ̃m−1(x, s) = um−1 + θ2vm−1, 0 < θ2 < 1.

Hence, it follows from (2.4) and (2.60) that

Φm+1(x, t)− Φm(x, t)

=
∑N−1

i=1
1
i!D

i
3f(x, t, um)vim + 1

N !D
N
3 f(x, t, δm)vNm−1

+
∑N−1

i=1
1
i!

∫ t
0 D

i
4g(x, t, s, um)vimds+ 1

N !

∫ t
0 D

N
4 g(x, t, s, δ̃m)vNm−1ds.

(2.61)

Therefore, we have

‖Φm+1(t)− Φm(t)‖
≤ KM (f)

∑N−1
i=1

1
i! ‖vmx(t)‖i + 1

N !KM (f) ‖vm−1, x(t)‖N

+K̄M (g)
∑N−1

i=1
1
i!

∫ t
0 ‖vmx(s)‖i ds+ 1

N !K̄M (g)
∫ t

0 ‖vm−1, x(s)‖Nds

≤ 1√
µ0
KM (f)

∑N−1
i=1

1
i!M

i−1
√
ρm(t) + 1

N !KM (f) ‖vm−1‖NW1(T )

+ 1√
µ0
K̄M (g)

∑N−1
i=1

1
i!M

i−1
∫ t

0

√
ρm(s)ds+ 1

N !TK̄M (g) ‖vm−1‖NW1(T )

≤ η(1)
T

√
ρm(t) + η

(2)
T

∫ t
0

√
ρm(s)ds+ η

(3)
T ‖vm−1‖NW1(T ) ,

(2.62)

where

η
(1)
T = 1√

µ0
KM (f)

N∑
i=1

1
i!M

i−1,

η
(2)
T = 1√

µ0
K̄M (g)

N∑
i=1

1
i!M

i−1,

η
(3)
T = 1

N !

(
KM (f) + TK̄M (g)

)
.

(2.63)
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Then we deduce from (2.56), (2.58), (2.59) and (2.62) that

ρm(t) ≤
(

2 |λ|+ 1
µ0
K̃(µ)

) ∫ t
0 ρm(s)ds

+2
∫ t

0

(
η

(1)
T

√
ρm(s) + η

(2)
T

∫ s
0

√
ρm(τ)dτ

+η
(3)
T ‖vm−1‖NW1(T )

)√
ρm(s)ds

≤ Tη(3)
T ‖vm−1‖2NW1(T ) + η

(4)
T

∫ t
0 ρm(s)ds,

(2.64)

where η
(4)
T = 2 |λ|+ 1

µ0
K̃(µ)+2η

(1)
T +2Tη

(2)
T +η

(3)
T . By using Gronwall’s lemma,

(2.64) leads to

‖vm‖W1(T ) ≤ µT ‖vm−1‖NW1(T ) , (2.65)

where µT =
(

1 + 1√
µ0

)√
Tη

(3)
T exp

(
Tη

(4)
T

)
.

Choosing T > 0 enough small such that β = Mµ
−1

N−1

T < 1, it follows from
(2.65) that, for all m and p,

‖um − um+p‖W1(T ) ≤ (1− β)−1(µT )
−1

N−1βN
m
. (2.66)

Hence, {um} is a Cauchy sequence in W1(T ). Then there exists u ∈ W1(T )
such that

um → u strong in W1(T ). (2.67)

Note that um ∈ W1(M,T ), then there exists a subsequence {umj} of {um}
such that 

umj → u in L∞(0, T ;H1
0 ∩H2) weakly*,

u′mj
→ u′ in L∞(0, T ;H1

0 ) weakly*,

u′′mj
→ u′′ in L2(QT ) weakly,

u ∈W (M,T ).

(2.68)

On the other hand∥∥∥Φm(·, t)− f(·, t, u(t))−
∫ t

0 g(·, t, s, u(s))ds
∥∥∥

≤ ‖f(·, t, um−1(t))−f(·, t, u(t))‖+
∥∥∥∑N−1

i=1
1
i!
∂if
∂ui

(·, t, um−1)(um−um−1)i
∥∥∥

+
∥∥∥∫ t0 g(·, t, s, um−1(s))ds−

∫ t
0 g(·, t, s, u(s))ds

∥∥∥
+
∥∥∥∑N−1

i=1
1
i!

∫ t
0

[
∂ig
∂ui

(·, t, s, um−1(s))
]

(um(s)− um−1(s))i ds
∥∥∥

≤
(
KM (f)+TK̄M (g)

)[
‖um−1−u‖W1(T )+

∑N−1
i=1

1
i! ‖um−um−1‖iW1(T )

]
.

(2.69)
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Therefore, it implies from (2.67) and (2.69) that

Φm(t)→ f(·, t, u(t)) +
∫ t

0 g(·, t, s, u(s))ds strong in L∞(0, T ;L2). (2.70)

Finally, passing to limit in (2.3) and (2.4) as m = mj → ∞, there exists
u ∈W (M,T ) satisfying the equation

〈u′′(t), w〉+ 〈µ(t)ux(t), wx〉+ λ〈u′(t), w〉
= 〈f(·, t, u(t)), w〉+

〈∫ t
0 g(·, t, s, u(s))ds, w

〉
,

(2.71)

for all w ∈ H1
0 and the initial condition

u(0) = ũ0, u
′(0) = ũ1.

(Uniqueness) Applying a similar argument used in the proof of Theorem 2.1,
u ∈W1(M,T ) is a unique local weak solution of Pro. (1.1)-(1.3).

Passing to the limit in (2.66) as p→∞ for fixed m, we get (2.54). Also with
a similar argument, (2.53) follows. Theorem 2.4 is proved completely. �
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