
Nonlinear Functional Analysis and Applications
Vol. 17, No. 3 (2012), pp. 349-359

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2012 Kyungnam University Press

COMMON FIXED POINT THEOREMS IN b−FUZZY
METRIC SPACES

Shaban Sedghi1 and Nabi Shobe2

1Department of Mathematics, Qaemshahr Branch,
Islamic Azad University, Qaemshahr, Iran

e-mail: sedghi gh@yahoo.com

2Department of Mathematics, Babol Branch,
Islamic Azad University, Babol, Iran

e-mail: nabi shobe@yahoo.com

Abstract. In this paper, we consider complete b−fuzzy metric space and prove common

fixed point theorems for a sequence of continuous functions converges uniformly in this

spaces. Our results generalize the recent result many other known results.

1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [24] in 1965.
Since then, to use this concept in topology and analysis, many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani [6] , Kramosil and Michalek [10] have introduced the concept of
fuzzy topological spaces induced by fuzzy metric which have very important
applications in quantum particle physics, particularly in connections with both
string and E-infinity theory which were given and studied by El Naschie [1, 2,
3, 4, 21]. Many authors [9, 11, 17, 18, 14] have proved fixed point theorem in
fuzzy (probabilistic) metric spaces.

Definition 1.1. A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
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(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t-norm are a ∗ b = ab and a ∗ b =
min(a, b).

Definition 1.2. A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set
on X2 × (0,∞), satisfying the following conditions for each x, y, z ∈ X and
t, s > 0,

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Definition 1.3. A 3-tuple (X,M, ∗) is called a b−fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on
X2 × (0,∞), satisfying the following conditions for each x, y, z ∈ X, t, s > 0
and b ≥ 1 be a given real number,

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, tb) ∗M(y, z, sb ) ≤M(x, z, t+ s),
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

It should be noted that, the class of b−fuzzy metric spaces is effectively
larger than that of fuzzy metric spaces, since a b−fuzzy metric is a fuzzy
metric when b = 1.

We present an example shows that a b−fuzzy metric on X need not be a
fuzzy metric on X.

Example 1.4. Let M(x, y, t) = e
−|x−y|p

t , where p > 1 is a real number. We
show that M is a b−fuzzy metric with b = 2p−1.

Obviously conditions (1), (2), (3) and (5) of definition 1.3 are satisfied.
If 1 < p <∞, then the convexity of the function f(x) = xp (x > 0) implies

(
a+ b

2

)p

≤ 1

2
(ap + bp) ,
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and hence, (a+ b)p ≤ 2p−1(ap + bp) holds. Therefore,

|x− y|p

t+ s
≤ 2p−1

|x− z|p

t+ s
+ 2p−1

|z − y|p

t+ s

≤ 2p−1
|x− z|p

t
+ 2p−1

|z − y|p

s

=
|x− z|p

t/2p−1
+
|z − y|p

s/2p−1
.

Thus for each x, y, z ∈ X we obtain

M(x, y, t+ s) = e
−|x−y|p

t+s

≥ M(x, z,
t

2p−1
) ∗M(z, y,

s

2p−1
),

where a∗ b = ab. So condition (4) of definition 1.3 is hold and M is a b− fuzzy
metric.

It should be noted that in preceding example, for p = 2 it is easy to see
that (X,M, ∗) is not a fuzzy metric space.

Before stating and proving our results, we present some definition and
proposition in b−metric space.

Definition 1.5. Let f : R −→ R be a function. Then f is called b−nondecreasing,
if x > by this implies f(x) ≥ f(y) for each x, y ∈ R.

Lemma 1.6. Let (X,M, ∗) be a b−fuzzy metric space. Then M(x, y, t) is
b−nondecreasing with respect to t, for all x, y in X. Also,

M(x, y, bnt) ≥M(x, y, t),∀n ∈ N.

Proof. Let t > bs. Then there exists a δ > 0 such that t = bs + δ. Therefore
we have:

M(x, y, t) = M(x, y, bs+ δ) ≥M(x, x,
δ

b
) ∗M(x, y,

bs

b
) = M(x, y, s).

By condition (4) of definition 1.3 we have:

M(x, y, t) ≥M(x, x,
δ

b
) ∗M(x, y,

t− δ
b

),

as δ −→ 0 we get M(x, y, t) ≥ M(x, y, tb), that is M(x, y, bt) ≥ M(x, y, t).
Hence, for every n > 1 we have:

M(x, y, bnt) ≥M(x, y, bn−1t) ≥ · · · ≥M(x, y, t).

�
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Let (X,M, ∗) be a b−fuzzy metric space. For t > 0, the open ball B(x, r, t)
with center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.
We recall the notions of convergence and completeness in a b−fuzzy metric

space. Let (X,M, ∗) be a b−fuzzy metric space. Let τ be the set of all
A ⊂ X with x ∈ A if and only if there exists t > 0 and 0 < r < 1 such that
B(x, r, t) ⊂ A. Then τ is a topology on X (induced by the b−fuzzy metric
M). A sequence {xn} in X converges to x if and only if M(xn, x, t) → 1 as
n→∞, for each t > 0. It is called a Cauchy sequence if for each 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.
The b−fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy
sequence is convergent. A subset A of X is said to be F-bounded if there
exists t > 0 and 0 < r < 1 such that M(x, y, t) > 1− r for all x, y ∈ A.

Lemma 1.7. In a b−fuzzy metric space (X,M, ∗), the following assertions
hold:

(i) If sequence {xn} in X converges to x, then x is unique,
(ii) If sequence {xn} in X is converges to x, then {xn} is a Cauchy sequence.

Proof. (i) It is easy to see that for each 0 < ε < 1, there exists a 0 < r < 1
such that

(1− r) ∗ (1− r) ≥ 1− ε.
Let xn −→ y and y 6= x. Since {xn} converges to x and y, for 0 < r < 1 and
t > 0, there exists n1 ∈ N and n2 ∈ N such that for every n ≥ n1 and n ≥ n2,

M(x, xn, t) > 1− r
and

M(xn, y, t) > 1− r.
If n0 = max{n1, n2}, then for every n ≥ n0 by triangular inequality we have

M(x, y, t) ≥M(x, xn,
t

2b
) ∗M(xn, y,

t

2b
) > (1− r) ∗ (1− r) ≥ 1− ε.

Hence we get M(x, y, t) = 1 which is a contradiction. So, x = y.
(ii) As of above for each 0 < ε < 1, there exists a 0 < r < 1 such that

(1− r) ∗ (1− r) ≥ 1− ε.
Since xn −→ x for this 0 < r < 1 and t > 0, there exists n1 ∈ N and n2 ∈ N
such that for every n ≥ n1 and m ≥ n2,

M(x, xn, t) > 1− r
and

M(xm, x, t) > 1− r.
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If n0 = max{n1, n2}, then for every n,m ≥ n0 by triangular inequality we
have

M(xn, xm, t) ≥M(x, xn,
t

2b
) ∗M(xm, x,

t

2b
) > (1− r) ∗ (1− r) ≥ 1− ε.

Hence we get, {xn} is a Cauchy sequence. �

In b−fuzzy metric space we have the following proposition.

Proposition 1.8. Let (X,M, ∗) be a b−fuzzy metric space and suppose that
{xn} and {yn} are b-convergent to x, y respectively then we have

M(x, y,
t

b2
) ≤ lim sup

n−→∞
M(xn, yn, t) ≤ M(x, y, b2t)

and

M(x, y,
t

b2
) ≤ lim inf

n−→∞
M(xn, yn, t) ≤M(x, y, b2t).

Proof. By Definition 1.3 we have

M(x, y, t) ≥ M(x, xn,
δ

b
) ∗M(xn, y,

t− δ
b

)

≥ M(x, xn,
δ

b
) ∗M(xn, yn,

t− δ − δb
b2

) ∗M(yn, y,
δ

b
).

Taking the upper limit as n→∞ we obtain

M(x, y, t) ≥ lim sup
n−→∞

M(xn, yn,
t− δ − δb

b2
),

so as δ −→ 0 we get

M(x, y, t) ≥ lim sup
n−→∞

M(xn, yn,
t

b2
).

On the other hand

M(xn, yn, t) ≥ M(xn, x,
δ

b
) ∗M(x, yn,

t− δ
b

)

≥ M(xn, x,
δ

b
) ∗M(x, y,

t− δ − δb
b2

) ∗M(y, yn,
δ

b
).

And taking the upper limit as n→∞ we obtain

lim sup
n−→∞

M(xn, yn, t) ≥ 1 ∗M(x, y,
t− δ − δb

b2
) ∗ 1,
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so as δ −→ 0 we get

lim sup
n−→∞

M(xn, yn, t) ≥M(x, y,
t

b2
).

So we have

M(x, y,
t

b2
) ≤ lim sup

n−→∞
M(xn, yn, t) ≤M(x, y, b2t).

Similarly

M(x, y,
t

b2
) ≤ lim inf

n−→∞
M(xn, yn, t) ≤M(x, y, b2t).

�

Remark 1.9. In general, a b−fuzzy metric is not continuous.

2. Main Results

Definition 2.1. Let X be any nonempty set and (Y,M, ∗) be a b−fuzzy metric
space. Then a sequence {fn} of functions from X to Y is said to converge
uniformly to a function f from X to Y if given r, t > 0, 0 < r < 1, there exists
n0 ∈ N such that M(fn(x), f(x), t) > 1− r for all n ≥ n0 and for all x ∈ X.

Theorem 2.2. ([7]) Let fn : X −→ Y be a sequence of continuous func-
tions from a topological space X to a fuzzy metric space Y. If {fn} converges
uniformly to f , then f is continuous.

In the next theorem we show that the above Theorem is hold, where Y is a
b−fuzzy metric space.

Theorem 2.3. Let fn : X −→ Y be a sequence of continuous functions from
a topological space X to a b−fuzzy metric space Y. If {fn} converges uniformly
to f , then f is continuous.

Proof. It is easy to see that for each 0 < ε < 1, there exists 0 < r < 1 such
that

(1− r) ∗ (1− r) ∗ (1− r) ≥ 1− ε.
Let xm −→ x we show that f(xm) −→ f(x). Since limn→∞ fn(x) = f(x)
converges uniformly to f , for 0 < r < 1 , t > 0 and x ∈ X, there exists n1 ∈ N
and n2 ∈ N such that for every n ≥ n1 and n ≥ n2,

M(fn(x), f(x), t) > 1− r
and

M(fn(xm), fn(x), t) > 1− r.



Common fixed point theorems in b−fuzzy metric spaces 355

If n0 = max{n1, n2}, then for every n ≥ n0 by triangular inequality we have

M(f(xm), f(x), t)

≥ M(f(xm), fn(xm),
δ

b
) ∗M(fn(xm), fn(x),

t− δ − bδ
b2

) ∗M(fn(x), f(x),
δ

b
)

> (1− r) ∗ (1− r) ∗ (1− r) ≥ 1− ε.

Hence we get M(f(xm), f(x), t) −→ 1. �

Theorem 2.4. Let (X,M, ∗) be a complete b−fuzzy metric space and let fn :
X −→ X be a sequence of continuous functions converges uniformly to f and
satisfying the following conditions:

(i)M(fix, fjy, t) ≥ γ(a(t)M(x, y, b2t) + d(t)M(x, fix, b
2t) + c(t)M(y, fjy, b

2t))

for every x, y ∈ X, ∀i, j ∈ N, where a, d and c are functions of [0,∞) into
(0, 1) such that

a(t) + d(t) + c(t) = 1, for any t > 0,

and γ : (0, 1] → (0, 1] is an increasing and continuous function such that
γ(a) > a for each a ∈ (0, 1).
Then f have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Then we define

xn+1 = fn+1xn, n = 0, 1, 2, · · · .

Now, for an integer n, we have

M(xn+1, xn+2, t) = M(fn+1xn, fn+2xn+1, t)

≥ γ(a(t)M(xn, xn+1, b
2t) + d(t)M(xn, xn+1, b

2t)

+c(t)M(xn+1, xn+2, b
2t)) (∗)

Now, we prove that sequence dn(t) = M(xn, xn+1, t) is an increasing sequence
in [0, 1]. Suppose that {dn(t)} is not an increasing sequence in [0, 1], that is,

dn(t) = M(xn, xn+1, t) > M(xn+1, xn+2, t) = dn+1(t)
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for some t > 0 and for some n ∈ N. Then by the condition (i), we have

dn+1(t) = M(xn+1, xn+2, t)

= M(fn+1xn, fn+2xn+1, t)

≥ γ(a(t)M(xn, xn+1, b
2t) + d(t)M(xn, xn+1, b

2t)

+ c(t)M(xn+1, xn+2, b
2t))

≥ γ(a(t)dn+1(b
2t) + d(t)dn+1(b

2t) + c(t)dn+1(b
2t))

= γ(dn+1(b
2t))

> dn+1(b
2t)

≥ dn+1(t),

which is a contradiction. Thus {M(xn, xn+1, t);n ≥ 0} is increasing sequence
in [0, 1]. Therefore, tends to a limit α(t) ≤ 1 for all t > 0. We claim that
α(t) = 1. Let α(t) < 1 for some t > 0. Then by making n −→ ∞ in the
inequality (∗) we get

α(t) ≥ γ(α(b2t)) > α(b2t) ≥ α(t),

which is a contradiction. Hence α(t) = 1 for every t > 0, that is,

lim
n→∞

M(xn, xn+1, t) = 1.

Now, we prove that {xn} is a Cauchy sequence in X. Suppose that {xn}
is not a Cauchy sequence in X. For convenience, let xn+1 = fnxn for n =
0, 1, 2, 3, · · · . Then there is an ε ∈]0, 1[ such that for each integer k, there exist
integers m(k) and n(k) with m(k) > n(k) ≥ k such that

ck(t) = M(xn(k), xm(k), t) ≤ 1− ε for k = 1, 2, · · · . (2.1)

We may assume that

M(xn(k), xm(k)−1, t) > 1− ε, (2.2)

by choosing m(k) which is the smallest number exceeding n(k) for which (2.1)
holds. Hence we have

1− ε ≥ ck(t) ≥M(xn(k), xm(k)−1,
t

2b
) ∗M(xm(k)−1, xm(k),

t

2b
)

≥ (1− ε) ∗ dm(k)−1(
t

2b
) (2.3)
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Hence, ck(t) −→ 1− ε for every t > 0 as k −→∞. Also notice

ck(t) = M(xn(k), xm(k), t)

≥ M(xn(k), xn(k)+1,
t

3b
) ∗M(xn(k)+1, xm(k)+1,

t

3b2
)

∗M(xm(k)+1, xm(k),
t

3b2
)

= dn(k)(
t

3b
) ∗M(fm(k)+1xm(k), fn(k)+1xn(k),

t

3b2
) ∗ dm(k)(

t

3b2
)

≥ dn(k)(
t

3b
)

∗γ
(

a(t)M(xm(k), xn(k),
t
3)

+d(t)M(xm(k), fm(k)+1xm(k),
t
3) + c(t)M(xn(k), fn(k)+1xn(k),

t
3)

)
∗dm(k)(

t

3b2
).

Thus, as k −→∞ in the above inequality we have

1− ε ≥ 1 ∗ γ(a(t)(1− ε) + d(t) + c(t)) ∗ 1

≥ γ(1− ε)
> 1− ε,

which is a contradiction. Thus, {xn} is Cauchy and by the completeness of
X, {xn} converges to x in X. Thus

lim
n→∞

xn+1 = lim
n→∞

fn+1xn = x.

As fn is continuous functions on X and fn converges uniformly to f , hence
we have

x = lim
n→∞

xn+1 = lim
n→∞

fn+1xn = fx.

Thus x is a common fixed point of f .
Now to prove uniqueness, let if possible x′ 6= x be another common fixed

point of f . Then there exists t > 0 such that M(x, x′, t) < 1, and
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M(x, x′, b2t) ≥ lim sup
n−→∞

M(fnx, fn+1x
′, t)

≥ lim sup
n−→∞

(γ(a(t)M(x, x′, b2t) + d(t)M(x, fnx, b
2t)

+c(t)M(x′, fn+1x
′, b2t)))

= γ(a(t)M(x, x′, b2t) + lim sup
n−→∞

d(t)M(x, fnx, b
2t)

+ lim sup
n−→∞

c(t)M(x′, fn+1x
′, b2t))

≥ γ(a(t)M(x, x′, b2t) + d(t)M(x, x, t) + c(t)M(x′, x′, t))

≥ γ(M(x, x′, b2t))

> M(x, x′, b2t),

which is a contradiction. Therefore, x is a unique common fixed point of f . �

Corollary 2.5. ([19]). Let (X,M, ∗) be a complete fuzzy metric space and let
fn : X −→ X be a sequence of continuous functions which converges uniformly
to f and satisfying the following condition:

(i)M(fix, fjy, t) ≥ γ(a(t)M(x, y, t) + d(t)M(x, fix, t) + c(t)M(y, fjy, t))

for every x, y ∈ X, ∀i, j ∈ N, where a, d and c are functions of [0,∞) into
(0, 1) such that

a(t) + d(t) + c(t) = 1, for any t > 0,

and γ : (0, 1] → (0, 1] is an increasing and continuous function such that
γ(a) > a for each a ∈ (0, 1). Then f have a unique common fixed point.

Proof. Take b = 1 in Theorem 2.4. �
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