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Abstract. In this paper, we investigate the generalized Hyers-Ulam stability of Pexiderized

Cauchy functional equation in Felbin’s type fuzzy normed linear spaces and some applications

of the main result to Banach spaces are also given.

1. Introduction and preliminaries

Speaking of the stability of a functional equation, we follow the question
raised in 1940 by Ulam:

When is it true that the solution of an equation differing slightly from a
given one, must of necessity be close to the solution of the given equation?

The first partial answer (in the case of Cauchy’s functional equation in Ba-
nach spaces) to Ulam’s question was given by Hyers (see [6]). This result was
generalized by Aoki [1] for additive mappings and independently by Rassias
[12] for linear mappings by considering an unbounded Cauchy difference. In
1994, a further generalization was obtained by Găvruta [5]. Rassias [10, 11]
generalized Hyers result. During the last two decades, a number of papers
and research monographs have been published on various generalizations and
applications of the generalized Hyers-Ulam stability to a number of functional
equations and mappings (see [3, 8, 9, 13]). We also refer the readers to the
books: Czerwik [2] and Hyers, Isac and Rassias [7].
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We consider some basic concepts concerning in the theory of fuzzy real num-
bers. Let η be a fuzzy subset on R, i.e., a mapping η : R −→[0, 1] associating
with each real number t its grade of membership η(t).

Definition 1.1. A fuzzy subset η on R is called a fuzzy real number, whose
α-level set is denoted by [η]α; i.e., [η]α = {t : η(t) ≥ α}, if it satisfies two
axioms:

(N1) There exists t0 ∈ R such that η(t0) = 1.
(N2) For each α ∈ (0, 1]; [η]α = [η−α , η

+
α ] where −∞ < η−α ≤ η+α < +∞.

The set of all fuzzy real numbers is denoted by F (R). If η ∈ F (R) and
η(t) = 0 whenever t < 0, then η is called a non-negative fuzzy real number
and F

∗
(R) denotes the set of all non-negative fuzzy real numbers. The number

0 stands for the fuzzy real number as:

0(t) =

 1, t = 0,

0, t 6= 0.

Clearly, 0 ∈ F ∗
(R). Also the set of all real numbers can be embedded in F (R)

because if r ∈ (−∞,+∞), then r ∈ F (R) satisfies r(t) = 0(t− r).
Arithmetic operations ⊕,	,⊗ and � on F (R)× F (R) can be defined as in

[4]:

(η ⊕ δ)(t) = sup
s∈R
{η(s) ∧ δ(t− s)}, (t ∈ R), (1.1)

(η 	 δ)(t) = sup
s∈R
{η(s) ∧ δ(s− t)}, (t ∈ R), (1.2)

(η ⊗ δ)(t) = sup
s∈R−{◦}

{η(s) ∧ δ( t
s

)}, (t ∈ R), (1.3)

(η � δ)(t) = sup
s∈R
{η(st) ∧ δ(s)}, (t ∈ R). (1.4)

Definition 1.2. For k ∈ R-{0}, fuzzy scalar multiplication k� η is defined as
(k � η)(t) = η( tk ) and 0� η is defined to be 0.

Definition 1.3. Let η be a non-negative fuzzy real number and p 6= 0 be a
real number. Define ηp as:

ηp(t) =

 η(t
1
p ), t ≥ 0,

0, t < 0,

and η0 = 1.
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It is well-known that ηp is a non-negative fuzzy real number and [ηp]α =
[(η−α )p, (η+α )p] if p > 0 and [ηp]α = [(η+α )p, (η−α )p] if p < 0.

Definition 1.4. Define a partial ordering � in F (R) by η � δ if and only
if η−α ≤ δ−α and η+α ≤ δ+α for all α ∈ (0, 1]. The strict inequality in F (R) is
defined by η ≺ δ if and only if η−α < δ−α and η−α < δ−α for all α ∈ (0, 1].

Definition 1.5. Let X be a real linear space; L and R (respectively, left
norm and right norm) be symmetric and non-decreasing mappings in both
arguments from [0, 1]× [0, 1] into [0, 1] satisfying L(0, 0) = 0 and R(1, 1) = 1.
The mapping ‖.‖ from X into F ∗(R) is called a fuzzy norm if for x ∈ X and
α ∈ (0, 1]:

(A1) ‖x‖ = 0 if and only if x = 0;
(A2) ‖rx‖ =| r |

⊙
‖x‖ for all x ∈ X and r ∈ (−∞; +∞);

(A3) For all x, y ∈ X:
(A3L) if s ≤ ‖x‖−1 , t ≤ ‖y‖−1 and s+ t ≤ ‖x+y‖−1 , then ‖x+y‖(s+ t) ≥

L(‖x‖(s), ‖y‖(t));
(A3R) if s ≤ ‖x‖−1 , t ≤ ‖y‖−1 and s+ t ≥ ‖x+y‖−1 , then ‖x+y‖(s+ t) ≤

R(‖x‖(s), ‖y‖(t)).

The quaternary (X, ‖.‖, L,R) is called a fuzzy normed linear space (abbre-
viated to FNLS).

Definition 1.6. Let (X, ‖.‖, L,R) be a fuzzy normed linear space and lima→0+

R(a, a) = 0. A sequence {xn} ⊆ X is said to converge to x ∈ X, denoted by
limn→∞ xn = x, if limn→∞ ‖xn − x‖+α = 0 for every α ∈ (0, 1] and is called a
Cauchy sequence if limm,n→∞ ‖xn − xm‖+α = 0 for every α ∈ (0, 1]. A subset
A ⊆ X is said to be complete if every Cauchy sequence in A, converges in A.
The fuzzy normed space (X, ‖.‖, L,R) is said to be a fuzzy Banach space if it
is complete.

Theorem 1.7. ([15]) Let (X, ‖.‖, L,R) be an FNLS and suppose that:

(R-1) R(a, b) ≤ max(a, b),
(R-2) For any α ∈ (0, 1], there exists β ∈ (0, α] such that R(β, y) ≤ α for all

y ∈ (0, α),
(R-3) lima→0+ R(a, a) = 0,

then

(R− 1) ⇒ (R− 2) ⇒ (R− 3).

Theorem 1.8. ([15]) Let (X, ‖.‖, L,R) be an FNLS. Then we have the fol-
lowing:
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(1) If R(a, b) ≤ max(a, b), then for any α ∈ (0, 1], ‖x+y‖+α ≤ ‖x‖+α +‖y‖+α
for all x, y ∈ X.

(2) If (R − 2), then for any α ∈ (0, 1], there exists β ∈ (0, α] such that
‖x+ y‖+α ≤ ‖x‖+β + ‖y‖+α for all x, y ∈ X.

(3) If lima→0+ R(a, a) = 0, then for any α ∈ (0, 1], there exists β ∈ (0, α]
such that ‖x+ y‖+α ≤ ‖x‖+β + ‖y‖+β for all x, y ∈ X.

Theorem 1.9. ([15]) Let (X, ‖.‖, L,R) be an FNLS satisfying (R− 2). Then:

(1) For each α ∈ (0, 1], ‖ . ‖+ is a continuous mapping from X into R.
(2) For any n ∈ Z+, xi ∈ X (i = 1, 2, ..., n) and α ∈ (0, 1] there exists

β ∈ (0, α] such that∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
+

α

≤

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
+

β

.

In this paper, we investigate the generalized Hyers-Ulam stability of Pex-
iderized Cauchy functional equation in Felbin

,
s type fuzzy normed linear spaces

and some applications of our results in the stability of Pexiderized Cauchy
functional equation from a linear space to a Banach space will be exhibited.
Throughout this paper, assume that k is a fixed positive integer greater than
1.

2. Generalized Hyers-Ulam stability of Pexiderized Cauchy
functional equation

In this section, we prove the generalized Hyers–Ulam stability of Pexiderized
Cauchy functional equation in Felbin’s type fuzzy normed linear spaces.

Theorem 2.1. Let X be a linear space and (Y, ‖.‖, L,R) be a fuzzy Banach
space satisfying (R − 1). Let f, g, h : X −→ Y be mappings such that g(0) =
h(0) = 0 and there exists a function ϕ : X ×X −→ F ∗(R) such that

lim
n→∞

1

kn
ϕ(knx, kny)+

α
= 0, (2.1)

∞∑
i=0

1

ki
ϑk,α(kix) <∞ (2.2)

and

‖f(x+ y)− g(x)− h(y)‖ � ϕ(x, y), (2.3)
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for all x, y ∈ X and α ∈ (0, 1]. Then there exists a unique additive mapping
Ak : X −→ Y such that for all α ∈ (0, 1] there exists β ∈ (0, α] such that∥∥∥f(x)−Ak(x)

∥∥∥+
α
≤ 1

k

∞∑
i=0

1

ki
ϑk,β(kix), (2.4)

∥∥∥g(x)−Ak(x)
∥∥∥+
α
≤ 1

k

∞∑
i=0

1

ki
ϑk,β(kix) + ϕ(x, 0)+α ,

∥∥∥h(x)−Ak(x)
∥∥∥+
α
≤ 1

k

∞∑
i=0

1

ki
ϑk,β(kix) + ϕ(0, x)+α ,

for all x ∈ X, where

ϑk,α(x) =:
k−1∑
i=1

[
ϕ(ix, x)+α + ϕ(0, ix)+α

]
+ (k − 1)ϕ(x, 0)+α .

Proof. Replacing y = 0 in (2.3), we get

‖f(x)− g(x)‖ � ϕ(x, 0). (2.5)

Replacing x = 0 in (2.3), we get

‖f(y)− h(y)‖ � ϕ(0, y). (2.6)

It follows from (2.5) and (2.6) that

‖f(x)− g(x)‖+α ≤ ϕ(x, 0)+α , (2.7)

‖f(y)− h(y)‖+α ≤ ϕ(0, y)+α , (2.8)

for all α ∈ (0, 1]. It follows from (2.3), (2.7), (2.8) and Theorem 1.8 that

‖f(x+ y)− f(x)− f(y)‖+α ≤ ϕ(x, y)+α + ϕ(x, 0)+α + ϕ(0, y)+α , (2.9)

for all x, y ∈ X and α ∈ (0, 1]. Replacing y by x in (2.9), we get

‖f(2x)− 2f(x)‖+α ≤ ϕ(x, x)+α + ϕ(x, 0)+α + ϕ(0, x)+α , (2.10)

for all x ∈ X and α ∈ (0, 1]. Replacing y by 2x in (2.9), we get

‖f(3x)− f(x)− f(2x)‖+α ≤ ϕ(x, 2x)+α + ϕ(x, 0)+α + ϕ(0, 2x)+α , (2.11)

for all x ∈ X and α ∈ (0, 1]. It follows from (2.10) and (2.11) that

‖f(3x)− 3f(x)‖+α ≤ ϕ(x, x)+α + ϕ(x, 2x)+α + ϕ(0, x)+α

+ ϕ(0, 2x)+α + 2ϕ(x, 0)+α ,

for all x ∈ X and α ∈ (0, 1]. By induction on k, we have

‖f(kx)− kf(x)‖+α ≤ ϑk,α(x), (2.12)
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where

ϑk,α(x) =:

k−1∑
i=1

[
ϕ(ix, x)+α + ϕ(0, ix)+α

]
+ (k − 1)ϕ(x, 0)+α .

Replacing x by knx and dividing both sides of (2.12) by k(n+1), we get∥∥∥ 1

k(n+1)
f(kn+1x)− 1

kn
f(knx)

∥∥∥+
α
≤ 1

k(n+1)
ϑk,α(knx), (2.13)

for all x ∈ X, α ∈ (0, 1] and all non-negative integers n. By Theorem 1.9 and
inequality (2.13), we conclude that for all α ∈ (0, 1] there exists β ∈ (0, α]
such that∥∥∥ 1

k(n+1)
f(kn+1x)− 1

km
f(kmx)

∥∥∥+
α

≤
n∑

i=m

∥∥∥ 1

k(i+1)
f(ki+1x)− 1

ki
f(kix)

∥∥∥+
β
≤ 1

k

n∑
i=m

1

ki
ϑk,β(kix),

(2.14)

for all x ∈ X and all non-negative integers m and n with n ≥ m. Passing the
limit n,m→∞ in (2.14), we get

lim
n,m→∞

∥∥∥ 1

kn
f(knx)− 1

km
f(kmx)

∥∥∥+
α

= 0.

Therefore, the sequence { 1
kn f(knx)} is a Cauchy sequence in Y for all x ∈ X.

Since Y is complete, the sequence { 1
kn f(knx)} converges for all x ∈ X. So one

can define the mapping Ak : X → Y by

Ak(x) := lim
n→∞

1

kn
f(knx), (2.15)

for all x ∈ X. Letting m = 0 and passing the limit n → ∞ in (2.14) by
continuity of ‖ . ‖+, we get (2.4).

Now, we show that Ak is additive. It follows from (3.1), (2.9) and (2.15)
that

‖Ak(x+ y)−Ak(x)−Ak(y)‖+α

= lim
n→∞

1

kn

∥∥∥f(knx+ kny)− f(knx)− f(kny)
∥∥∥+
α

≤ lim
n→∞

1

kn
[ϕ(knx, kny)+α + ϕ(knx, 0)+α + +ϕ(0, knx)+α ] = 0,

(2.16)

for all x, y ∈ X. Therefore, we get that the mapping Ak : X → Y is additive.
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To prove the uniqueness of Ak, let A′ : X → Y be another additive mapping
which satisfies inequality (2.4), Then we have

‖Ak(x)−A′(x)‖+α = lim
n→∞

1

kn
∥∥f(knx)−A′(knx)

∥∥+
α

≤ lim
n→∞

1

kn+1

∞∑
i=0

1

ki
ϑk,β(kix) = 0.

So, A = A′. �

Remark 2.2. We can formulate a similar theorem to Theorem 2.1 in which we
can define the sequence Ak(x) := limn→∞ k

nf( x
kn ) under suitable conditions

on the function ϕ.

We will use following lemma [4]:

Lemma 2.3. Let η, δ ∈ F (R). Then

(1) (η ⊕ δ)+α = η+α + δ+α ,
(2) (η ⊗ δ)+α = η+α × δ+α , η, δ ∈ F ∗(R).

Corollary 2.4. Let µ be a nonnegative fuzzy real number and p be a nonneg-
ative real number such that p < 1. Let X be a linear space and (Y, ‖.‖, L,R)
be a fuzzy Banach space satisfy the (R − 1). Suppose that f, g, h : X −→ Y
are mappings such that g(0) = h(0) = 0 and satisfy the inequality

‖f(x+ y)− g(x)− h(y)‖ � µ⊗ (‖x‖p ⊕ ‖y‖p),
for all x, y ∈ X. Then there exists a unique additive mapping Ak : X → Y
such that

∀α ∈ (0, 1], ∃β ∈ (0, α]; ‖f(x)−Ak(x)‖+α ≤
2µ+β
k − kp

(‖x‖+β )p
( k−1∑
j=1

jp+(k−1)
)
,

‖g(x)−Ak(x)‖+α ≤
2µ+β
k − kp

(‖x‖+β )p
( k−1∑
j=1

jp + (k − 1)
)

+ µ+α ‖x‖+α ,

‖h(x)−Ak(x)‖+α ≤
2µ+β
k − kp

(‖x‖+β )p
( k−1∑
j=1

jp + (k − 1)
)

+ µ+α ‖x‖+α ,

for all x ∈ X.
Proof. The proof follows from Theorem 2.1 by taking:

ϕ(x, y) = µ⊗ (‖x‖p ⊕ ‖y‖p)
and using Lemma 2.3. �
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3. Application of fuzzy stability to the stability of Pexiderized
Cauchy functional equation in normed spaces

In this section by using Theorem 2.1, we prove the generalized Hyers-
Ulam stability of Pexiderized Cauchy functional equation in normed spaces.
Throughout this section, let X be a linear space and Y be a Banach space
with norm ‖.‖Y .

Theorem 3.1. Let φ : X ×X → [0,∞) be a function such that

lim
n→∞

1

kn
φ(knx, kny) = 0, (3.1)

for all x, y ∈ X, and
∞∑
i=0

1

ki
ϑk(k

ix) <∞, (3.2)

for all x, y ∈ X. Let f, g, h : X −→ Y be mappings such that g(0) = h(0) = 0
and satisfy the inequality

‖f(x+ y)− g(x)− h(y)‖Y ≤ φ(x, y), (3.3)

for all x, y ∈ X. Then there exists a unique additive mapping Ak : X → Y
such that ∥∥∥f(x)−Ak(x)

∥∥∥
Y
≤ 1

k

∞∑
i=0

1

ki
ϑk(k

ix), (3.4)

where

ϑk(x) =:
k−1∑
i=1

[
ϕ(ix, x) + ϕ(x, ix)

]
+ (k − 1)ϕ(x, 0).

for all x ∈ X.

Proof. Set ‖y‖(t) = 0(t− ‖ y ‖Y ), R(a, b) = max{a, b} and L(a, b) = min{a, b}.
It is easy to see that (Y, ‖.‖, R, L) is a fuzzy normed linear space and ‖y‖+α =
‖y‖Y for all y ∈ Y and α ∈ (0, 1]. It follows from (3.1), (3.3) and (3.2) that

lim
n→∞

1

kn
φ(knx, kny)

+

α = 0,

‖f(x+ y)− g(x)− h(y)‖ � φ(x, y)

and
∞∑
i=0

1

ki
ϑk(kix) <∞.

The proof follows from Theorem 2.1 by taking:

ϕ(x, y) = φ(x, y).

�



Nonlinear mixed vector variational inequality problems 103

Corollary 3.2. Let θ and p be nonnegative real numbers such that p < 1.
Let X be a linear space and (Y, ‖.‖) be a Banach space. Suppose that f, g, h :
X −→ Y are mappings such that g(0) = h(0) = 0 and satisfy the inequality

‖f(x+ y)− g(x)− h(y)‖ ≤ θ(‖x‖p + ‖y‖p),
for all x, y ∈ X. Then there exists a unique additive mapping Ak : X → Y
such that

‖f(x)−Ak(x)‖ ≤ 2θ

k − kp
‖x‖p

( k−1∑
j=1

jp + (k − 1)
)
,

‖g(x)−Ak(x)‖ ≤ 2θ

k − kp
‖x‖p

( k−1∑
j=1

jp + (k − 1)
)

+ θ‖x‖p,

‖g(x)−Ak(x)‖ ≤ 2θ

k − kp
‖x‖p

( k−1∑
j=1

jp + (k − 1)
)

+ θ‖x‖p,

for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking:

φ(x, y) = θ(‖x‖p + ‖y‖p).
�
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