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Abstract. We present a semilocal convergence study of some iterative methods on a gen-

eralized Banach space setting to approximate a locally unique zero of an operator. Earlier

studies such as [7, 8, 9, 14] require that the operator involved is Fréchet-differentiable. In

the present study we assume that the operator is only continuous. This way we extend the

applicability of these methods to include generalized fractional calculus and problems from

other areas. Some applications include generalized fractional calculus involving the Riemann-

Liouville fractional integral and the Caputo fractional derivative. Fractional calculus is very

important for its applications in many applied sciences.

1. Introduction

Many problems in Computational sciences can be formulated as an operator
equation using Mathematical Modelling [4, 9, 11, 15]. The zeros of these
operators can rarely be found in closed form. That is why most solution
methods are usually iterative.

The semilocal convergence is, based on the information around an initial
point, to give conditions ensuring the convergence of the method.
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We present a semilocal convergence analysis for some iterative methods on
a generalized Banach space setting to approximate a zero of an operator. A
generalized norm is defined to be an operator from a linear space into a par-
tially order Banach space (to be precised in section 2). Earlier studies such
as [7, 8, 9, 14] for Newton’s method have shown that a more precise conver-
gence analysis is obtained when compared to the real norm theory. However,
the main assumption is that the operator involved is Fréchet-differentiable.
This hypothesis limits the applicability of Newton’s method. In the present
study we only assume the continuity of the operator. This may be expand the
applicability of these methods.

The rest of the paper is organized as follows: section 2 contains the basic
concepts on generalized Banach spaces and auxiliary results on inequalities
and fixed points. In section 3 we present the semilocal convergence analysis
of Newton-type methods. Finally, in the concluding sections 4-5, we present
special cases and applications in generalized fractional calculus.

2. Generalized Banach spaces

We present some standard concepts that are needed in what follows to make
the paper as self contained as possible. More details on generalized Banach
spaces can be found in [7, 8, 9, 14], and the references there in.

Definition 2.1. A generalized Banach space is a triplet (x,E, /·/) such that

(i) X is a linear space over R (C) .
(ii) E = (E,K, ‖·‖) is a partially ordered Banach space, i.e.

(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K,
(ii3) The norm ‖·‖ is monotone on K.

(iii) The operator /·/ : X → K satisfies
/x/ = 0⇔ x = 0, /θx/ = |θ| /x/ ,
/x+ y/ ≤ /x/ + /y/ for each x, y ∈ X, θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ ·/·/ .

Remark 2.2. The operator /·/ is called a generalized norm. In view of (iii)
and (ii3) ‖·‖i , is a real norm. In the rest of this paper all topological concepts
will be understood with respect to this norm.

Let L
(
Xj , Y

)
stand for the space of j-linear symmetric and bounded op-

erators from Xj to Y , where X and Y are Banach spaces. For X,Y partially
ordered L+

(
Xj , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P (a1, ..., aj) ≤ P (b1, ..., bj) . (2.1)
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Definition 2.3. The set of bounds for an operator Q ∈ L (X,X) on a gener-
alized Banach space (X,E, /·/) the set of bounds is defined to be:

B (Q) := {P ∈ L+ (E,E) , /Qx/ ≤ P /x/ for each x ∈ X} . (2.2)

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn}
given by

xn+1 := T (xn) = Tn+1 (x0) (2.3)

is well defined. We write in case of convergence

T∞ (x0) := lim (Tn (x0)) = lim
n→∞

xn. (2.4)

We need some auxiliary results on inequations.

Lemma 2.4. Let (E,K, ‖·‖) be a partially ordered Banach space, ξ ∈ K and
M,N ∈ L+ (E,E).

(i) Suppose there exists r ∈ K such that

R (r) := (M +N) r + ξ ≤ r (2.5)

and

(M +N)k r → 0 as k →∞. (2.6)

Then b := R∞ (0) is well defined satisfies the equation t = R (t) and is
the smaller than any solution of the inequality R (s) ≤ s.

(ii) Suppose there exists q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then
there exists r ≤ q satisfying (i).

Proof. (i) Define sequence {bn} by bn = Rn (0). Then, we have by (2.5) that
b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, ..., n.
Then, we have by (2.5) and the inductive hypothesis that bn+1 = Rn+1 (0) =
R (Rn (0)) = R (bn) = (M +N) bn + ξ ≤ (M +N) r + ξ ≤ r ⇒ bn+1 ≤ r.
Hence, sequence {bn} is bounded above by r. Set Pn = bn+1 − bn. We shall
show that

Pn ≤ (M +N)n r for each n = 1, 2, · · · . (2.7)

We have by the definition of Pn and (2.6) that

P1 = R2 (0)−R (0) = R (R (0))−R (0) = R (ξ)−R (0)

=

∫ 1

0
R′ (tξ) ξdt ≤

∫ 1

0
R′ (ξ) ξdt ≤

∫ 1

0
R′ (r) rdt ≤ (M +N) r,

which shows (2.7) for n = 1. Suppose that (2.7) is true for k = 1, 2, ..., n.
Then, we have in turn by (2.6) and the inductive hypothesis that

Pk+1 = Rk+2 (0)−Rk+1 (0) = Rk+1 (R (0))−Rk+1 (0)

= Rk+1 (ξ)−Rk+1 (0) = R
(
Rk (ξ)

)
−R

(
Rk (0)

)
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=

∫ 1

0
R′
(
Rk (0) + t

(
Rk (ξ)−Rk (0)

))(
Rk (ξ)−Rk (0)

)
dt

≤ R′
(
Rk (ξ)

)(
Rk (ξ)−Rk (0)

)
= R′

(
Rk (ξ)

)(
Rk+1 (0)−Rk (0)

)
≤ R′ (r)

(
Rk+1 (0)−Rk (0)

)
≤ (M +N) (M +N)k r = (M +N)k+1 r,

which completes the induction for (2.7). It follows that {bn} is a complete
sequence in a Banach space and as such it converges to some b. Notice that

R (b) = R
(

lim
n→∞

Rn (0)
)

= lim
n→∞

Rn+1 (0) = b⇒ b solves the equation R (t) = t.

We have that bn ≤ r ⇒ b ≤ r, where r a solution of R (r) ≤ r. Hence, b is
smaller than any solution of R (s) ≤ s.
(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 =
R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q, (2.8)

wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with
r ≤ q. We also get by (2.8) that wn − vn → 0 as n → ∞ ⇒ wn → r as
n→∞. �

We also need the auxiliary result for computing solutions of fixed point
problems.

Lemma 2.5. Let (X, (E,K, ‖·‖) , /·/) be a generalized Banach space, and P ∈
B (Q) be a bound for Q ∈ L (X,X) . Suppose there exists y ∈ X and q ∈ K
such that

Pq + /y/ ≤ q and P kq → 0 as k →∞. (2.9)

Then z = T∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y
and /z/ ≤ P /z/ + /y/ ≤ q. Moreover, z is the unique solution in the subspace
{x ∈ X|∃ θ ∈ R : {x} ≤ θq} .

Proof. The proof can be found in [14, Lemma 3.2]. �

3. Semilocal convergence

Let (X, (E,K, ‖·‖) , /·/) and Y be generalized Banach spaces, D ⊂ X an
open subset, G : D → Y a continuous operator and A (·) : D → L (X,Y ). A
zero of operator G is to be determined by a Newton-type method starting at
a point x0 ∈ D. The results are presented for an operator F = JG, where
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J ∈ L (Y,X). The iterates are determined through a fixed point problem:

xn+1 = xn + yn, A (xn) yn + F (xn) = 0 (3.1)

⇔ yn = T (yn) := (I −A (xn)) yn − F (xn) .

Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x− x0/ ≤ r}

for some r ∈ K.
Next, we present the semilocal convergence analysis of Newton-type method

(3.1) using the preceding notation.

Theorem 3.1. Let F : D ⊂ X → X, A (·) : D → L (X,Y ) and x0 ∈ D be as
defined previously. Suppose:

(H1) There exists an operator M ∈ B (I −A (x)) for each x ∈ D.
(H2) There exists an operator N ∈ L+ (E,E) satisfying for each x, y ∈ D

/F (y)− F (x)−A (x) (y − x)/ ≤ N /y − x/ .

(H3) There exists a solution r ∈ K of

R0 (t) := (M +N) t+ /F (x0)/ ≤ t.

(H4) U (x0, r) ⊆ D.
(H5) (M +N)k r → 0 as k →∞.

Then the following hold:

(C1) The sequence {xn} defined by

xn+1 = xn + T∞n (0) , Tn (y) := (I −A (xn)) y − F (xn) (3.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, ... and con-
verges to the unique zero of operator F in U (x0, r) .

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r
and for each n = 1, 2, ...

rn = P∞n (0) , Pn (t) = Mt+Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞n (0) , Rn (t) = (M +N) t+Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,
where

an−1 := /xn − xn−1/ for each n = 1, 2, ....
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Proof. Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 2.4 and
(H3), (H5) there exists q ≤ r such that:

Mq + /F (x0)/ = q and Mkq ≤Mkr → 0 as k →∞.

Hence, by Lemma 2.5, x1 is well defined and we have a0 ≤ q. Then we get the
estimate

P1 (r − q) = M (r − q) +Nr0 ≤Mr −Mq +Nr = R0 (r)− q
≤ R0 (r)− q = r − q.

It follows with Lemma 2.4 that r1 is well defined and

r1 + a0 ≤ r − q + q = r = r0.

Suppose that (Ij) is true for each j = 1, 2, ..., n. We need to show the existence
of xn+1 and to obtain a bound q for an. To achieve this notice that:

Mrn +N (rn−1 − rn) = Mrn +Nrn−1 −Nrn = Pn (rn)−Nrn ≤ rn.

Then, it follows from Lemma 2.4 that there exists q ≤ rn such that

q = Mq +N (rn−1 − rn) and (M +N)k q → 0, as k →∞. (3.3)

By (Ij) it follows that

bn = /xn − x0/ ≤
n−1∑
j=0

aj ≤
n−1∑
j=0

(rj − rj+1) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I −A (xn) .
We can write by (H2) that

/F (xn)/ = /F (xn)− F (xn−1)−A (xn−1) (xn − xn−1)/
≤ Nan−1 ≤ N (rn−1 − rn) .

(3.4)

It follows from (3.3) and (3.4) that

Mq + /F (xn)/ ≤ q.

By Lemma 2.5, xn+1 is well defined and an ≤ q ≤ rn. In view of the definition
of rn+1 we have that

Pn+1 (rn − q) = Pn (rn)− q = rn − q,

so that by Lemma 2.4, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,
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which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we
obtain in turn that

/xm+1 − xn/ ≤
m∑
j=n

aj ≤
m∑
j=n

(rj − rj+1) = rn − rm+1 ≤ rn. (3.5)

Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M +N) rn ≤ · · · ≤ (M +N)n+1 r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete
sequence in a Banach space X by (3.5) and as such it converges to some x∗ ∈
X. By letting m→∞ in (3.5) we deduce that x∗ ∈ U (xn, rn). Furthermore,
(3.4) shows that x∗ is a zero of F . Hence, (C1) and (C2) are proved.

In view of the estimate

Rn (rn) ≤ Pn (rn) ≤ rn
the apriori, bound of (C3) is well defined by Lemma 2.4. That is sn is smaller
in general than rn. The conditions of Theorem 3.1 are satisfied for xn replacing
x0. A solution of the inequality of (C2) is given by sn (see (3.4)). It follows
from (3.5) that the conditions of Theorem 3.1 are easily verified. Then, it
follows from (C1) that x∗ ∈ U (xn, sn) which proves (C3). �

In general the aposterior, estimate is of interest. Then, condition (H5) can
be avoided as follows:

Proposition 3.2. Suppose that the condition (H1) of Theorem 3.1 is true.

(H′3) There exists s ∈ K, θ ∈ (0, 1) such that

R0 (s) = (M +N) s+ /F (x0)/ ≤ θs.
(H′4) U (x0, s) ⊂ D.

Then, there exists r ≤ s satisfying the conditions of Theorem 3.1. Moreover,
the zero x∗ of F is unique in U (x0, s) .

Remark 3.3. (i) Notice that by Lemma 2.4 R∞n (0) is the smallest solution
of Rn (s) ≤ s. Hence any solution of this inequality yields on upper estimate
for R∞n (0). Similar inequalities appear in (H2) and (H′2).
(ii) The weak assumptions of Theorem 3.1 do not imply the existence of

A (xn)−1. In practice the computation of T∞n (0) as a solution of a linear
equation is no problem and the computation of the expensive or impossible to
compute in general A (xn)−1 is not needed.
(iii) We can used the following result for the computation of the aposteriori
estimates. The proof can be found in [14, Lemma 4.2] by simply exchanging
the definitions of R.
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Lemma 3.4. Suppose that the conditions of Theorem 3.1 are satisfied. If
s ∈ K is a solution of Rn (s) ≤ s, then q := s−an ∈ K and solves Rn+1 (q) ≤ q.
This solution might be improved by Rkn+1 (q) ≤ q for each k = 1, 2, · · · .

4. Special cases and applications

Application 4.1. The results obtained in earlier studies such as [7, 8, 9, 14]
require that operator F (i.e. G) is Fréchet-differentiable. This assumption lim-
its the applicability of the earlier results. In the present study we only require
that F is a continuous operator. Hence, we have extended the applicability of
these methods to classes of operators that are only continuous.

Example 4.2. The j-dimensional space Rj is a classical example of a gen-
eralized Banach space. The generalized norm is defined by componentwise
absolute values. Then, as ordered Banach space we set E = Rj with compo-
nentwise ordering with e.g. the maximum norm. A bound for a linear operator
(a matrix) is given by the corresponding matrix with absolute values. Simi-
larly, we can define the “N” operators. Let E = R. That is we consider the
case of a real normed space with norm denoted by ‖·‖. Let us see how the
conditions of Theorem 3.1 look like.

Theorem 4.3. (H1) ‖I −A (x)‖ ≤M for some M ≥ 0.
(H2) ‖F (y)− F (x)−A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.
(H3) M +N < 1,

r =
‖F (x0)‖

1− (M +N)
. (4.1)

(H4) U (x0, r) ⊆ D.
(H5) (M +N)k r → 0 as k →∞, where r is given by (4.1).

Then the conclusions of Theorem 3.1 hold.

5. Applications to generalized fractional calculus

We present some applications of Theorem 4.3 in this section.

Background
We use a lot here the following generalized fractional integral.

Definition 5.1. (see also [11, p. 99]) The left generalized fractional integral
of a function f with respect to given function g is defined as follows:
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Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous
functions) and is striclty increasing, f ∈ L∞ ([a, b]). We set(

Iαa+;gf
)

(x) =
1

Γ (α)

∫ x

a
(g (x)− g (t))α−1 g′ (t) f (t) dt, x ≥ a, (5.1)

clearly
(
Iαa+;gf

)
(a) = 0.

When g is the identity function id, we get that Iαa+;id = Iαa+, the ordinary
left Riemann-Liouville fractional integral, where(

Iαa+f
)

(x) =
1

Γ (α)

∫ x

a
(x− t)α−1 f (t) dt, x ≥ a, (5.2)(

Iαa+f
)

(a) = 0.

When g (x) = lnx on [a, b], 0 < a < b <∞, we get

Definition 5.2. ([11, p. 110]) Let 0 < a < b <∞, α > 0. The left Hadamard
fractional integral of order α is given by(

Jαa+f
)

(x) =
1

Γ (α)

∫ x

a

(
ln
x

y

)α−1 f (y)

y
dy, x ≥ a, (5.3)

where f ∈ L∞ ([a, b]) .

Definition 5.3. ([5]) The left fractional exponential integral is defined as
follows: Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]). We set(

Iαa+;exf
)

(x) =
1

Γ (α)

∫ x

a

(
ex − et

)α−1
etf (t) dt, x ≥ a. (5.4)

Definition 5.4. ([5]) Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]), A > 1. We
give the fractional integral(

Iαa+;Axf
)

(x) =
lnA

Γ (α)

∫ x

a

(
Ax −At

)α−1
Atf (t) dt, x ≥ a. (5.5)

Definition 5.5. ([5]) Let α, σ > 0, 0 ≤ a < b <∞, f ∈ L∞ ([a, b]). We set(
Kα
a+;xσf

)
(x) =

1

Γ (α)

∫ x

z
(xσ − tσ)α−1 f (t)σtσ−1dt, x ≥ a. (5.6)

We mention the following generalized fractional derivatives:

Definition 5.6. ([5]) Let α > 0 and dαe = m. Consider f ∈ ACm ([a, b])

(space of functions f with f (m−1) ∈ AC ([a, b])). We define the left generalized
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fractional derivative of f of order α as follows(
Dα
∗a;gf

)
(x) =

1

Γ (m− α)

∫ x

a
(g (x)− g (t))m−α−1 g′ (t) f (m) (t) dt, (5.7)

for any x ∈ [a, b], where Γ is the gamma function.
We set

Dm
∗α;gf (x) = f (m) (x) , (5.8)

D0
∗a;gf (x) = f (x) , ∀ x ∈ [a, b] . (5.9)

When g = id, then Dα
∗af = Dα

∗a;idf is the left Caputo fractional derivative.

So we have the specific generalized left fractional derivatives.

Definition 5.7. ([5])

Dα
∗a;lnxf (x) =

1

Γ (m− α)

∫ x

a

(
ln
x

y

)m−α−1 f (m) (y)

y
dy, x ≥ a > 0, (5.10)

Dα
∗a;exf (x) =

1

Γ (m− α)

∫ x

a

(
ex − et

)m−α−1
etf (m) (t) dt, x ≥ a, (5.11)

and

Dα
∗a;Axf (x) =

lnA

Γ (m− α)

∫ x

a

(
Ax −At

)m−α−1
Atf (m) (t) dt, x ≥ a, (5.12)(

Dα
∗a;xσf

)
(x)

=
1

Γ (m− α)

∫ x

a
(xσ − tσ)m−α−1 σtσ−1f (m) (t) dt, x ≥ a ≥ 0.

(5.13)

Remark 5.8. ([5]) Here g ∈ AC ([a, b]) (absolutely continuous functions), g
is increasing over [a, b], α > 0. Then∫ x

a
(g (x)− g (t))α−1 g′ (t) dt =

(g (x)− g (a))α

α
, ∀ x ∈ [a, b] . (5.14)

Theorem 5.9. ([5]) Let α > 0, N 3 m = dαe, and f ∈ Cm ([a, b]). Then(
Dα
∗a;gf

)
(x) is continuous in x ∈ [a, b] .

Results. (I) We notice the following∣∣(Iαa+;gf
)

(x)
∣∣ ≤ 1

Γ (α)

∫ x

a
(g (x)− g (t))α−1 g′ (t) |f (t)| dt

≤
‖f‖∞
Γ (α)

∫ x

a
(g (x)− g (t))α−1 g′ (t) dt

=
‖f‖∞
Γ (α)

(g (x)− g (a))α

α
=
‖f‖∞

Γ (α+ 1)
(g (x)− g (a))α .

(5.15)



On the convergence of iterative methods with applications · · · 115

That is ∣∣(Iαa+;gf
)

(x)
∣∣ ≤ ‖f‖∞

Γ (α+ 1)
(g (x)− g (a))α

≤ ‖f‖∞
(g (b)− g (a))α

Γ (α+ 1)
, ∀x ∈ [a, b] .

(5.16)

In particular
(
Iαa+;gf

)
(a) = 0. Clearly Iαa+;g is a bounded linear operator.

Theorem 5.10. ([6]) Let r > 0, a < b, F ∈ L∞ ([a, b]), g ∈ AC ([a, b]) and g
is strictly increasing. Consider

G (s) :=

∫ s

a
(g (s)− g (t))r−1 g′ (t)F (t) dt, for all s ∈ [a, b] . (5.17)

Then G ∈ C ([a, b]) .

By Theorem 5.10, the function
(
Iαa+;gf

)
is a continuous function over [a, b].

Consider a < a∗ < b. Therefore
(
Iαa+;gf

)
is also continuous over [a∗, b] .

Thus, there exist x1, x2 ∈ [a∗, b] such that(
Iαa+;gf

)
(x1) = min

(
Iαa+;gf

)
(x) , (5.18)(

Iαa+;gf
)

(x2) = max
(
Iαa+;gf

)
(x) , x ∈ [a∗, b] . (5.19)

We assume that (
Iαa+;gf

)
(x1) > 0. (5.20)

Hence ∥∥Iαa+;gf
∥∥
∞,[a∗,b] =

(
Iαa+;gf

)
(x2) > 0. (5.21)

Here it is

J (x) = mx, m 6= 0. (5.22)

Therefore the equation

Jf (x) = 0, x ∈ [a∗, b] , (5.23)

has the same solutions as the equation

F (x) :=
Jf (x)

2
(
Iαa+;gf

)
(x2)

= 0, x ∈ [a∗, b] . (5.24)

Notice that

Iαa+;g

(
f

2
(
Iαa+;gf

)
(x2)

)
(x) =

(
Iαa+;gf

)
(x)

2
(
Iαa+;gf

)
(x2)

≤ 1

2
< 1, x ∈ [a∗, b] . (5.25)

Call

A (x) :=

(
Iαa+;gf

)
(x)

2
(
Iαa+;gf

)
(x2)

, ∀ x ∈ [a∗, b] . (5.26)
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We notice that

0 <

(
Iαa+;gf

)
(x1)

2
(
Iαa+;gf

)
(x2)

≤ A (x) ≤ 1

2
, ∀ x ∈ [a∗, b] . (5.27)

We observe

|1−A (x)| = 1−A (x) ≤ 1−
(
Iαa+;gf

)
(x1)

2
(
Iαa+;gf

)
(x2)

=: γ0, ∀ x ∈ [a∗, b] . (5.28)

Clearly γ0 ∈ (0, 1) . i.e.,

|1−A (x)| ≤ γ0, ∀ x ∈ [a∗, b] , γ0 ∈ (0, 1) . (5.29)

Next we assume that F (x) is a contraction, i.e.

|F (x)− F (y)| ≤ λ |x− y| , ∀ x, y ∈ [a∗, b] , (5.30)

and 0 < λ < 1
2 .

Equivalently we have

|Jf (x)− Jf (y)| ≤ 2λ
(
Iαa+;gf

)
(x2) |x− y| , ∀ x, y ∈ [a∗, b] . (5.31)

We observe that

|F (y)− F (x)−A (x) (y − x)|
≤ |F (y)− F (x)|+ |A (x)| |y − x|
≤ λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x|
=: (ψ1) , ∀ x, y ∈ [a∗, b] .

(5.32)

By (5.16) we get∣∣(Iαa+;gf
)

(x)
∣∣ ≤ ‖f‖∞

Γ (α+ 1)
(g (b)− g (a))α , ∀ x ∈ [a∗, b] . (5.33)

Hence

|A (x)| =
∣∣(Iαa+;gf

)
(x)
∣∣

2
(
Iαa+;gf

)
(x2)

≤
‖f‖∞ (g (b)− g (a))α

2Γ (α+ 1)
(
Iαa+;gf

)
(x2)

<∞, ∀ x ∈ [a∗, b] .

(5.34)

Therefore we get

(ψ1) ≤

(
λ+

‖f‖∞ (g (b)− g (a))a

2Γ (α+ 1)
(
Iαa+;gf

)
(x2)

)
|y − x| , ∀ x, y ∈ [a∗, b] . (5.35)

Call

0 < γ1 := λ+
‖f‖∞ (g (b)− g (a))a

2Γ (α+ 1)
(
Iαa+;gf

)
(x2)

, (5.36)

choosing (g (b)− g (a)) small enough we can make γ1 ∈ (0, 1).
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We have proved that

|F (y)− F (x)−A (x) (y − x)|
≤ γ1 |y − x| , ∀ x, y ∈ [a∗, b] , γ1 ∈ (0, 1) .

(5.37)

Next we call and we need that

0 < γ := γ0 + γ1

= 1−
(
Iαa+;gf

)
(x1)

2
(
Iαa+;gf

)
(x2)

+ λ+
‖f‖∞ (g (b)− g (a))a

2Γ (α+ 1)
(
Iαa+;gf

)
(x2)

< 1,
(5.38)

λ+
‖f‖∞ (g (b)− g (a))a

2Γ (α+ 1)
(
Iαa+;gf

)
(x2)

<

(
Iαa+;gf

)
(x1)

2
(
Iαa+;gf

)
(x2)

, (5.39)

equivalently,

2λ
(
Iαa+;gf

)
(x2) +

‖f‖∞ (g (b)− g (a))a

Γ (α+ 1)
<
(
Iαa+;gf

)
(x1) , (5.40)

which is possible for small λ, (g (b)− g (a)). That is γ ∈ (0, 1). So our method
solves (5.23).

(II) Let α /∈ N, α > 0 and dαe = m, a < a∗ < b, G ∈ ACm ([a, b]), with

0 6= G(m) ∈ L∞ ([a, b]). Here we consider the left generalized (Caputo type)
fractional derivative:(

Dα
∗a;gG

)
(x) =

1

Γ (m− α)

∫ x

a
(g (x)− g (t))m−α−1 g′ (t)G(m) (t) dt, (5.41)

for any x ∈ [a, b] . By Theorem 5.10, we get that
(
Dα
∗a;gG

)
∈ C ([a, b]), in

particular
(
Dα
∗a;gG

)
∈ C ([a∗, b]). Here notice that

(
Dα
∗a;gG

)
(a) = 0. There-

fore there exist x1, x2 ∈ [a∗, b] such that Dα
∗a;gG (x1) = minDα

∗a;gG (x), and
Dα
∗a;gG (x2) = maxDα

∗a;gG (x), for x ∈ [a∗, b].
We assume that

Dα
∗a;gG (x1) > 0. (i.e., Dα

∗a;gG (x) > 0, ∀ x ∈ [a∗, b]). (5.42)

Furthermore ∥∥Dα
∗a;gG

∥∥
∞,[a∗,b] = Dα

∗a;gG (x2) . (5.43)

Here it is

J (x) = mx, m 6= 0. (5.44)

The equation

JG (x) = 0, x ∈ [a∗, b] , (5.45)

has the same set of solutions as the equation

F (x) :=
JG (x)

2Dα
∗a;gG (x2)

= 0, x ∈ [a∗, b] . (5.46)
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Notice that

Dα
∗a;g

(
G (x)

2Dα
∗a;gG (x2)

)
=

Dα
∗a;gG (x)

2Dα
∗a;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [a∗, b] . (5.47)

We call

A (x) :=
Dα
∗a;gG (x)

2Dα
∗a;gG (x2)

, ∀ x ∈ [a∗, b] . (5.48)

We notice that

0 <
Dα
∗a;gG (x1)

2Dα
∗a;gG (x2)

≤ A (x) ≤ 1

2
. (5.49)

Hence it holds

|1−A (x)| = 1−A (x) ≤ 1−
Dα
∗a;gG (x1)

2Dα
∗a;gG (x2)

=: γ0, ∀ x ∈ [a∗, b] . (5.50)

Clearly γ0 ∈ (0, 1) . We have proved that

|1−A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [a∗, b] . (5.51)

Next we assume that F (x) is a contraction over [a∗, b], i.e.,

|F (x)− F (y)| ≤ λ |x− y| , ∀ x, y ∈ [a∗, b] , (5.52)

and 0 < λ < 1
2 . Equivalently we have

|JG (x)− JG (y)| ≤ 2λ
(
Dα
∗a;gG (x2)

)
|x− y| , ∀ x, y ∈ [a∗, b] . (5.53)

We observe that

|F (y)− F (x)−A (x) (y − x)|
≤ |F (y)− F (x)|+ |A (x)| |y − x|
≤ λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x|
=: (ξ2) , ∀ x, y ∈ [a∗, b] .

(5.54)

We observe that∣∣Dα
∗a;gG (x)

∣∣ ≤ 1

Γ (m−α)

∫ x

a
(g (x)−g (t))m−α−1 g′ (t)

∣∣∣G(m) (t)
∣∣∣ dt

≤ 1

Γ (m−α)

(∫ x

a
(g (x)−g (t))m−α−1 g′ (t) dt

)∥∥∥G(m)
∥∥∥
∞

=
1

Γ (m− α)

(g (x)− g (a))m−α

(m− α)

∥∥∥G(m)
∥∥∥
∞

=
1

Γ (m− α+ 1)
(g (x)− g (a))m−α

∥∥∥G(m)
∥∥∥
∞

≤ (g (b)− g (a))m−α

Γ (m− α+ 1)

∥∥∥G(m)
∥∥∥
∞
.

(5.55)



On the convergence of iterative methods with applications · · · 119

That is∣∣Dα
∗a;gG (x)

∣∣ ≤ (g (b)− g (a))m−α

Γ (m− α+ 1)

∥∥∥G(m)
∥∥∥
∞
<∞, ∀ x ∈ [a, b] . (5.56)

Hence, for x ∈ [a∗, b] , we get that

|A (x)| =
∣∣Dα
∗a;gG (x)

∣∣
2Dα
∗a;gG (x2)

≤ (g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
∗a;gG (x2)

<∞. (5.57)

Consequently we observe

(ξ2) ≤

(
λ+

(g (b)−g (a))m−α

2Γ (m−α+1)

∥∥G(m)
∥∥
∞

Dα
∗a;gG (x2)

)
|y − x| , ∀ x, y ∈ [a∗, b] . (5.58)

Call

0 < γ1 := λ+
(g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
∗a;gG (x2)

, (5.59)

choosing (g (b)− g (a)) small enough we can make γ1 ∈ (0, 1).
We proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , ∀ x, y ∈ [a∗, b] , (5.60)

where γ1 ∈ (0, 1). Next we call and need

0 < γ := γ0 + γ1

= 1−
Dα
∗a;gG (x1)

2Dα
∗a;gG (x2)

+ λ+
(g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
∗a;gG (x2)

< 1,
(5.61)

equivalently we find,

λ+
(g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
∗a;gG (x2)

<
Dα
∗a;gG (x1)

2Dα
∗a;gG (x2)

, (5.62)

equivalently,

2λDα
∗a;gG (x2) +

(g (b)− g (a))m−α

Γ (m− α+ 1)

∥∥∥G(m)
∥∥∥
∞
< Dα

∗a;gG (x1) , (5.63)

which is possible for small λ, (g (b)− g (a)).
That is γ ∈ (0, 1). Hence equation (5.45) can be solved with our presented

numerical methods.

Conclusion. Our presented earlier semilocal convergence Newton-type gen-
eral methods, see Theorem 4.3, can apply in the above two generalized frac-
tional settings since the following inequalities have been fulfilled:

‖1−A (x)‖∞ ≤ γ0 (5.64)



120 G. A. Anastassiou and I. K. Argyros

and
|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , (5.65)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (5.66)

for all x, y ∈ [a∗, b], where a < a∗ < b.
The specific functions A (x), F (x) have been described above.
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