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Abstract. Applying the generalized projection operator, we introduce a new iterative algo-

rithm in Banach spaces for a variational inequality involving a monotone hemi-continuous

operator which is more general than a inverse-strongly-monotone operator. Weak conver-

gence of the iterative algorithm is also proved.

1. Introduction

Let E be a real Banach space with norm ‖ · ‖, and E∗ be the dual of E.
〈x, f〉 denotes the duality pairing of E and E∗. Suppose that C is a nonempty,
closed and convex subset of E and A is a monotone operator of C into E∗.
Then we study the problem of finding a point u ∈ C such that

〈v − u,Au〉 ≥ 0, ∀ v ∈ C. (1.1)

This problem is called the variational inequality problem [8]. The set of solu-
tions of the variational inequality problem is denoted by V I(C,A). Variational
inequality theory, as a very effective and powerful tool of the current math-
ematical technology, has been widely applied to mathematical programming,
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optimization and control, economics and transportation equilibrium, engineer-
ing sciences, etc. An operator A of C into E∗ is said to be α−inverse-strongly-
monotone [7] if there exists a positive real number α such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2, ∀ x, y ∈ C.
In order to approximate a solution of variational inequality (1.1), the inverse-
strong-monotonicity of A was often assumed (see, for example, [4], [6], [7], [9]).
Especially, in [7], Iiduka and Takahashi proved the following theorem.

Theorem 1.1. Let E be a 2-uniformly convex, uniformly smooth Banach
space whose duality mapping J is weakly sequentially continuous, and C be a
nonempty, closed and convex subset of E. Assume that A is an operator of C
into E∗ that satisfies:

(A1) A is α−inverse-strongly-monotone,
(A2) V I(C,A) 6= ∅,
(A3) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and u ∈ V I(C,A).

Suppose that x1 = x ∈ C and {xn} is given by

xn+1 = ΠCJ
−1(Jxn − λnAxn), (1.2)

for every n = 1, 2, ..., where {λn} is a sequence of positive numbers. If {λn}
is chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < c2α

2 , then the

sequence {xn} converges weakly to some element z ∈ V I(C,A), where 1
c is the

2-uniformly convexity constant of E. Further z = limn→∞ΠV I(C,A)(xn).

We know that if A is α−inverse-strongly-monotone, then it is monotone and
1
α−Lipschitz continuous. But, the converse is not true. One question arises
naturally: How to extend Theorem 1.1 to the more general class of monotone
and continuous mappings? The aim for loosening this assumption has been
achieved in [3] by using the subgradient extragradient method in Hilbert space.
The purpose of this paper is to weaken the condition in Banach spaces.

In addition, we also note that:

(1) (A3) is very strong and unnatural. The necessity of this condition
needs to be checked.

(2) The 2-uniform convexity of Banach space E restricts the use of varia-
tional inequality (1.1), and hence, it is interesting to extend Theorem
1.1 to spaces beyond 2-uniformly convex, uniformly smooth Banach
spaces.

In order to achieve the objects mentioned above, we introduce a new iter-
ative algorithm for the approximation to a solution of variational inequality
(1.1). Based on this, we establish a weak convergence theorem which general-
izes the result of [7] by loosening some assumptions on A and E.
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2. Preliminaries

Throughout this paper, let E be a Banach space, and E∗ be the dual space
of E. 〈·, ·〉 denotes the duality pairing of E and E∗. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the
weak convergence by xn ⇀ x.

Let J : E → 2E
∗

be the normalized duality mapping defined by

Jx := {v ∈ E∗ : 〈x, v〉 = ‖v‖2 = ‖x‖2}, ∀ x ∈ E.
The following properties of J can be found in [2].

(i) If E is strictly convex, then J is strictly monotone;
(ii) If E is uniformly smooth, then J is single-valued and uniformly norm-

to-norm continuous on each bounded subset of E.

The duality mapping J from a smooth Banach space E into E∗ is said to
be weakly sequentially continuous [5] if xn ⇀ x implies Jxn ⇀ Jx.

Let E be a smooth Banach space. Define

φ(x, y) := ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀ x, y ∈ E. (2.1)

Clearly, we have from the definition of φ that

(B1) (‖x‖ − ‖y‖)2 ≤ φ(y, x) ≤ (‖x‖+ ‖y‖)2,
(B2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉,
(B3) φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉 ≤ ‖x‖‖Jx− Jy‖+ ‖y − x‖‖y‖.

Remark 2.1. We have from Remark 2.1 in [10] that if E is a strictly convex
and smooth Banach space, then for x, y ∈ E, φ(y, x) = 0 if and only if x = y.

Let E be a reflexive, strictly convex, and smooth Banach space. K denotes
a nonempty, closed, and convex subset of E. For each x ∈ E, there exists a
unique element x0 ∈ K (denoted by ΠK(x)) such that

φ(x0, x) = min
y∈K

φ(y, x).

The mapping ΠK : E → K defined by ΠK(x) = x0 is called the generalized
projection operator from E onto K. Moreover, x0 is called the generalized
projection of x. See [1] for some properties of ΠK .

Lemma 2.2. ([1]) Let E be a reflexive, strictly convex, and smooth Banach
space. Let C be a nonempty, closed, and convex subset of E, and let x ∈ E.
Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀ y ∈ C.

Lemma 2.3. ([1]) Let C be a nonempty, closed, and convex subset of a smooth
Banach space E, and let x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0, ∀ y ∈ C.
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Lemma 2.4. ([10]) Let E be a uniformly convex and smooth Banach space.
Let {yn}, {zn} be two sequences of E. If φ(yn, zn)→ 0 and either {yn} or {zn}
is bounded, then yn − zn → 0.

Definition 2.5. A multi-valued mapping M : E → E∗ with domain D(M) =
{z ∈ E : Mz 6= ∅} and range R(M) =

⋃
{Mz ∈ E∗ : z ∈ D(M)} is said to

be monotone if 〈x1 − x2, u1 − u2〉 ≥ 0 for each xi ∈ D(M) and ui ∈ M(xi),
i = 1, 2.

Definition 2.6. A monotone mapping M is said to be maximal if its graph
G(M) = {(x, u) : u ∈Mx} is not properly contained in the graph of any other
monotone operator.

It is known that a monotone mapping M is maximal if and only if for
(x, u) ∈ E × E∗, 〈x− y, u− v〉 ≥ 0 for every (y, v) ∈ G(M) implies u ∈Mx.

Definition 2.7. An operator A of C into E∗ is said to be hemi-continuous if
for all x, y ∈ C, the mapping f of [0, 1] into E∗ defined by f(t) = A(tx+(1−t)y)
is continuous with respect to the weak∗ topology of E∗. We denote by NC(v)
the normal cone for C at a point v ∈ C, that is,

NC(v) := {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, for all y ∈ C}.

Lemma 2.8. ([12]) Let C be a nonempty, closed, and convex subset of a
Banach space E and let A be a monotone, hemicontinuous operator of C into
E∗. Let T ⊂ E × E∗be an operator defined as follows:

Tv =

{
Av +NC(v), v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and T−10 = V I(C,A).

Lemma 2.9. ([13]) Let C be a nonempty, closed, and convex subset of a
Banach space E and let A be a monotone, hemicontinuous operator of C into
E∗. Then

V I(C,A) = {u ∈ C : 〈v − u,Av〉 ≥ 0 for all v ∈ C}.

It is obvious from Lemma 2.9 that the set V I(C,A) is a closed convex subset
of C.

Lemma 2.10. ([13]) Let C be a nonempty, compact, convex subset of a Ba-
nach space E and let A be a monotone, hemicontinuous operator of C into
E∗. Then the set V I(C,A) is nonempty.
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Lemma 2.11. ([11]) Let E be a reflexive Banach space and λ be a positive
number. If T : E → 2E

∗
is a maximal monotone mapping, then R(J + λT ) =

E∗ and (J + λT )−1 : E∗ → E is a demi-continuous single-valued maximal
monotone mapping.

Lemma 2.12. ([7]) Let S be a nonempty, closed, and convex subset of a
uniformly convex, smooth Banach space E. Let {xn} be a sequence in E.
Suppose that, for all u ∈ S,

φ(u, xn+1) ≤ φ(u, xn),

for every n = 1, 2, · · · . Then {ΠSxn} is a Cauchy sequence.

3. Main results

In this section, we construct the following iterative algorithm for solving
variational inequality (1.1) involving a monotone hemi-continuous operator
A.

Algorithm 3.1.
Step 0. Arbitrarily select initial x0 ∈ E and set k = 0.
Step 1. Find yk ∈ C such that

yk = ΠC(J−1[J(xk)− λkA(yk)]), (3.1)

where the positive sequence {λk} satisfies

α1 := inf
k≥0

λk > 0. (3.2)

Step 2. Set Ck = {w ∈ E : 〈w − yk, J(xk) − J(yk)〉 ≤ 0}. If xk = yk, then
stop; otherwise, take xk+1 such that

xk+1 = ΠCk
(xk). (3.3)

Step 3. Let k = k + 1 and return to Step 1.

Remark 3.1. (i) yk is solvable for all k = 0, 1, 2, .... Indeed, let T ⊂
E × E∗ be an operator as follows:

Tv :=

{
Av +NC(v), v ∈ C,

∅, v /∈ C. (3.4)

By Lemma 2.8, T is maximal monotone. Hence, it follows from Lemma
2.11 that R(J +λT ) = E∗, for all λ > 0. Therefore, for any Jxk ∈ E∗,
there exists yk ∈ E, such that Jxk − Jyk ∈ λkTyk. We have from the
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definition of T that Jxk − Jyk − λkAyk ∈ λkNC(yk). In view of the
definition of NC(·), we have that

〈yk − w,
1

λk
(Jxk − Jyk − λkAyk)〉 ≥ 0, ∀ w ∈ C.

It follows from Lemma 2.3 that yk = ΠC [J−1(Jxk − λkAyk)]. This
implies that Step 1 of Algorithm 3.1 is well defined.

(ii) If xk = yk, then xk ∈ V I(C,A), which implies that the iterative se-
quence {xk} is finite, and the last term is a solution of variational
inequality (1.1). Otherwise, xk /∈ Ck. Therefore Algorithm 3.1 is well-
defined.

(iii) In Algorithm 3.1, the step 1 is used to construct a half-space, the next
iterate xk+1 is then obtained by a generalized projection of xk, which
is not expensive at all from a numerical point of view.

Now we show the convergence of the iterative sequence generated by Algo-
rithm 3.1 in the Banach space E.

Theorem 3.2. Let E be a uniformly convex, uniformly smooth Banach space
whose duality mapping J is weakly sequentially continuous, C be a nonempty,
closed and convex subset of E. Assume that A : C → E∗ is a hemi-continuous
monotone operator and V I(C,A) 6= ∅. Then, the iterative sequence {xk}
generated by Algorithm 3.1 converges weakly to an element x̂ ∈ V I(C,A).
Further, x̂ = lim

k→∞
ΠV I(C,A)(xk).

Proof. The proof will be split into four steps.
Step 1. Show that Ck is a nonempty, closed and convex subset of C for every
k = 0, 1, 2, .... It is obvious that Ck is closed and convex. Next, we show that
V I(C,A) ⊂ Ck for all k = 0, 1, 2, ....

Suppose x∗ ∈ V I(C,A).Then we have 〈yk − x∗, λkAx∗〉 ≥ 0. On the other
hand, we have from yk = ΠC(J−1[J(xk)− λkA(yk)]) that

〈yk − x∗, Jxk − λkA(yk)− Jyk〉 ≥ 0.

Hence,

〈yk − x∗, Jxk − Jyk + λkAx
∗ − λkA(yk)〉 ≥ 0.

It follows from the monotonicity of A that

〈yk − x∗, Jxk − Jyk〉 ≥ λk〈yk − x∗, A(yk)−Ax∗〉 ≥ 0,

which implies that V I(C,A) ⊂ Ck for all k = 0, 1, 2, ....
Step 2. Show that {xk} and {yk} have the same weak accumulation points.
Since xk+1 = ΠCk

xk, by Lemma 2.2, we deduce that

φ(x∗, xk+1) ≤ φ(x∗, xk)− φ(xk+1, xk). (3.5)
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Thus,

φ(x∗, xk+1) ≤ φ(x∗, xk), (3.6)

which yields that the sequence {φ(x∗, xk)} is convergent. We know from (B1)
that {xk} is bounded. It follows from (3.5) that

φ(xk+1, xk) ≤ φ(x∗, xk)− φ(x∗, xk+1).

Since {φ(x∗, xk)} is convergent, we have that

lim
n→∞

φ(xk+1, xk) = 0. (3.7)

It follows from the construction of Ck that yk = ΠCk
xk, and hence, we deduce

from xk+1 = ΠCk
xk ∈ Ck that

φ(yk, xk) ≤ φ(xk+1, xk). (3.8)

Consequently, (3.7) and (3.8) imply that

lim
n→∞

φ(yk, xk) = 0. (3.9)

It follows from (3.9) and Lemma 2.4 that

lim
n→∞

‖yk − xk‖ = 0, (3.10)

which leads to {xk} and {yk} have the same weak accumulation points.
Step 3. Show that each weak accumulation point of the sequence {xk} is a
solution of variational inequality (1.1).

Since J is uniformly norm-to-norm continuous on bounded sets, from (3.10),
we have that

lim
k→∞

‖Jxk − Jyk‖ = 0. (3.11)

Let x̂ be a weak accumulation point of {xk}. We can extract a subsequence
that weakly converges to x̂. Without loss of generality, let us suppose that
xk ⇀ x̂ as k → ∞. Then it follows from (3.10) that yk ⇀ x̂ as k → ∞. We
next prove that x̂ ∈ V I(C,A). Let T ⊂ E × E∗ be an operator as (3.4). By
Lemma 2.8, T is maximal monotone and T−10 = V I(C,A). Let (v, w) ∈ G(T ).
Since w ∈ Tv = Av +NC(v), we have w −Av ∈ NC(v). From yk ∈ C, we get

〈v − yk, w −Av〉 ≥ 0. (3.12)

On the other hand, from yk = ΠC(J−1[J(xk)− λkA(yk)]) and Lemma 2.3, we
have 〈v − yk, Jyk − J(xk) + λkA(yk)〉 ≥ 0, and hence〈

v − yk,
Jxk − Jyk

λk
−A(yk)

〉
≤ 0. (3.13)
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Then it holds from (3.12) and (3.13) that

〈v − yk, w〉 ≥ 〈v − yk, Av〉
≥ 〈v − yk, Av〉+ 〈v − yk, Jxk−Jykλk

−A(yk)〉
= 〈v − yk, Av −Ayk〉+ 〈v − yk, Jxk−Jykλk

〉
≥ 〈v − yk, Jxk−Jykλk

〉.

Since yk ⇀ x̂, we have from (3.11) that 〈v − x̂, w〉 ≥ 0. By the maximality of
T , we obtain x̂ ∈ T−10 and hence x̂ ∈ V I(C,A).
Step 4. Show that xk ⇀ x̂, as k →∞ and x̂ = limk→∞ΠV I(C,A)(xk).

Put uk = ΠV I(C,A)(xk). It holds from (3.6) and Lemma 2.12 that {uk} is
a Cauchy sequence. Since V I(C,A) is closed, we have that {uk} converges
strongly to z ∈ V I(C,A). By the uniform smoothness of E, we also have that
lim
n→∞

‖Juk − Jz‖ = 0. Now, we prove that z = x̂. In fact, it follows from

Lemma 2.3, uk = ΠV I(C,A)xk and x̂ ∈ V I(C,A) that 〈x̂− uk, Juk − Jxk〉 ≥ 0.
By the weakly sequential continuity of J , we infer that 〈x̂− z, Jz − Jx̂〉 ≥ 0.
Hence we have from the monotonicity of J that 〈x̂− z, Jz− Jx̂〉 = 0. Since E
is strictly convex, we have that z = x̂. Therefore, the sequence {xk} converges
weakly to x̂ = lim

k→∞
ΠV I(C,A)(xk). �

Remark 3.3. Theorem 3.2 improves Theorem 1.1 in the following senses.

(i) The assumptions (A1) and (A3) in Theorem 1.1 are removed, we only
require that A is monotone and hemi-continuous.

(ii) Theorem 3.2 generalizes Theorem 1.1 from a 2−uniformly convex, uni-
formly smooth Banach space to a uniformly convex, uniformly smooth
Banach space.
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