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Abstract. Applying the generalized projection operator, we introduce a new iterative algo-
rithm in Banach spaces for a variational inequality involving a monotone hemi-continuous
operator which is more general than a inverse-strongly-monotone operator. Weak conver-

gence of the iterative algorithm is also proved.

1. INTRODUCTION

Let E be a real Banach space with norm || - ||, and E* be the dual of E.
(x, f) denotes the duality pairing of E' and E*. Suppose that C' is a nonempty,
closed and convex subset of £ and A is a monotone operator of C into E*.
Then we study the problem of finding a point v € C such that

(v—u,Au) >0, VoveC. (1.1)

This problem is called the variational inequality problem [8]. The set of solu-
tions of the variational inequality problem is denoted by VI(C, A). Variational
inequality theory, as a very effective and powerful tool of the current math-
ematical technology, has been widely applied to mathematical programming,
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optimization and control, economics and transportation equilibrium, engineer-
ing sciences, etc. An operator A of C into E* is said to be a—inverse-strongly-
monotone [7] if there exists a positive real number « such that

(x —y, Az — Ay) > al|Ax — AyH2, Vz,yeC.

In order to approximate a solution of variational inequality (1.1), the inverse-
strong-monotonicity of A was often assumed (see, for example, [4], [6], [7], [9]).
Especially, in [7], liduka and Takahashi proved the following theorem.

Theorem 1.1. Let E be a 2-uniformly convex, uniformly smooth Banach
space whose duality mapping J is weakly sequentially continuous, and C' be a
nonempty, closed and convex subset of E. Assume that A is an operator of C
into E* that satisfies:

(A1) A is a—inverse-strongly-monotone,
(A2) VI(C, A) # 0,
(A3) ||Ay|| < ||Ay — Aul| for ally € C and uw € VI(C, A).

Suppose that x4 = x € C and {x,} is given by

T = HeJ (T2, — \Azy), (1.2)
for every n = 1,2, ..., where {\,} is a sequence of positive numbers. If {\,}
is chosen so that \, € [a,b] for some a,b with 0 < a < b < CQT‘*, then the

sequence {x,} converges weakly to some element z € VI(C, A), where % is the
2-uniformly convexity constant of E. Further z = limy, o0 Iy 1(c, a) ().

We know that if A is a—inverse-strongly-monotone, then it is monotone and
é—Lipschitz continuous. But, the converse is not true. One question arises
naturally: How to extend Theorem 1.1 to the more general class of monotone
and continuous mappings? The aim for loosening this assumption has been
achieved in [3] by using the subgradient extragradient method in Hilbert space.
The purpose of this paper is to weaken the condition in Banach spaces.

In addition, we also note that:

(1) (A3) is very strong and unnatural. The necessity of this condition
needs to be checked.

(2) The 2-uniform convexity of Banach space E restricts the use of varia-
tional inequality (1.1), and hence, it is interesting to extend Theorem
1.1 to spaces beyond 2-uniformly convex, uniformly smooth Banach
spaces.

In order to achieve the objects mentioned above, we introduce a new iter-
ative algorithm for the approximation to a solution of variational inequality
(1.1). Based on this, we establish a weak convergence theorem which general-
izes the result of [7] by loosening some assumptions on A and E.
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2. PRELIMINARIES

Throughout this paper, let F be a Banach space, and E* be the dual space
of E. (-,-) denotes the duality pairing of F and E*. When {z,} is a sequence
in E, we denote the strong convergence of {z,} to x € E by x,, — = and the
weak convergence by x, — .

Let J : E — 2F" be the normalized duality mapping defined by

Jr:={v e E*: (z,v) = ||v]|* = ||z|*}, VzckE.

The following properties of .J can be found in [2].
(i) If E is strictly convex, then J is strictly monotone;
(ii) If E is uniformly smooth, then .J is single-valued and uniformly norm-
to-norm continuous on each bounded subset of F.
The duality mapping J from a smooth Banach space F into E* is said to
be weakly sequentially continuous [5] if ,, — z implies Jz,, — Jz.
Let E be a smooth Banach space. Define

¢(@,y) = [|l=[* = 2(z, Jy) + |lyll*, Y,y € E. (2.1)
Clearly, we have from the definition of ¢ that
(BL) (lzll = lly)? < oy, ) < (=]l + [lyl)?,

(BQ) QZS(I‘,y) = (f)(I‘, Z) + ¢(Zvy) + 2<$ -2, Jz— Jy>,
(B3) o(z,y) = (z, Jo — Jy) + (y — x, Jy) < [[z[[[|[Jx = Jyl| + |y — [l[[y[|.

Remark 2.1. We have from Remark 2.1 in [10] that if E is a strictly convex
and smooth Banach space, then for z,y € E, ¢(y,z) = 0 if and only if z = y.

Let F be a reflexive, strictly convex, and smooth Banach space. K denotes
a nonempty, closed, and convex subset of . For each = € F, there exists a
unique element xg € K (denoted by IIx(z)) such that

P(z0,7) = errg(l Py, x).

The mapping g : E — K defined by Il (z) = ¢ is called the generalized
projection operator from E onto K. Moreover, zq is called the generalized
projection of z. See [1] for some properties of IIg.

Lemma 2.2. ([1]) Let E be a reflezive, strictly convex, and smooth Banach
space. Let C be a nonempty, closed, and convex subset of E, and let x € E.
Then

oy, ex) + ¢(Hez, z) < d(y,z), VyeC.

Lemma 2.3. ([1]) Let C be a nonempty, closed, and convex subset of a smooth
Banach space E, and let x € E. Then, xog = llcx if and only if

(xo —y,Jr — Jag) >0, Vyedl.
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Lemma 2.4. ([10]) Let E be a uniformly convexr and smooth Banach space.
Let {yn},{zn} be two sequences of E. If ¢(yn, zn) — 0 and either {y,} or {z,}
1 bounded, then vy, — z, — 0.

Definition 2.5. A multi-valued mapping M : E — E* with domain D(M) =
{z € E: Mz # 0} and range R(M) = U{Mz € E* : z € D(M)} is said to
be monotone if (1 — x9,u; — ug) > 0 for each z; € D(M) and u; € M(x;),
i=1,2.

Definition 2.6. A monotone mapping M is said to be maximal if its graph
G(M) ={(x,u) : w € Mz} is not properly contained in the graph of any other
monotone operator.

It is known that a monotone mapping M is maximal if and only if for
(x,u) € Ex E*,(x —y,u—v) >0 for every (y,v) € G(M) implies u € Mz.

Definition 2.7. An operator A of C into E* is said to be hemi-continuous if
forall z,y € C, the mapping f of [0, 1] into E* defined by f(t) = A(tz+(1—t)y)
is continuous with respect to the weak* topology of E*. We denote by N¢(v)
the normal cone for C at a point v € C, that is,

Ne(w) :={a* € E*: (v—y,z*) >0, for ally € C}.

Lemma 2.8. ([12]) Let C' be a nonempty, closed, and conver subset of a
Banach space E and let A be a monotone, hemicontinuous operator of C into
E*. Let T C E x E*be an operator defined as follows:

| Av+ N¢g(v), ved,
Tv—{ 0, ve¢cC.

Then T is mazimal monotone and T—*0 = VI(C, A).

Lemma 2.9. ([13]) Let C be a nonempty, closed, and conver subset of a
Banach space E and let A be a monotone, hemicontinuous operator of C' into
E*. Then

VI(C,A)={ueC:{(v—u,Av) >0 for allv € C}.

It is obvious from Lemma 2.9 that the set VI(C, A) is a closed convex subset
of C.

Lemma 2.10. ([13]) Let C be a nonempty, compact, convex subset of a Ba-
nach space E and let A be a monotone, hemicontinuous operator of C into
E*. Then the set VI(C, A) is nonempty.
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Lemma 2.11. ([11]) Let E be a reflexive Banach space and A be a positive
number. If T : E — 2F" is a mazimal monotone mapping, then R(J + \T) =
E* and (J + MT)~! : E* — E is a demi-continuous single-valued mazimal
monotone mapping.

Lemma 2.12. ([7]) Let S be a nonempty, closed, and conver subset of a
uniformly convez, smooth Banach space E. Let {x,} be a sequence in E.
Suppose that, for all u € S,

¢(Ua xn-i-l) < ¢(u7 $n)a

for everyn =1,2,--- . Then {llgx,} is a Cauchy sequence.

3. MAIN RESULTS

In this section, we construct the following iterative algorithm for solving
variational inequality (1.1) involving a monotone hemi-continuous operator

A.

Algorithm 3.1.
Step 0. Arbitrarily select initial g € F and set & = 0.
Step 1. Find y; € C such that

yk = o (T [T (k) — AeAlyr)])s (3.1)
where the positive sequence {\} satisfies

:= inf . 2
on := Inf A >0 (3.2)

Step 2. Set C, = {w € E : (w — yg, J(zr) — J(yr)) < 0}. If 1 = yg, then
stop; otherwise, take xy41 such that

T1 = gy (2g)- (3.3)
Step 3. Let £k =k + 1 and return to Step 1.

Remark 3.1. (i) yg is solvable for all £ = 0,1,2,.... Indeed, let T' C
E x E* be an operator as follows:

To e { Av+ Ne(v), veC,

0, vé¢cC. (3.4)

By Lemma 2.8, T" is maximal monotone. Hence, it follows from Lemma
2.11 that R(J + AT) = E*, for all A > 0. Therefore, for any Jxy € E*,
there exists yp € F, such that Jxp — Jyr € \pTyr. We have from the
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definition of T' that Jzy — Jyr — \cAyr € McNe(yg). In view of the
definition of N (-), we have that

{yr. — w, %(Jﬂ% — Jyp — AeAyg)) 20, Yw e C.
k
It follows from Lemma 2.3 that y, = Igo[J ' (Jzr — \pAyg)]. This
implies that Step 1 of Algorithm 3.1 is well defined.

(ii) If z = yk, then z, € VI(C, A), which implies that the iterative se-
quence {zj} is finite, and the last term is a solution of variational
inequality (1.1). Otherwise, x ¢ C). Therefore Algorithm 3.1 is well-
defined.

(iii) In Algorithm 3.1, the step 1 is used to construct a half-space, the next
iterate xx11 is then obtained by a generalized projection of x, which
is not expensive at all from a numerical point of view.

Now we show the convergence of the iterative sequence generated by Algo-
rithm 3.1 in the Banach space F.

Theorem 3.2. Let E be a uniformly convex, uniformly smooth Banach space
whose duality mapping J is weakly sequentially continuous, C be a nonempty,
closed and convex subset of E. Assume that A : C — E* is a hemi-continuous
monotone operator and VI(C,A) # 0. Then, the iterative sequence {xj}
generated by Algorithm 3.1 converges weakly to an element & € VI(C,A).
Further, # = lim Iy o a)(7)-

k—o00

Proof. The proof will be split into four steps.
Step 1. Show that C} is a nonempty, closed and convex subset of C' for every
k=0,1,2,.... It is obvious that C}, is closed and convex. Next, we show that
VI(C,A) C Cy for all k =0,1,2,....
Suppose z* € VI(C, A).Then we have (y, — 2*, A\ Az*) > 0. On the other
hand, we have from y = o (J [ J(zx) — A\pA(yx)]) that
(yr — 2™, Jog, — MeA(yr) — Jyr) > 0.

Hence,
(Yp — 2%, Jogp — Jyp + ApAz™ — M\ A(yr)) > 0.
It follows from the monotonicity of A that

which implies that VI(C, A) C C for all k =0,1,2,....
Step 2. Show that {z}} and {yx} have the same weak accumulation points.
Since x141 = Ilg, z1, by Lemma 2.2, we deduce that

¢(I'*, karl) < ¢(x*7 xk) - ¢(xk+1v xk) (3'5)
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Thus,
(2", zp41) < P, 7)), (3.6)

which yields that the sequence {¢(z*, zx)} is convergent. We know from (B1)
that {xy} is bounded. It follows from (3.5) that

A(Tpy1, 7r) < O(x", 21) — O(T7, Ty1)-

Since {@(x*, zx)} is convergent, we have that
lim ¢(zg+1,21) = 0. (3.7)
n—oo

It follows from the construction of C, that y;, = Il¢, x1, and hence, we deduce
from zj 41 = Ilg, 2, € C, that

(Y, Tk) < P(Thp1, Tk)- (3.8)
Consequently, (3.7) and (3.8) imply that
Jim_(yk, zx) = 0. (3.9)

It follows from (3.9) and Lemma 2.4 that
Jim g, — 2] =0, (3.10)

which leads to {x;} and {yx} have the same weak accumulation points.
Step 3. Show that each weak accumulation point of the sequence {zj} is a
solution of variational inequality (1.1).

Since J is uniformly norm-to-norm continuous on bounded sets, from (3.10),
we have that

lim |[Jzg — Jyi| = 0. (3.11)
k—ro00

Let & be a weak accumulation point of {z;}. We can extract a subsequence
that weakly converges to . Without loss of generality, let us suppose that
xp — & as k — oo. Then it follows from (3.10) that yr — & as k — oo. We
next prove that £ € VI(C, A). Let T C E x E* be an operator as (3.4). By
Lemma 2.8, T' is maximal monotone and 710 = VI(C, A). Let (v,w) € G(T).
Since w € Tv = Av + N¢(v), we have w — Av € N (v). From yi, € C, we get

(v —yg,w — Av) > 0. (3.12)

On the other hand, from y;, = e (J 7 [J(zx) — \eA(yx)]) and Lemma 2.3, we
have (v — yg, Jyr — J(xr) + A A(yk)) > 0, and hence

(0= 2T ) ) <o (3.13)
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Then it holds from (3.12) and (3.13) that

('U—yk,’UJ> > <U_yk’7AU>
> <U_yk7Av>+<U_yk7Jxk)\7;Jyk_A(yk)>
= (v =y, Av — Agy) + (v — gy, Z0)
)

Since y; — &, we have from (3.11) that (v — z,w) > 0. By the maximality of
T, we obtain & € T~10 and hence & € VI(C, A).
Step 4. Show that zy — &, as k — oo and & = limy_,00 Iy 7(0,4) (7).

Put ugy = Hy (o a)(zk). It holds from (3.6) and Lemma 2.12 that {u} is
a Cauchy sequence. Since VI(C,A) is closed, we have that {ux} converges
strongly to z € VI(C, A). By the uniform smoothness of E, we also have that
nh_{]glo |Jup — Jz|| = 0. Now, we prove that z = &. In fact, it follows from

Lemma 2.3, uy, = Iy pc ay7x and & € VI(C, A) that (& — uy, Jug — Jg) > 0.
By the weakly sequential continuity of J, we infer that (& — z, Jz — J&) > 0.
Hence we have from the monotonicity of J that (¥ — z, Jz — J&) = 0. Since E
is strictly convex, we have that z = Z. Therefore, the sequence {x}} converges
weakly to & = klggo Oy rc,a) (k) O

Remark 3.3. Theorem 3.2 improves Theorem 1.1 in the following senses.

(i) The assumptions (Al) and (A3) in Theorem 1.1 are removed, we only
require that A is monotone and hemi-continuous.

(ii) Theorem 3.2 generalizes Theorem 1.1 from a 2—uniformly convex, uni-
formly smooth Banach space to a uniformly convex, uniformly smooth
Banach space.
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