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Abstract. We discuss the energy decay estimates and the local existence results of the
solutions for the nonlocal hyperbolic problem

utt + φ(x)||∇u(t)||2(−∆)u+ δut = 0, x ∈ RN , t ≥ 0 ,

with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), in the case where N ≥ 3, δ > 0

and (φ(x))−1 = g(x) is a positive function lying in LN/2
(
RN

)
∩L∞

(
RN

)
. When the initial

energy E(u0, u1) which corresponds to the problem, is non-negative and small, there exists

a unique local solution in time.

1. Introduction

In this work we study the following mildly degenerate wave equation

utt + φ(x)||∇u(t)||2(−∆)u+ δut = 0, x ∈ RN , t ≥ 0 , (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN , (1.2)

with initial conditions u0, u1 in appropriate function spaces, N ≥ 3, and
δ > 0. The case of N = 1, equation (1.1) describes the nonlinear vibrations of
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an elastic string. Throughout the paper we assume that the functions φ and
g : RN −→ R satisfy the following condition

(G) φ(x) > 0, for all x ∈ RN and (φ(x))−1 =: g(x) ∈ LN/2
(
RN
)
∩L∞

(
RN
)
.

This class will include functions of the form

φ(x) ∼ c0 + ε|x|a, ε > 0, a > 0 ,

resembling phenomena of slowly varying wave speed around the constant speed
c0. Many results treat the case of ϕ(x) = constant (in bounded or unbounded
domains). It must be noted, that this case is proved to be totally different
from the case of ϕ(x)→ c± > 0, as x→ ±∞ (see [8]).

The original equation is

ph
∂2u

∂t2
+ δ

∂u

∂t
=

p0 +
Eh

2L

L∫
0

(
∂u

∂x

)2

dx

 ∂2u

∂x2
+ f (1.3)

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space
coordinate x and the time t, E the Young modulus, p the mass density, h the
cross-section area, L the length, p0 the initial axial tension, δ the resistance
modulus and f the external force. When p0 = 0 the equation is considered
to be of degenerate type and the equation models an unstretched string or its
higher dimensional generalization. Otherwise it is of nondegenerate type and
the equation models an stretched string or its higher dimensional generaliza-
tion. When δ = f = 0, the equation was introduced by Kirchhoff [12] in the
study of oscillations of stretched strings and plates. That’s why equation (1.3)
is called the Kirchhoff string.

In the case treated here the problem becomes complicated because the equa-
tion does not give rise to compact operators. The homogeneous Sobolev spaces
combined with equivalent weighted Lp spaces, is the appropriate space to over-
came these difficulties. In our paper we assume that f(u) = 0 (we have no
external force), in order to study the behavior of the solutions for this kind
of equations. This case is rather interesting in the class of the homogeneous
Sobolev spaces.

In the case of bounded domain, when δ = 0 and f 6= 0, the global existence
is rather well studied in the class of analytic function spaces (e.g. see [5]).
Crippa [3] has proved local in time solvability in the class of usual Sobolev
spaces. Arosio and Garavaldi [1] have shown the existence of a unique local
solution in the case of mildly degenerate type. For δ ≥ 0 and f(u) = 0,
in the degenerate case, the global existence of solutions has been shown by
Nishihara and Yamada [16], when the initial data are small enough. When δ >
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0 and f(u) = 0, Nakao [14] has derived decay estimates for the solutions. In
particular, Kobayashi [13] constructed a unique weak solution using a Faedo-
Galerkin method for a quasilinear wave equation with strong dissipation (see
also [4, 15]). Nishihara [17] has derived a decay estimate from below of the
potential of solutions. In the case of δ ≥ 0 and f 6= 0, Hosoya and Yamada
[7] have studied the non-degenerate case with linear dissipation and proved
the global existence of a unique solution under small initial data. Ikehata
[9] has shown that for sufficiently small initial data, global existence can be
obtained, even when the influence of the source terms is stronger than that of
the damping terms.

In the case of unbounded domain, D’Ancona and Spagnolo [6] have shown
the global existence of a unique C∞ solution for the non-degenerate type
with small C∞0 data. Todorova [20] studied the global existence and nonex-
istence of solutions both in the bounded and unbounded domain cases with
nonlinear damping and small enough C∞0 initial data. Finally, Karahalios and
Stavrakakis [10]-[11] have proved global existence and blow-up results for some
semilinear wave equations with weak damping on all RN .

The presentation of this paper is as follows: In Section 2, we discuss proper-
ties of the homogeneous Sobolev space D1,2(RN ) and some weighted Lp spaces,
in order to overcome difficulties of non-compactness arising from the unbound-
edness of the domain. In Section 3, we show the existence of a unique local
weak solution and we obtain energy decay estimates for the problem (1.1)-
(1.2) with (u0, u1) ∈ D1,2

(
RN
)
× L2

g

(
RN
)
, when the initial energy E(u0, u1)

which corresponds to the problem, is non-negative and small.

Notation: We denote by BR the open ball of RN with center 0 and radius
R. Sometimes for simplicity we use the symbols C∞0 , D1,2, Lp, 1 ≤ p ≤ ∞,
for the spaces C∞0 (RN ), D1,2(RN ), Lp(RN ), respectively; ||.||p for the norm
||.||Lp(RN ), where in case of p = 2 we may omit the index.

2. Preliminary results

In this section, we briefly mention some facts, notation and results, which
will be used later in this paper. The space D1,2

(
RN
)

is defined as the closure of

C∞0 (RN ) functions with respect to the “energy norm” ||u||D1,2 =:
∫
RN |∇u|2dx.

It is known that

D1,2(RN ) =
{
u ∈ L

2N
N−2 (RN ) : ∇u ∈

(
L2(RN )

)N}
and D1,2

(
RN
)

is embedded continuously in L
2N
N−2 (RN ), that is, there exists

k > 0 such that
||u|| 2N

N−2
≤ k||u||D1,2 . (2.1)
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We shall frequently use the following generalized version of Poincaré’s inequal-
ity ∫

RN

|∇u|2 dx ≥ α
∫
RN

gu2 dx , (2.2)

for all u ∈ C∞0 and g ∈ LN/2, where α =: k−2||g||−1N/2 (see [2, Lemma 2.1]).

It is shown that D1,2(RN ) is a separable Hilbert space. The space L2
g(RN )

is defined to be the closure of C∞0
(
RN
)

functions with respect to the inner
product

(u, v)L2
g(RN ) =:

∫
RN

guv dx . (2.3)

It is clear that L2
g

(
RN
)

is a separable Hilbert space. The following Lemmas
will be proved to be useful in the sequel. For the proofs we refer to [11], we
note that g is a positive function.

Lemma 2.1. Let g ∈ LN/2(RN ) ∩ L∞
(
RN
)
. Then the embedding D1,2 ⊂ L2

g

is compact.

Lemma 2.2. Let g ∈ L
2N

2N−pN+2p
(
RN
)
. Then the following continuous embed-

ding D1,2(RN ) ⊂ Lpg
(
RN
)

is valid, for all 1 ≤ p ≤ 2N/(N − 2).

Remark 2.3. The assumption of Lemma 2.2 is satisfied under the hypothesis
(G), if p ≥ 2.

Lemma 2.4. Let g satisfy condition (G). If 1 ≤ q < p < p∗ = 2N/(N − 2),
then the following weighted inequality

||u||Lp
g
≤ C0||u||1−θLq

g
||u||θD1,2 (2.4)

is valid, for all θ ∈ (0, 1), for which 1/p = (1− θ)/q + θ/p∗, and C0 = kθ.

To study the properties of the operator −φ∆, we consider the equation

−φ(x)∆u(x) = η(x), x ∈ RN , (2.5)

without boundary conditions. Since for every u, v ∈ C∞0 (RN ) we have

(−φ∆u, v)L2
g

=

∫
RN

∇u∇v dx , (2.6)

we may consider equation (2.5) as an operator equation of the form

A0u = η, A0 : D(A0) ⊆ L2
g

(
RN
)
→ L2

g

(
RN
)
, η ∈ L2

g

(
RN
)
. (2.7)
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Relation (2.6) implies that the operator A0 = −φ∆ with domain of definition
D(A0) = C∞0

(
RN
)
, is symmetric. From (2.2) and equation (2.6) we have that

(A0u, u)L2
g
≥ α||u||2L2

g
, for all u ∈ D(A0) . (2.8)

So the operator A0 = −φ∆ is a symmetric, strongly monotone operator on
L2
g

(
RN
)
. Hence, Friedrich’s extension theorem [21, Theorem 19.C] is applica-

ble. The energetic scalar product given by (2.6) is

(u, v)E =

∫
RN

∇u∇v dx

and the energetic space is the completion of D(A0) with respect to (u, v)E .
It is obvious that the energetic space XE is the homogeneous Sobolev space
D1,2

(
RN
)
. The energetic extension AE = −φ∆ of A0,

−φ∆ : D1,2
(
RN
)
→ D−1,2

(
RN
)
, (2.9)

is defined to be the duality mapping of D1,2
(
RN
)
. We define D(A) to be the

set of all solutions of equations (2.5), for arbitrary η ∈ L2
g

(
RN
)
. Friedrich’s

extension A of A0 is the restriction of the energetic extension AE to the set
D(A). The operator A = −φ∆ is self-adjoint and therefore graph-closed. Its
domain D(A), is a Hilbert space with respect to the graph scalar product

(u, v)D(A) = (u, v)L2
g

+ (Au, Av)L2
g
, for all u, v ∈ D(A) .

The norm induced by the scalar product is

||u||D(A) =

{∫
RN

g|u|2 dx+

∫
RN

φ|∆u|2 dx
} 1

2

,

which is equivalent to the norm

||Au||L2
g

=

{∫
RN

φ|∆u|2 dx
} 1

2

.

So we have established the evolution triple

D(A) ⊂ D1,2
(
RN
)
⊂ L2

g

(
RN
)
⊂ D−1,2

(
RN
)
, (2.10)

where all the embeddings are dense and compact. Finally, for later use, it is
necessary to remind that the eigenvalue problem

−φ(x)∆u = µu, x ∈ RN , (2.11)

has a complete system of eigensolutions {wn, µn} satisfying the following
properties {

−φ∆wj = µjwj , j = 1, 2, ..., wj ∈ D1,2
(
RN
)
,

0 < µ1 ≤ µ2 ≤ ..., µj →∞, as j →∞ .
(2.12)
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In order to clarify the kind of solutions we are going to obtain for the
problem (1.1)-(1.2), we give the definition of the weak solution for this problem.

Definition 2.5. A weak solution of the problem (1.1)-(1.2) is a function u
such that

(i) u ∈ L2[0, T ;D(A)], ut ∈ L2
[
0, T ;D1,2

(
RN
)]
, utt ∈ L2

[
0, T ;L2

g

(
RN
)]

,

(ii) for all v ∈ C∞0 ([0, T ]×
(
RN )

)
, satisfies the generalized formula

T∫
0

(utt(τ), v(τ))L2
g
dτ +

T∫
0

(
||∇u(τ)||2γ

∫
RN

∇u(τ)∇v(τ)dx

)
dτ

+δ

T∫
0

(ut(τ), v(τ))L2
g
dτ = 0, (2.13)

(iii) satisfies the initial conditions

u(x, 0) = u0(x) ∈ D1,2
(
RN
)
, ut(x, 0) = u1(x) ∈ L2

g

(
RN
)
.

3. Existence results and energy decay estimates

In order to obtain a local existence result for the problem (1.1)-(1.2), we
need information concerning the solvability of the corresponding nonhomoge-
neous linearized problem restricted in the sphere BR.

utt − φ(x)||∇v(t)||2∆u+ δut = 0, (x, t) ∈ BR × (0, T ) ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ BR , (3.1)

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ) ,

v ∈ C
(
0, T ;D1,2

)
, vt ∈ C

(
0, T ;L2

g

)
.

Proposition 3.1. Assume that u0 ∈ D1,2
(
RN
)
, u1 ∈ L2

g

(
RN
)

and N ≥ 3,
then the linear wave equation (3.1) has a unique solution such that

u ∈ C
(
0, T ;D1,2

)
and ut ∈ C

(
0, T ;L2

g

)
.

Proof. The proof follows the lines of [11, Proposition 3.1]. The Galerkin
method is used, based on the information taken from the eigenvalue prob-
lem (2.11). �

Next, we will prove the following Theorem.
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Theorem 3.2. We assume that N ≥ 3 and u0 6= 0. If (u0, u1) ∈ D1,2
(
RN
)
×

L2
g

(
RN
)

and satisfy the nondegenerate condition

||∇u0||2 > 0 ,

then there exists T = T
(
||u0||D1,2 , ||∇u1||2

)
> 0 such that the problem (1.1)-

(1.2) admits a unique local weak solution u satisfying

u ∈ C(0, T ;D1,2), ut ∈ C
(
0, T ;L2

g

)
.

Moreover, if ||∇u(t)|| > 0 and ||u(t)||D1,2 + ||ut(t)||L2
g
< ∞ for t ≥ 0, then

T =∞.

Proof. For T > 0 and R > 0, we define the two parameter space of solutions

XT,R =: {v ∈ C(0;T ;D1,2) : vt ∈ C(0;T ;L2
g), v(0) = u0,

vt(0) = u1, e(v(t)) ≤ R2, t ∈ [0;T ]},

where e(u(t)) = ||ut(t)||2L2
g

+ ||u(t)||2D1,2 .

It is easy to see that XT,R can be organized as a complete metric space with
the distance d(u, v) =: sup0≤t≤T e1(u(t)− v(t)), where

e1(v) =: ||vt||2L2
g

+ ||v||2D1,2 .

We define the non-linear mapping S in the following way. For every v ∈
XT,R, u = Sv is the unique solution of our problem. Using the fact that
||∇u0|| ≡ M0 > 0, we prove that there exist T > 0, R > 0 such that S maps
XT,R into itself and S is a contraction mapping with respect to the metric
d(., .). By applying the Banach contraction mapping theorem, we obtain a
unique solution u belonging to XT,R. Therefore it follows from the continuity
argument for wave equations that this solution u belongs to our space. For
more details we refer to [18].

Next, we multiply equation (1.1) by 2gut and integrate over RN to get

2

∫
RN

guttut dx− 2

∫
RN

||∇u(t)||2∆uut dx+ 2

∫
RN

gδutut dx = 0 .

So, we get
d

dt
||ut||2L2

g
+

1

2

d

dt
||∇u(t)||4 + 2δ||ut(t)||2L2

g
= 0 ,

thus we have

d

dt

{
||ut(t)||2L2

g
+

1

2
||∇u(t)||4

}
+ 2δ||ut(t)||2L2

g
= 0 .

We define the energy for our problem

E(t) = ||u(t)||2L2
g

+
1

2
||∇u(t)||4 . (3.2)
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So, we obtain the following relation

d

dt
E(t) + 2δ||ut(t)||2L2

g
= 0 . (3.3)

We integrate the previous equation in [0, t] to get the following

t∫
0

d

dt
E(t) dt+ 2δ

t∫
0

||ut(t)||2L2
g
dt = 0,

E(t)− E(0) + 2δ

t∫
0

||ut(t)||2L2
g
dt = 0,

E(t) + 2δ

t∫
0

||ut(t)||2L2
g
dt = E(0). (3.4)

Next, we multiply relation (3.2) by 2ug and integrate over RN to get

2uuttg(x)− 2φ(x)g(x)||∇u(t)||2∆uu+ 2δutug(x) = 0

and ∫
RN

2uuttg dt−
∫
RN

2||∇u(t)||2∆uu dt+

∫
RN

2δuutg dt = 0 . (3.5)

On the other hand we have the following relation (uut)
′ = utut+uutt. Thus,

we get
uutt = (uut)

′ − u2t , (3.6)

and ∫
RN

2uuttg dt =
d

dt

∫
RN

2guut dt−
∫
RN

2gu2t dt .

Then, we obtain ∫
RN

2uuttg dt =
d

dt
2(u, ut)L2

g
− 2||ut||2L2

g
. (3.7)

Using relations (3.6) and (3.7), relation (3.5) becomes

d

dt
2(u, ut)L2

g
− 2||ut||2L2

g
−
∫
RN

2||∇u(t)||2∆uu dt+

∫
RN

2δuutg dt = 0 , (3.8)

where we have that ∫
RN

2δuutg dt =
1

2
2δ
d

dt
||u(t)||2L2

g
(3.9)

and

−
∫
RN

2||∇u(t)||2∆uu dt = 2||∇u(t)||2||∇u(t)||2 = 2||∇u(t)||4 , (3.10)
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where we used the relation −
∫
RN ∆uu dt = ||∇u(t)||2.

Next, using relations (3.9) and (3.10), we obtain from relation (3.8) the
following

d

dt
2(u, ut)L2

g
− 2||ut||2L2

g
+ 2||∇u(t)||4 + δ

d

dt
||u(t)||2L2

g
= 0 .

Thus we get the following equality

d

dt

{
δ||u(t)||2L2

g
+ 2(u, ut)L2

g

}
+ 2||∇u(t)||4 = 2||ut(t)||2L2

g
. (3.11)

We integrate relation (3.11) in [0, t] and we get

t∫
0

d

dt
δ||u(t)||2L2

g
dt+ 2

d

dt

t∫
0

(u(t), ut(t))L2
g
dt+ 2

∫ t

0
||∇u(t)||4 dt

= 2

t∫
0

||ut(t)||2L2
g
dt .

So, we have that

δ(||u||2L2
g
− ||u0||2L2

g
) + 2(u, ut)L2

g
− 2(u0, u1)L2

g
+ 2

t∫
0

||∇u(t)||4 dt

= 2

t∫
0

||ut||2L2
g
dt.

Thus, we obtain the following estimate

δ||u(t)||2L2
g

+ 2

∫ t

0
||∇u(t)||4 dt

≤ δ||u0(t)||2L2
g

+ 2(u0(t), u1(t))L2
g

+2||u(t)||L2
g
||ut(t)||L2

g
+ 2

∫ t

0
||ut(t)||2L2

g
dt . (3.12)

From relations (3.2) and (3.4), we get the following equality

||ut(t)||2L2
g

+
1

2
||∇u(t)||4 + 2δ

t∫
0

||ut(t)||2L2
g
dt = E(0) .

Thus we have that

||ut(t)||2L2
g
≤ E(0) (3.13)
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and
1

2
||∇u(t)||4 ≤ E(0)⇒ ||∇u(t)||2 ≤ (2E(0))1/2 . (3.14)

We obtain from relation (3.12) that

δ||u(t)||2L2
g

+ 4

∫ t

0
||∇u(t)||4 dt

≤ δ||u0(t)||2L2
g

+ 2(u0(t), u1(t))L2
g

+ 2||u(t)||L2
g
||ut(t)||L2

g

+2

∫ t

0
||ut(t)||2L2

g
dt+ 2

∫ t

0
||∇u(t)||4 dt

≤ δ||u0||2L2
g

+ 2(u0, u1)L2
g

+ E(0) + E(0).

So, we have (using Young’s inequality)

δ||u(t)||2L2
g

+ 4

∫ t

0
||∇u(t)||4dt

≤ δ||u0||2L2
g

+ 2(u0, u1)L2
g

+ 2E(0)

≤ 2{δ||u0||2L2
g

+ 2(u0, u1)L2
g
}+ 2 · 2E(0)

≤ 2{δ||u0||2L2
g

+ 2(u0, u1)L2
g

+ 2E(0)}

≤ I20 , (3.15)

where

I20 = 2{δ||u0||2L2
g

+ 2(u0, u1)L2
g

+ 2E(0)} . (3.16)

Let ρ = max{δ, 4}, then

||u(t)||2L2
g

+

∫ t

0
||∇u(t)||4 dt ≤ ρ−1I20 . (3.17)

For later use, we introduce the following function H(t), where

H(t) =
||∇ut(t)||2L2

g

||∇u(t)||2
+ ||∆u(t)||2 . (3.18)

Next, we multiply equation (1.1) by −∆utg and integrate over RN to get∫
RN

−∆ututtg dt+

∫
RN

||∇u(t)||2∆u∆ut dt−
∫
RN

δgut∆ut dt = 0

⇒ d

dt

1

2
||∇ut(t)||2L2

g
+ ||∇u(t)||2 d

dt

1

2
||∆u(t)||2 + δ||∇ut(t)||2L2

g
= 0

⇒ d

dt
||∇ut(t)||2L2

g
+ ||∇u(t)||2 d

dt
||∆u(t)||2 + 2δ||∇ut(t)||2L2

g
= 0 . (3.19)
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Since we have that ||∇u0|| > 0, for u0 6= 0, we see that ||∇u(t)|| > 0 near
t = 0. Let

T ≡ sup {t ∈ [0,+∞) : ||∇u(s)|| > 0, 0 ≤ s ≤ t} .

If T < +∞, we have that ||∇u(T )|| = 0. We multiply relation (3.19) by
||∇u(t)||−2 for 0 ≤ t < T and we get the following equality

d

dt
H(t) + 2

(
δ +

(∇u(t),∇ut(t))
||∇u(t)||2

) ||∇ut(t)||2L2
g

||∇u(t)||2
= 0 . (3.20)

Since

H(0) =
||∇u1||2L2

g

||∇u0||2
+ ||∆u0||2 < 1 (3.21)

and
|(∇u(t),∇ut(t))|
||∇u(t)||2

< H(t)1/2 (3.22)

we observe that
d

dt
H(t) ≤ 0, H(t) ≤ H(0) , (3.23)

for some t > 0, which means that relation (3.23) holds for 0 ≤ t < T , because
of contradiction. On the other hand, if ||∇u(T )|| = 0, we get from (3.23) that
limt→T ||∇ut(t)|| = 0. Then, from the uniqueness of the solution (see [19],
Proposition 4.1, p.125) for equation (1.1), we remark that (1.1) has a trivial
solution on [0, T ], with {u(T ), ut(T )} = {0, 0}. This contradicts the hypothesis
that u0 6= 0. Finally, we conclude that T =∞, that is ||∇u(t)|| > 0 for t ≥ 0.
Thus we get, after all these calculations, that equation(1.1) gives a unique
local solution u, which belongs to ∩2k=0C

k
(
[0, T );H2−k(RN )

)
.

Moreover from (3.20) and (3.23) we obtain that

d

dt
H(t) + δ2

||∇ut(t)||2L2
g

||∇u(t)||2
≤ 0, t ≥ 0 (3.24)

and

H(t) + δ2
t∫

0

||∇ut(t)||2L2
g

||∇u(t)||2
dt ≤ H(0), t ≥ 0 . (3.25)

Then we have that from relations (3.4), (3.17) and (3.24), we obtain that

||u(t)||D1,2 + ||ut(t)||L2
g
≤ C <∞ for t ≥ 0 .

That completes the proof of the theorem. �
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