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Abstract. Let P(z) be a polynomial of degree n. In this paper, we consider a problem of
investigating the dependence of

P(RK2) — aP(K2) + 8 { (i’fll)n - \a|} P(k2)

on maximum and minimum of |P(z)| on |z| = k for arbitrary real or complex numbers «, 8 €

C with |a] <1,]8] <1, R> 1, k > 1 and establish certain sharp compact generalizations of
well-known Bernstien-type inequalities for polynomials, from which a variety of interesting
results follows as special cases. Besides we shall first obtain an interesting result which yields

a number of well-known polynomial inequalities as special cases.

1. INTRODUCTION

Let &2, denote the space of all complex polynomials P(z) = Z?:o a;z) of
degree n. A famous result known as Bernstein’s inequality (for reference, see
[9], [11] or [12]) states that if P € &, then

Max’P'(z)’ <nMax|P(2)|, (1.1)
|z|=1 |z|=1
whereas concerning the maximum modulus of P(z) on the circle |z| = R > 1,
we have

{\Jla}a:% |P(z)] < R”]|\4ag: |P(z)|, R>1. (1.2)
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(for reference, see [9] or [10]).
If we restrict ourselves to the class of polynomials P € &2, having no zero
in |z| < 1, then inequalities (1.1) and (1.2) can be respectively replaced by

]|\4‘a1m‘P z2)| < J|\4|af|P( 2)|, (1.3)
and Rl
Mag |P()| < =5 Maz |P(2)], B>1 (1.4)

Inequality (1.3) was conjectured by Erdos and later verified by Lax [7], whereas
inequality (1.4) is due to Ankey and Ravilin [1].

Aziz and Dawood [2] further improved inequalities (1.3) and (1.4) under the
same hypothesis and proved that,

Maz|P(:)| < 5 {dag PG2) = din PG} (1.5
Mag |P()| < T Mar |P() o Min|P()], R>1. (16)

|z|=R 2 |z|= |2[=1

Jain [5] generalized both the inequalities (1.3) and (1.4) and proved that if
P e Z, and P(z) # 0 in |z| < 1, then for every real or complex number g
with || <1, |z =1and R > 1,

zpf(z)+%P(z) SZ{‘ 5’ W}p fax |P(:)], (1.7)
and
P g+s(TH) Pl < \Ruﬂ(le) (18)
s (B ]||R>1'P< .

Jain [6] obtained a result concerning minimum modulus of polynomials and
proved the following;:

Theorem A. If P € &, and have all its zeros in |z| < 1, then for every real
of complex B with |8] <1,
np

Min |zP'(2) + —P(2)
|z|=1 2

B

>nil+— 5 Min|P(z)|. (1.9)

|21=1
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As a refinement of inequalities (1.7) and (1.8), Jain [6] also established:

Theorem B. If P € &, and have no zero in |z| < 1, then for every real of

complex B with || < 1,
nB Bl |8
(B (MHIRCEE

zP’(z)—l—QP(z)’ <2
“{leeal- o bgmeen]

2

(1.10)

Yoot
Al (Y- poo (5

Inequalities (1.9) and (1.10) have recently appeared in [4] also.

barag P

(1.11)

}J\Z@} P(2)]

More recently, S. Mezerji et. al [8] proved the following generalization of
inequalities (1.6) and (1.7) which also leads to a refinement of (1.8).

Theorem C. If P(z) is a polynomial of degree n, having no zeros in |z| < k,
k > 1, then for |5 <1 and R > 1,

9 Rk+1\" _
]‘\g'iwlv P(Rk z)+6<k+1> P(k z)'
N N e Rk +1 Rk +1\"
2 {k‘ R +ﬁ< +1) +‘1+B<k+1> }]|\4|a:c|P( )|
| on Rk +1\" Rk +1\"
—{k: R +5<k+1) —‘1+B<k+1> }{\fm|P( ) (1.12)
2. LEMMAS

For the proof of our theorems we need the following lemmas.
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Lemma 2.1. If P € &, and P(z) have all its zeros in |z| < k where k < 1,
then for every R > 1 and |z| =1,

P = (157) Pl

Proof. Since all the zeros of P(z) lie in |z| < k, k < 1 we write

P(z) = C’jli[l (z — qeieﬂ') ,

where r; < k < 1. Now for 0 < 8 < 27w, R > 1, we have

Rei® — rjei R? + 135 — 2Rr;jCos(6 — 6;) 12
e —rie?i | ] 1+ 7“]2- —2r;jCos(0 — 6;) ’
> R+ T ’
14y
k
> {Ifik},for i=12,---,n.
Hence
P(Re") B Y| Re? — rjeifs
P(ei) = i — et
11 (5k
J=1

which completes the proof of Lemma 2.1.
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Lemma 2.2. If P € &, and P(z) have no zero in |z| < k,k > 1, then for
la| < 1,8 <1,R>1and|z| > 1

‘P(szz) — aP(k%) + B { <Rk + 1>n _ |oz|} P(k2)

E+1

are) - a0+ { (L) et} @

< K" : (2.1)

where Q(z) = 2"P(1/Z).

Proof. By hypothesis, the polynomial P(z) # 0 in |z| < k, k > 1, therefore
Q(z) is a polynomial of degree n having all its zeros in |z| < (1/k) < 1. As

K'Q(2)| = |P(k2)| for |2| = (1/k),

Applying Theorem 3.1 with F'(z) replaced by k"Q(z) we get for arbitrary real
or complex numbers «, f € C with |a] <1, |5 <1, R>1and |z| > 1

P(RK?2) — aP(k%2) + B { <Rk + 1>n _ |oz|} P(k2)

k+1
n RE+1\"
<k lar) @ + o { (5T ) ~lalf e
+1
This completes the proof of Lemma 2.2. U

Lemma 2.3. If P € &, and Q(z) = z"P(1/Z) then for «a,B € C ,with
la] < 1,|8|<1,R>1,k>1and |z| > 1,

'P(szz) —aP(k*z) + { (Rk + 1>n — |a|} P(k?z)

kE+1
+ o) - 0@ + 8 { (1) - 1ot} e
free-res{ (22 o
+‘1a+5{<i]€+—|—11>n|a|}”]|\§[akg;‘P(z)|, (2.2)

Proof. Let M = ]|\4|a% |P(2)|, then by Rouche’s theorem the polynomial F'(z) =
zl=

P(z) — pM does not vanish in |z| < k, for every p € C with |u| > 1. Applying
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Lemma 2.2 to polynomial F(z), we get for a, 5 € C with |o| < 1,|5] <1 and
2] > 1,

’F(Rsz) —aF(k22) + 8 { (ikjll)n - ya} F(k22)
H(R2) — aH(2) + B { (i’“:;)n _ |a|} H2)|,

where H(z) = z"F(1/Z), replacing F(z) by P(z) — uM and H(z) by Q(z) —
aMz", we have for |a] < 1,|8| <1 and |z| > 1,

pizs) - ap) + 5 { ()~ ot} P02
e { (55T e
are) - a0+ { (L) et} @

e (352) o

where Q(z) = 2"P(1/z). Choosing argument of y in the right hand side of
inequality (2.3) such that

< k"

< k"

(2.3)

k’n
E+1

el (25
{(Jff“) =l
are) - o)+ { (B~ o} o)

are) - o) + 5 { () - ot} @

= k" |z

— k" (2.4)
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which is possible by applying Corollary 3.4 to polynomial Q(z),with replacing
k by ¢, we get for o <1,|8/ < 1and 2] > 1,

‘P(Rk%) —aP(k2) + 8 { (Rk * 1>n - ya} P(k22)

|l ‘{1 a+ﬁ{<ik:1f)tbl ’a}} M‘
B —a+/3{<ikf11>n - 'O"H

are) - a0+ { () et} @

< K"|p"|M

— k"

Equivalently for |o| < 1,|8] <1 and |z] > 1,

‘P(Rk%) —aP(k?2)+ B { (ik:f)n — |ay} P(k*z)

Rk +1\"
") -l

n RE+1\"
R —a+5{(k+1) — |a] ’
—i—‘l—a%—ﬂ{(ik_:_ll) —\a\}”.

Letting |p| — 1, we get the conclusion of lemma 2.3 and this completes proof
of Lemma 2.3. 0

+ k"

ars) - a0+ {

< M|pl [k”IZ\”

3. MAIN RESULTS

In this paper, we first present the following interesting result which yields
a number of well-known polynomial inequalities as special cases.

Theorem 3.1. If F € &, and F(z) has all its zeros in |z| < k where k < 1,
and P(z) is a polynomial of degree at most n such that

[P(2)] < |F(2)] for |z[ =F,
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then for |a| < 1,|8| <1, R>1 and |z| > 1,

‘P(Rz) —aP(z) + f { (iif)n - a|} P(2)
< ‘F(Rz)—aF(z)—kﬁ{(l:If)n— ya}F(z) . (3.1)

The result is best possible and the equality holds for the polynomial P(z) =
eV F(z) wherey € R and F(z) is any polynomial having all its zeros in |z| < k.

Proof. Since polynomial F(z) of degree n has all its zeros in |z| < k and P(z)
is a polynomial of degree at most n such that

P(z)| < |F(z)| for |2 =k, (3.2)

therefore, if F(z) has a zero of multiplicity s at z = ke, then P(z) has a
zero of multiplicity at least s at z = ke'®. If P(z)/F(2) is a constant, then
inequality (3.1) is obvious. We now assume that P(z)/F(z) is not a constant,
so that by the maximum modulus principle, it follows that

|P(2)| < |F(z)| for |z| > k.

Suppose F'(z) has m zeros on |z| = k where 0 < m < n, so that we can write

F(z) = Fi(2) F2(2),

where Fj(z) is a polynomial of degree m whose all zeros lie on |z| = k and
F5(2) is a polynomial of degree exactly n — m having all its zeros in |z| < k.
This implies with the help of inequality (3.2) that

P(Z) = Pl(Z)Fl(Z),
where Pj(z) is a polynomial of degree at most n —m. Again, from inequality
(3.2), we have
|PL(2)| < [Fa(2)] for |2| =k,

where Fy(z) # 0 for |z| = k. Therefore for every real or complex number A
with |A| > 1, a direct application of Rouche’s theorem shows that the zeros of
the polynomial P;(z) — AFa(z) of degree n —m > 1 lie in |z| < k hence the
polynomial

G(2) = F1(2) (P1(2) = AFa(2)) = P(2) = AF(2)

has all its zeros in |z| < k with at least one zero in |z| < k, so that we can write

f(z) = (z — te”)H(2),
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where ¢t < k and H(z) is a polynomial of degree n — 1 having all its zeros in
|z| < k. Applying Lemma 2.1 to the polynomial H(z), we obtain for every
R>1and 0 <60 <27,

|G(Re™)| = |Re" — te”||H (Re™)|
n—1

> et -1 (EEF) e

_(R+Ek "L Ret? — tetd)

S \k+1 et — teid|

R+k\"" [R+t »
> — —_— Lalk
—(k:+1> <1+t)|G(e )

This implies for R > 1 and 0 < 0 < 2,
1+t 0 R+kN" .,
_ v > | — 1, .
(R—i—t) |G(Re")| > (k—i—l) |G (e")] (3.3)

Since R > 1 > t so that G(Re®) # 0 for 0 < § < 27 and % > %é, from
inequality (3.3), we obtain

(" — te®)H(e")],

|G(Re?)| > (ijif) IG(e®)], R>1 and 0<6 < 2r. (3.4)
Equivalently,
R+E\"
Gl > (1) 166

for |z| =1 and R > 1. Hence for every real or complex number « with |a| <1
and R > 1, we have

|G(Rz) — aG(2)] = |G(Rz)| - |a] |G(2)| (3.5)
> {(iif) - |a|} |G(z)|, for |z] =1.

Also, inequality (3.4) can be written in the form

G < (5t )t (36)

for every R > 1 and 0 < 6 < 2. Since G(Re?) # 0 and (%L}C)n < 1, from
inequality (3.6), we obtain for 0 < 6 < 27 and R > 1,
1G(e?)] < |G(Re™).

That is,
|G(#)| < |G(Rz)| for |z| =1.
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Since all the zeros of G(Rz) lie in |z| < (k/R) < 1, a direct application of
Rouche’s theorem shows that the polynomial G(Rz) — aG(z) has all its zeros
in |z| < 1 for every real or complex number « with |o| < 1. Applying Rouche’s
theorem again, it follows from (3.5) that for arbitrary real or complex numbers
a, B with |o| < 1,|8] <1 and R > 1, all the zeros of the polynomial

R+k

T(z) = G(Rz) — aG(z2) + B { (MY - ]a\} G(2)

_ {p(m) —aP(z) + { (iif)n B '0"} P(z)]

)\ [F(Rz) —aF(2) + B { (fif)n - |ay} F(z)}

lie in |z| < 1. This implies
R+ E\"
‘P(RZ) - OéP(Z) +l8{(ki—|—1) - ]a}P(z)

< ‘F(Rz) —aF(2)+ 8 { (iif)n - !a!} F(z)

(3.7)

for |z] > 1 and R > 1. If inequality (3.7) is not true, then there a point z = 2
with |zg| > 1 such that

PUte) - aPo) + 5 { (1) = 1ot} PGl

> ‘F(Rzo) — aF(z0) + B { (fif)n - ]a\} F(z0)

But all the zeros of F(Rz) lie in |z| < (k/R) < 1, therefore, it follows (as in
case of G(z)) that all the zeros of F(Rz) — aF(z) + { (%) — ]a\} F(z)

lie in |z] < 1. Hence

R+k

F(RZO)_O‘F(ZO)+5{<I<:+1

with |zg| > 1. We take

) —lal} P £0

\ P(Rzp) — aP(z) +

=~
N
==
+‘+
B
N—
3 3
|
8
H,_/H,—/
i
—~
N
N

F(Rzy) — aF(z0) +
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then X is a well defined real or complex number with |A] > 1 and with this
choice of A, we obtain T'(z9) = 0 where |zp| > 1. This contradicts the fact
that all the zeros of T'(z) lie in |z| < 1. Thus (3.7) holds for |a] <1, |5] <1,
|z| > 1, and R > 1. O

If we choose @ = 0 in Theorem 3.1, we get the following:

Corollary 3.2. If F € &, and P(z) has all its zeros in |z| < k where k <1,
and P(z) is a polynomial of degree at most n such that

[P(2)] < [F(2)] for || =k,
then for |5 <1, R>1 and |z| > 1,

R+k R+k

‘P(Rz) + 5 <M>n P(z)‘ < ‘F(Rz) +5 <k+1>n F(z)’ L (3.8)

The result is sharp, and the equality holds for the polynomial P(z) = eV F(2)
where v € R.

Next take a = 1 in inequality (3.1) and divide the two sides by R — 1 and
then make R — 1, we get:

Corollary 3.3. If F € #,, and F(z) has all its zeros in |z| < k where k <1,
and P(z) is a polynomial of degree at most n such that

[P(2)| < |F(2)] for |z[ =k,
then for |B] <1, R>1 and |z| > 1,

np
k+1

np
kE+1

2P'(2) + P(2)

< ’zF’(z) + F(2)]. (3.9)

The result is sharp, and the equality holds for the polynomial P(z) = eV F(z)
where v € R and F(z) is any polynomial having all its zeros in |z| < k.

Setting F(z) = 2"M/k™, where M = ]|\4|a% |P(z)| in Theorem 3.1, we get

the following result:
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Corollary 3.4. If P € &, then for o, € C with |a| < 1, |B| < 1, k < 1,
R>1 and |z| > 1,

’P(Rz) —aP(z)+ 8 { <R+k>n - |a|} P(z)

k+1
El i - R+Ek\"
<l \gn L , ,
< R"—a+p E 1 |a] |£\\£%§1|P(z)| (3.10)

The result is best possible and equality in (3.10) holds for P(z) = az™,a # 0.

Again, if we choose @ = 1 in Corollary 3.4, and divide the two sides of
inequality (3.10) by R — 1 and then making R — 1, we get:

Corollary 3.5. If P € &, then for 8 € C with |B] <1, k<1, R> 1 and
2] > 1,
np B

nlz["

P P < 1 Max |P . A1
PE T (z)‘— e [P e e P (3.11)
For a =0 (3.10) reduces to
R+E\" |z|™ R+E\"
P — P < — |R" —_— Max |P 12
pre+5 () P < B m s () arae il a2
for |z| > 1.

The result is sharp and equality in (3.11) and (3.12) holds for P(z) =
az™ a # 0.

The following compact generalization of inequalities (1.1) and (1.2) imme-
diately follows from Theorem 3.1, by taking k =1 and 8 = 0 in (3.10).
Corollary 3.6. If P € &, then for a € C with |a| <1, R>1 and |z| > 1,

|P(R2) ~aP(:)| < [2I" [R" — | Max |P(z)]. (3.13)

The result is best possible as shown by P(z) = az",a # 0.

Remark 3.7. For a =0, (3.13) reduces to (1.2). For a =1, if we divide the
two sides of (3.13) by R — 1 and make R — 1, we get inequality (1.1).

If we take 8 = 0 in Theorem 3.1, then inequality (3.1) reduces to following:
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Corollary 3.8. If F € &, and F(z) has all its zeros in |z| < k where k < 1,
and P(z) is a polynomial of degree at most n such that

[P(2)| < |F(2)| for |z| =k,
then for |a| <1, R>1 and |z| > 1,
|P(Rz) — aP(z)| < |F(Rz) — aF(2)]. (3.14)
The result is sharp and equality holds for P(z) = ¢V F(z) where v € R.

Dividing the two sides of inequality (3.14) by R — 1 with o = 1 and making
R — 1, we get:

Corollary 3.9. If F € &, and F(z) has all its zeros in |z| < k where k <1,
and P(z) is a polynomial of degree at most n such that
|P(2)| < [F(2)| for |z] =k,
then for |z| > 1,
|P'(2)| < |F'(2)]. (3.15)
The result is sharp and equality holds for P(z) = ¢V F(z) where v € R.

Next, we present the following result which includes Theorem A as a special
case.

Theorem 3.10. If P € &, and P(z) has all its zeros in |z| < k where k > 1
then for a,, f € C with |o| < 1,|8] <1 and R > 1,

Rk+1\"
{\24‘311 P(RK*z) —aP(k2z)—|—B{< k;++1 ) - |ay}P(k2z)
Rk+1\"
> k" R"—a+5{( k:++1 > —|a|} Min |P(). (3.16)

The result is best possible as shown by P(z) = az",a # 0.
Proof. Let m = {W‘Z?’}’P(z)‘ If P(z) has zeros on |z| = k, k > 1, then the
zl=

result is trivially true. Assume all the zeros of P(z) lie in |2| < k,k > 1,
therefore all the zeros of polynomial P(k%z) lie in |z| < (1/k) where (1/k) <1

and m = |]\\4Z17k !P(kgz){ > (. For every A € C with || < 1, then it follows by
zZl=

Rouche’s theorem that the polynomial f(z) = P(k%z) — Amk"2" have all its
zeros in lie |z| < 1/k, where 1/k < 1, applying Lemma 2.1 to f(z), we have
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F(R2)| = (B 1f()] for |2 =1.
Which implies,
|f(Rz)| > |f(2)] for R>1 and |z]=1.

Thus by Rouche’s theorem for o € C with |o| < 1 all the zeros of F(z) =
f(Rz) —af(z) lie in |z| < 1. and, we have

F(R2) — af(2)] = |F(R)] ~ laf (2)
() -l

for |z]=1 and R > 1. Again by Rouche’s theorem for g € C with |5] < 1,
the zeros of the polynomial

o) = 189 s @) + 6 { (1) = lal 162

E+1

= {P(Rsz) —aP(k*z) + 8 { (ik:;)n - \a\} P(/fQZ)]

e [ o s { (B < al)]

lie in |z|] < 1. This gives

‘P(RkQ ) — aP(k*2) +5{<Rk+1) —|ay}P(k2z)

G

If inequality (3.17) is not true, then there exists zg € C with |zp| > 1 such

that
{(Rk: 1) B ’a’} P(k?20)
) -l

~lal}|m (3.17)

for |z| > 1.

‘ (REk?2) — aP(k

-

< kn|20’n
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We take

[P(Rk%o) — aP(k2z) + 8 { (i’fﬂl)" - \a\} P(k;?,zo)}

kol [R" — a +5{(%)” ~Jal}]

then |A| < 1 and with this choice of A\, we have g(z9) = 0, with |z9| > 1, which
is contradiction, since all the zeros of g(z) lie in |z| < 1. Hence, we have

’P(Rsz) —aP(k*2) + { <ik:11>n — a\} P(kz)

Rk +1\" .
R"—aw{(k:l) —\a\}\gngn

A\ =

> kn‘z|n

for |z| > 1,R > 1 which immediately leads to inequality (3.17) and this
completes the proof of Theorem 3.10. O

If we divide the two sides of inequality (3.16) by R —1 with & = 1 and then
making R — 1 we get:

Corollary 3.11. If P(z) € &, and have all its zeros in |z| < k where k > 1
then for || <1 and R > 1

M' Pl 2 nﬁ
D

k
P22 > k=t 1 4+ Min|P(z)|  (3.18)

k+1] 2=

. The result is sharp.
Remark 3.12. For k = 1, inequality (3.18) reduces to Theorem A.

Setting 5 = 0 in theorem 3.10, we obtain :
Corollary 3.13. If P € &, and P(z) has all its zeros in |z| < k where k > 1
then for a € C with || <1 and R > 1,

{\/_lfi? |P(RK*z) — aP(k*2)| > k" |R" — q {\{zg |P(2)]. (3.19)

For polynomials P € £, having no zero in |z| < k, we establish the following
result which leads to a compact generalization of inequalities (1.7) and (1.8).
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Theorem 3.14. If P(z) € &, and P(z) does not vanish in |z| < k,k > 1
then for all o, B € C with |a| <1, |5 <1, R>1and |z| > 1,

P(Rk?z) — aP(k*2) + B { <Rk T 1>n - |a|} P(k?z)

E+1

e ()

R a+5{<ik:11>n _ \a\}

Proof. Since P(z) does not vanish in |z| < k, k > 1, by Lemma 2.2, we have
for all a, 8 € C with |a| <1, |f] <1 and R > 1,

< Z
-2

+ k"

!Z”] Jl\ﬁgg |P(2)] (3.20)

E+1

are) - o)+ { (FE5) - et} @

‘P(Rk%) —aP(k*2) + B { <Rk * 1>n - |a|} P(k?z)

< Em (3.21)

for |z| > 1 and where Q(z) = 2" P(1/Z). Inequality (3.21) in conjunction with
Lemma 2.3 gives for all a, 8 € C with |a| <1, || < 1and R > 1,

2 ‘P(Rkﬁz) —aP(k*2) + { <}Zk:11>n — |a|} P(k?z)

< ’P(Rsz) —aP(k*z) + 8 { (Rk h 1>n - a\} P(k*z)

k+1
ot - o)+ 5 { (G5 ) ~lalf e
< knyz‘n Rn_a+6{<ik++1l>n_|a|}’

Rk +1\"
Fi-ass{(B11) —m@”ﬁmypu»

for |z| > 1.. This completes the proof. O

Remark 3.15. If we take o« = k = 1 in Theorem 3.14 and divide two sides
of inequality (3.20) by R — 1 and then make R — 1, we get inequality (1.7),
whereas inequality (1.8) follows from Theorem 3.14, when o =0 and k = 1.
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Remark 3.16. If we choose k = 1 in inequality (3.20), then Theorem 3.1}
reduces to the result proved by Aziz and Rather [3].

As a refinement of Theorem 3.14 and a generalization of Theorem C, we
finally prove the following result, which provides a compact generalization of
inequalities (1.7), (1.8) and (1.12) as well.

Theorem 3.17. If P € &, and P(z) does not vanish in |z| < k,k > 1 then
for all a, B € C with || < 1,|8] <1 and R > 1,

Mag | P(RK?:) — aP(k%) + 5 { (i’fﬁ)n - a|} P(k22)

ke o
—|—‘1—a+6{<}2k++11> o |}‘}]\24|£L]:5|P(z)| (3.22)
—{k” R"—a+8 > |a|}

k
renes{ (52 -

Proof. Let m = Mm|P( )|. If P(z) has a zero on |z| = k, then the result

|2|=

follows from Theorem 3.14. Therefore, we assume that P(z) has all its zeros
in |z| > k where k > 1 so that m > 0. Now for every A\ with |[A\| < 1, it follows
by Rouche’s theorem, that the polynomial h(z) = P(z) — Am does not vanish
in |z| < k. Applying Lemma 2.2 to the polynomial h(z), then for all o, 5 € C
with |a] < 1,8 <1, R>1, and |2| > 1

‘h(Rsz)— {(Rk:1> !a!} 22)

k
(i) e+ 5 { () ~latb auta

< k"
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where Q1(z) = 2"h(1/Z). Equivalently,

+a{(BEED) - tal} o
R (C=y

k+ 1
< 1|Q(R2) — 0Q() +B{
Rk

—/\[R"—a—l—ﬁ{

Since all the zeros of Q(z/k?) lie in |z| < k, k > 1, then by Theorem 3.10
applied to Q(z/k?), we have for R > 1,

’P(Rk%) —aP(k?

m| for |z| = 1. (3.23)

Min |Q(Rz) = aQ(2) + { (]’Zf :f)n - \a|} Q)

(

{ Rk+1) Ia!} %i-?\@(z/kz)\
:‘Rn_a 5{(31){:“) ’a’} e
:‘R”—a+5{(i]€:ll>n—!a!}’m- (3.24)

Now, choosing the argument of A on the right hand side of inequality 3.23

such that
Q(Rz) — aQ(z) + B { (]ff ++11)n - rar} Q(2)
s () o
=" atre) - aQ(:) o (BEE) -t} e

- { () - et} |

kn
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for |z| = 1, which is possible by inequality (3.24). We get for |z| =1,

prs) - apa) + o { () - lal} P02

s (B

k+1
<) —aqee) +5 { (B -1t} o)
oo (2 )

Equivalently for |z| =1, R > 1, we have

‘P(szz) — aP(k2) + B { (ikjll)n - a\} P(k22)

Qi) - aqus) + o { (SEEL) - lalf aus)

ooea{(S5r) )
_‘R”—a+ﬂ{<ik_:—1l> —|a|} ”m

— k"

<Al
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(3.25)

Letting |[A\| — 1 in inequality (3.25), we obtain for all o, € C with |a| <

L8 <1,R>1and |z| =1,

‘P(szz)—aP(kz )+ 5{<Rk+1> a\}P(kgz)

k1
QURK?2) — aQ(k2) + B { (R’“ = 1) - |a|} Qi)

[

kE+1
_‘R”—a+5{<ik++1l> —|oz]} ”m

— k"

(3.26)



380 N. A. Rather, and Suhail Gulzar

Inequality (3.26) in conjunction with Lemma (2.3) gives for all «, 8 € C with
lal <1, |6 <1,R>1and |z| =1,

2 ’P(Rk:2z) —aP(k*2) + { (Rk * 1>n - |a|} P(k*2)

kol
B

w-oeo{(557) il
oo { (557 i e
el o (F57) -1}

k+
e (B -

Which is equivalent to inequality (3.22) and thus completes the proof of the-
orem 3.17.

<

0

For @ = 0 Theorem 3.17 reduces to Theorem C.

If we take a = 1 divide the two sides of inequality (3.22) by R — 1 and then
letting R — 1, we get:

Corollary 3.18. If P(z) € &, and P(z) does not vanish in |z| < k where
k> 1, then for |5 <1 and R > 1,

/1.2 np 2
ﬁ\ﬁglx kzP'(k z)—f—ik_'_lp(k: z)‘
n _ Bk B
<)1)y Max | P
—2[{k +k+1‘+‘k+1'}|zg§’ ()
_ k B _
ety PR Min |P : 2
{k Jrl<:+1 kE+1 |z|i113‘ @) (3:27)

Remark 3.19. For k = 1, inequality (3.27) reduces to Theorem B.

The following result immediately follows from Theorem 3.17 by taking 8 = 0
and k= 1.
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Corollary 3.20. If P € &, and P(z) does not vanish in |z| < 1, then for
all a, p € C with |a] < 1,|8| <1 and R > 1,

R —a| +]1—
Mas|P(rs) - ap(2)] < (=2 E =) arag e

R"—a| —|1—

- <| ol | 0“) Min |P(2)] . (3.28)
2 |z|=1

The result is sharp and extremal polynomial is P(z) = az™ + b, |a] = |b] # 0.

Remark 3.21. For a = 0, inequality (3.28) reduces to inequality (1.6). Also
if we divide the two sides if inequality (3.28) by R — 1 with a = 1 and let
R — 1, we get inequality (1.5).
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