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Abstract. In this paper, an error has been pointed out in the proofs of some recent results

concerning the B-operators given by Shah and Liman [Integral estimates for the family of B-

operators, Operators and Matrices, Vol. 5(1),(2010), 79 - 87]. Certain sharp Lp inequalities

valid for 0 < p <∞ for B-operators are also obtained.

1. Introduction

Let Pn denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j of

degree at most n. For P ∈ Pn, define

‖P‖p :=

{
1

2π

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p}1/p

, 1 ≤ p <∞,

‖P‖∞ := Max
|z|=1

|P (z)| .

A famous result known as Bernstein’s inequality (for reference see [5],[11],[14])
states that if P ∈ Pn, then ∥∥P ′∥∥∞ ≤ n ‖P‖∞ . (1.1)
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Inequality (1.1) can be obtained by letting p→∞ in the inequality∥∥P ′∥∥
p
≤ n ‖P‖p , p ≥ 1 (1.2)

Inequality (1.2) is due to Zygmund [15]. Arestov [2] proved that inequality
(1.2) remains true for 0 < p < 1 as well.

Both the inequalities (1.1) and (1.2) can be sharpened if we restrict ourselves
to the class of polynomials having no zero in |z| < 1. In fact, if P ∈ Pn
and P (z) 6= 0 in |z| < 1, then inequalities (1.1) and (1.2) can be replaced
respectively by ∥∥P ′∥∥∞ ≤ n

2
‖P‖∞ (1.3)

and ∥∥P ′∥∥
p
≤ n

‖P‖p
‖1 + z‖p

. (1.4)

Inequality (1.3) was conjectured by Erdös and later verified by Lax [8] (see
also [4]) whereas inequality (1.4) is due to Bruijn [6] (see also [3]) for p ≥ 1.
Rahman and Schmeisser [13] showed that the inequality (4) remains true for
0 < p < 1 as well.

Rahman [12](see also [14]) introduced a class Bn of operator B which carries
P ∈ Pn into

B[P ](z) := λ0P (z) + λ1

(nz
2

) P ′(z)
1!

+ λ2

(nz
2

)2 P ′′(z)
2!

, (1.5)

where λ0, λ1 and λ2 are such that all the zeros of

u(z) = λ0 + C(n, 1)λ1z + C(n, 2)λ2z
2, C(n, r) = n!/r!(n− r)! (1.6)

lie in the half plane

|z| ≤ |z − n/2| (1.7)

and observed that if P ∈ Pn, then

|P (z)| ≤ ‖P‖∞ for |z| = 1

implies

|B[P ](z)| ≤ |B[zn]| ‖P‖∞ for |z| = 1. (1.8)

And if P ∈ Pn and P (z) does not vanish in |z| < 1, then

|B[P ](z)| ≤ 1

2
{|B[zn]|+ |λ0|} ‖P‖∞ for |z| = 1, (1.9)

(see [12, inequality (5.2) and (5.3)]).



A remark on an integral inequality for the B-operators 385

Recently Shah and Liman [9] extended inequality (1.8) to the Lp-norm by
establishing:

Theorem A. If P ∈ Pn, then for every R ≥ 1 and p ≥ 1,

‖B[P ](R ·)‖p ≤ R
n |φn(λ0, λ1, λ2)| ‖P‖p ,

where B ∈ Bn and

φn(λ0, λ1, λ2) = λ0 + λ1
n2

2
+ λ2

n3(n− 1)

8
. (1.10)

While seeking the desired extension of inequality (1.9) to the Lp-norm, Shah
and Liman [9] made an incomplete attempt and claimed to have proved the
following result.

Theorem B. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every
R ≥ 1 and p ≥ 1,

‖B[P ](R ·)‖p ≤
Rn |φn(λ0, λ1, λ2)|+ |λ0|

‖1 + z‖p
‖P‖p ,

where B ∈ Bn and φn(λ0, λ1, λ2) is defined by (1.10).

Unfortunately the proof of this result(Theorem B) including a result for self-
inversive polynomials and the Lemma 4 [9] given by Shah and Liman is not
correct, because the claim made by the authors on page 84 line 10, on page 85
line 19 and on page 86 line 16 is incorrect. The reason being that the authors
[9] throughtout the paper make use of the argument that if Q(z) = znP (1/z),
then for 0 ≤ θ < 2π and R ≥ 1,∣∣∣B[Q(Reiθ)]

∣∣∣ =
∣∣∣B[RnP (eiθ/R)]

∣∣∣ ,
which is not, in general, true for every R ≥ 1 and 0 ≤ θ ≤ 2π, as can be easily
seen by taking, in particular, the nth degree polynomial P (z) = anz

n+a0 and
R = 2.

In this paper, we present certain sharp Lp inequalities for B-operators,
which not only validate the Theorem B and other related results in [9] for
R = 1, but also extend them for 0 < p < 1 as well.

2. Lemmas

For the proofs of our main results, we need the following lemmas. The first
lemma follows from Corollary 18.3 on p.65 in [10].
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Lemma 2.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then all the
zeros of the polynomial B[P ](z) also lie in |z| ≤ 1.

Lemma 2.2. If P ∈ Pn and P (z) does not vanish in |z| < 1, then

|B[P ](z)| ≤ |B[Q](z)| , for |z| ≥ 1, (2.1)

where Q(z) = znP (1/z).

Lemma 2.2 is due to Rahman [12].

Next we describe a result of Arestov [2].

For γ = (γ0, γ1, · · · , γn) ∈ Cn+1 and P (z) =
∑n

j=0 ajz
j , we define

ΛγP (z) =

n∑
j=0

γjajz
n.

The operator Λγ is said to be admissible if it preserves one of the following
properties:

(i) P (z) has all its zeros in {z ∈ C : |z| ≤ 1},

(ii) P (z) has all its zeros in {z ∈ C : |z| ≥ 1}.

The result of Arestov may now be stated as follows.

Lemma 2.3. [2] Let φ(x) = ψ(logx) where ψ is a convex nondecreasing func-
tion on R. Then for all P ∈ Pn and each admissible operator Λγ,∫ 2π

0
φ
(
|ΛγP (eiθ)|

)
dθ ≤

∫ 2π

0
φ
(
cγ,n|P (eiθ)|

)
dθ

where cγ,n = max (|γ0|, |γn|).

In particular Lemma 2.3 applies with φ : x → xp for every p ∈ (0,∞).
Therefore, we have for 0 < p <∞,{∫ 2π

0
|ΛγP (eiθ)|pdθ

}1/p

≤ cγ,n
{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ}1/p

. (2.2)

We use (2.2) to prove following interesting result.
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Lemma 2.4. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every
p > 0 and α real, 0 ≤ α < 2π,∫ 2π

0

∣∣∣B[P ](eiθ) + eiαG(eiθ)
∣∣∣ dθ ≤ ∣∣φn(λ0, λ1, λ2) + λ̄0e

iα
∣∣ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣ dθ

(2.3)

where G(z) is the conjugate polynomial of B[Q](z), Q(z) = znP (1/z̄) and
φn(λ0, λ1, λ2) is defined by (1.10).

Proof. Since Q(z) = znP (1/z̄) and P (z) does not vanish in |z| < 1, by Lemma
2.2 , we have

|B[P ](z)| ≤ |B[Q](z)| for |z| = 1. (2.4)

Now

B[Q](z) = λ0Q(z) + λ1

(nz
2

) Q′(z)
1!

+ λ2

(nz
2

)2 Q′′(z)
2!

= λ0z
nP (1/z̄) + λ1

(nz
2

)(
nzn−1P (1/z̄)− zn−2P ′(1/z̄)

)
+
λ2
2!

(nz
2

)2
(n(n− 1)zn−2P (1/z̄)− 2(n− 1)zn−3P ′(1/z̄)

+zn−4P ′′(1/z̄))

= F (z) (say),

then by hypothesis,

G(z) = znF (1/z̄) = λ̄0P (z) + λ̄1
n

2

(
nP (z)− zP ′(z)

)
+
λ̄2
2!

(n
2

)2 (
n(n− 1)P (z)− 2(n− 1)zP ′(z) + z2P ′′(z)

)
=

(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8

)
P (z)

−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)
zP ′(z) + λ̄2

n2

8
z2P ′′(z)

and

|B[Q](z)| = |F (z)| = |G(z)| for |z| = 1.

Using this in (2.4), we get

|B[P ](z)| ≤ |G(z)| for |z| = 1.

Since by Lemma 2.1, all the zeros of F (z) = B[Q](z) lie in |z| ≤ 1, therefore,
all the zeros of G(z) lie in |z| ≥ 1. Hence by the maximum modulus principle,

|B[P ](z)| < |G(z)| for |z| < 1. (2.5)
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A direct application of Rouche’s theorem shows that

ΛγP (z) = B[P ](z) + eiαG(z)

=

(
λ0 + λ1

n2

2
+ λ2

n3(n− 1)

8
+ eiαλ̄0

)
anz

n

+ · · ·+
(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8
eiα + λ0

)
a0

does not vanish in |z| < 1. Therefore, Λγ is an admissible operator. Applying
(2.2) of Lemma 2.3, the desired result follows immediately for each p > 0. �

From Lemma 2.4, we deduce the following more general result.

Lemma 2.5. If P ∈ Pn, then for every p > 0 and α real, 0 ≤ α < 2π,∫ 2π

0

∣∣∣B[P ](eiθ) + eiαG(eiθ)
∣∣∣p dθ ≤ ∣∣φn(λ0, λ1, λ2) + λ̄0e

iα
∣∣p ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ,

(2.6)

where G(z) is the conjugate polynomial of B[Q](z), Q(z) = znP (1/z̄) and
φn(λ0, λ1, λ2) is defined by (10).

Proof. Since P ∈ Pn, we can write

P (z) = P1(z)P2(z) =
k∏
j=1

(z − zj)
n∏

j=k+1

(z − zj), k ≥ 1

where all the zeros of P1(z) lie in |z| ≥ 1 and all the zeros of P2(z) lie in
|z| < 1. First we assume that P1(z) has no zero on |z| = 1 so that all the zeros

of P1(z) lie in |z| > 1. Let Q2(z) = zn−kP2(1/z̄). Then all the zeros of Q2(z)
lie in |z| > 1 and |Q2(z)| = |P2(z)| for |z| = 1. Now consider the polynomial

f(z) = P1(z)Q2(z) =

k∏
j=1

(z − zj)
n∏

j=k+1

(1− zz̄j),

then all the zeros of f(z) lie in |z| > 1 and for |z| = 1,

|f(z)| = |P1(z)| |Q2(z)| = |P1(z)| |P2(z)| = |P (z)| . (2.7)

Since P (z)/f(z) is not a constant, by the Maximum Modulus Principle, it
follows that

|P (z)| ≤ |f(z)| for |z| ≤ 1. (2.8)

We claim that the polynomial g(z) = P (z) + λf(z) does not vanish in |z| ≤ 1
for every λ with |λ| > 1. If this is not true, then g(z0) = 0 for some z0 with
|z0| ≤ 1. This gives

|P (z0)| = |λ||f(z0)| with |z0| ≤ 1.
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Since f(z0) 6= 0 and |λ| > 1, it follows that

|P (z0)| > |f(z0)| with |z0| ≤ 1,

which clearly contradicts (2.8). Thus g(z) does not vanish in |z| ≤ 1 for every
λ with |λ| > 1, so that all the zeros of g(z) lie in |z| ≥ t for some t > 1 and
hence all the zeros of R(z) = g(tz) lie in |z| ≥ 1. Now proceeding similarly as
in the proof of Lemma 2.5, we get from (2.5) with polynomial P (z) replaced
by R(z) and G(z) by H1(z),

|B[R](z)| < |H1(z)| for |z| < 1,

where H1(z) is the conjugate polynomial of B[h](z) and h(z) = znR(1/z̄).
Taking z = eiθ/t, 0 ≤ θ < 2π, then |z| = (1/t) < 1 as t > 1 and we get for
0 ≤ θ < 2π,

{|B[R](z)|}z=eiθ/t < {|H1(z)|}z=eiθ/t ,
which after simplification leads to

|B[g](z)| < |H(z)| for |z| = 1,

where H(z) is the conjugate polynomial of B[S](z) and S(z) = zng(1/z̄). An
application of Rouche’s theorem shows that the polynomial

T (z) = B[g](z) + eiαH(z)

does not vanish in |z| ≤ 1. Replacing g(z) by P (z) + λf(z) and noting that B
is a linear operator, it follows that the polynomial

T (z) =
(
B[P ](z) + eiαG(z)

)
+ λ

(
B[f ](z) + eiαF (z)

)
(2.9)

does not vanish in |z| ≤ 1 for every λ with |λ| > 1, where F (z) is the cojugate

polynomial of B[L](z) and L(z) = znf(1/z̄). This implies that∣∣B[P ](z) + eiαG(z)
∣∣ ≤ ∣∣B[f ](z) + eiαF (z)

∣∣ for |z| ≤ 1. (2.10)

If inequality (2.10) is not true, then there a point z = z0 with |z0| ≤ 1 such
that {∣∣B[P ](z) + eiαG(z)

∣∣}
z=z0

>
{∣∣B[f ](z) + eiαF (z)

∣∣}
z=z0

.

Since f(z) does not vanish in |z| ≤ 1, it follows(as in the case of g(z)) that
the polynomial B[f ](z) + eiαF (z) does not vanish in |z| ≤ 1. Hence{
B[f ](z) + eiαF (z)

}
z=z0

6= 0 with |z0| ≤ 1. We take

λ = −
{
B[P ](z) + eiαG(z)

}
z=z0

/
{
B[f ](z) + eiαF (z)

}
z=z0

so that λ is well-defined real or complex number with |λ| > 1 and with choice
of λ, from (2.9), we get T (z0) = 0 with |z0| ≤ 1. This is clearly a contradiction
to the fact that T (z) does not vanish in |z| ≤ 1. Thus∣∣B[P ](z) + eiαG(z)

∣∣ ≤ ∣∣B[f ](z) + eiαF (z)
∣∣
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for |z| ≤ 1, which in particular gives for each p > 0 and 0 ≤ θ < 2π,∫ 2π

0

∣∣∣B[P ](eiθ)] + eiαG(eiθ)
∣∣∣p dθ ≤ ∫ 2π

0

∣∣∣B[f ](eiθ) + eiαF (eiθ)
∣∣∣p dθ.

Using Lemma 2.4 and (2.7), we get for each p > 0,

∫ 2π

0

∣∣∣B[P ](eiθ) + eiαG(eiθ)
∣∣∣p dθ

≤
∣∣φn(λ0, λ1, λ2) + λ̄0e

iα
∣∣p ∫ 2π

0

∣∣∣f(eiθ)
∣∣∣p dθ (2.11)

=
∣∣φn(λ0, λ1, λ2) + λ̄0e

iα
∣∣p ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ.

Now if P1(z) has a zero on |z| = 1, then applying (2.11) to the polynomial
P ∗(z) = P1(tz)P2(z) where t < 1, we get for each p > 0 and α real,∫ 2π

0

∣∣∣B[P ∗](eiθ)] + eiαG∗(eiθ)
∣∣∣p dθ (2.12)

≤
∣∣φn(λ0, λ1, λ2) + λ̄0e

iα
∣∣p ∫ 2π

0

∣∣∣P ∗(eiθ)∣∣∣p dθ.
Letting t→ 1 in (2.12) and using continuity, the desired result follows imme-
diately and this proves Lemma 2.5. �

Lemma 2.6. If P ∈ Pn and Q(z) = znP (1/z̄), then for every p > 0,∫ 2π

0

∫ 2π

0

∣∣∣B[P ](eiθ) + eiαB[Q](eiθ)
∣∣∣p dθdα

≤
∫ 2π

0

∣∣φn(λ0, λ1, λ2)e
iα + λ0

∣∣p dα ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ,

where φn(λ0, λ1, λ2) is defined by (10).
The result is best possible as shown by polynomial is P (z) = zn.

Proof. By Lemma 2.5, we have for each p > 0,∫ 2π

0

∣∣∣B[P ](eiθ) + eiαG(eiθ)
∣∣∣p dθ ≤ ∣∣φn(λ0, λ1, λ2) + λ̄0e

iα
∣∣p ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ,
(2.13)

where G(z) is the conjugate polynomial of B[Q](z) and Q(z) = znP (1/z̄).
It can be easily verified that

|G(eiθ)| = |B[Q](eiθ)|, 0 ≤ θ < 2π. (2.14)
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Now for points eiθ, 0 ≤ θ < 2π, for which |B[P ](eiθ) 6= 0, we obtain by using
(2.14) for each p > 0,∫ 2π

0

∣∣∣B[P ](eiθ) + eiαB[Q](eiθ)
∣∣∣p dα

= |B[P ](eiθ)|p
∫ 2π

0

∣∣∣∣1 + eiα
B[Q](eiθ)

B[P ](eiθ)

∣∣∣∣p dα
= |B[P ](eiθ)|p

∫ 2π

0

∣∣∣∣1 + eiα
∣∣∣∣B[Q](eiθ)

B[P ](eiθ)

∣∣∣∣∣∣∣∣p dα
=

∫ 2π

0

∣∣∣|B[P ](eiθ)|+ eiα|B[Q](eiθ)|
∣∣∣p dα (2.15)

=

∫ 2π

0

∣∣∣|B[P ](eiθ)|+ eiα|G(eiθ)|
∣∣∣p dα.

Since inequality (2.15) is trivially true for points eiθ, 0 ≤ θ < 2π, for which
B[P ](eiθ) = 0, it follows that∫ 2π

0

∣∣∣B[P ](eiθ)] + eiαB[Q](eiθ)
∣∣∣p dα =

∫ 2π

0

∣∣∣|B[P ](eiθ)|+ eiα|G(eiθ)|
∣∣∣p dα.

(2.16)
Integrating (2.16) both sides with respect to θ from 0 to 2π and using (2.6),
we get ∫ 2π

0

∫ 2π

0

∣∣∣B[P ](eiθ) + eiαB[Q](eiθ)
∣∣∣p dαdθ

=

∫ 2π

0

∫ 2π

0

∣∣∣|B[P ](eiθ)|+ eiα|G(eiθ)|
∣∣∣p dαdθ

=

∫ 2π

0

{∫ 2π

0

∣∣∣|B[P ](eiθ)|+ eiα|G(eiθ)|
∣∣∣p dα} dθ

=

∫ 2π

0

{∫ 2π

0

∣∣∣B[P ](eiθ) + eiαG(eiθ)
∣∣∣p dα} dθ

=

∫ 2π

0

{∫ 2π

0

∣∣∣B[P ](eiθ) + eiαG(eiθ)
∣∣∣p dθ} dα

≤
∫ 2π

0

∣∣φn(λ0, λ1, λ2) + λ̄0e
iα
∣∣p dα ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ

=

∫ 2π

0

∣∣φn(λ0, λ1, λ2)e
iα + λ0

∣∣p dα ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ.

This completes the proof of Lemma 2.6. �
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3. Main results

We first prove:

Theorem 3.1. If P ∈ Pn, then for each p > 0,

‖B[P ]‖p ≤ |φn(λ0, λ1, λ2)| ‖P‖p , (3.1)

where B ∈ Bn and φn(λ0, λ1, λ2) is defined by (10).
The result is best possible and equality in (3.1) holds for P (z) = azn, a 6= 0.

Proof. By hypothesis P ∈ Pn, we can write

P (z) = P1(z)P2(z) =

k∏
j=1

(z − zj)
n∏

j=k+1

(z − zj) , k ≥ 1

where all the zeros of P1(z) lie in |z| ≤ 1 and all the zeros of P2(z) lie in
|z| > 1. First we suppose that all the zeros of P1(z) lie in |z| < 1. Let

Q2(z) = zn−kP2(1/z̄).

Then all the zeros of Q2(z) lie in |z| < 1 and |Q2(z)| = |P2(z)| for |z| = 1.
Now consider the polynomial

F (z) = P1(z)Q2(z) =
k∏
j=1

(z − zj)
n∏

j=k+1

(1− zz̄j),

then all the zeros of F (z) lie in |z| < 1 and for |z| = 1,

|F (z)| = |P1(z)| |Q2(z)| = |P1(z)| |P2(z)| = |P (z)| . (3.2)

Since P (z)/F (z) is not a constant, by the Maximum Modulus Principle, it
follows that

|P (z)| ≤ |F (z)| for |z| ≥ 1. (3.3)

Since F (z) 6= 0 for |z| ≥ 1, a direct application of Rouche’s theorem shows
that the polynomial H(z) = P (z) +λF (z) has all its zeros in |z| < 1 for every
λ with |λ| > 1. Applying Lemma 1.1 to the polynomial H(z) and noting that
B is a linear operator, it follows that all the zeros of

T (z) = B[H](z) = B[P ](z) + λB[F ](z)

lie in |z| < 1 for every λ with |λ| > 1. This implies

|B[P ](z)| ≤ |B[F ](z)| for |z| ≥ 1,

which, in particular, gives for each p > 0 and 0 ≤ θ < 2π,∫ 2π

0

∣∣∣B[P ](eiθ)
∣∣∣p dθ ≤ ∫ 2π

0

∣∣∣B[F ](eiθ)
∣∣∣p dθ. (3.4)
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Again, since all the zeros of F (z) lie in |z| < 1, by Lemma 1.1, all the zeros of
B[F (z)] also lie in |z| < 1. Therefore, the operator Λγ defined by

ΛγF (z) = B[F ](z) =

(
λ0 + λ1

n2

2
+ λ2

n3(n− 1)

8

)
bnz

n + · · ·+ λ0b0

is admissible. Hence by (2.2) of Lemma 2.3, for each p > 0, we have∫ 2π

0

∣∣∣B[F ](eiθ)
∣∣∣p dθ ≤ ∣∣∣∣λ0 + λ1

n2

2
+ λ2

n3(n− 1)

8

∣∣∣∣p ∫ 2π

0

∣∣∣F (eiθ)
∣∣∣p dθ

= |φn(λ0, λ1, λ2)|p
∫ 2π

0

∣∣∣F (eiθ)
∣∣∣p dθ (3.5)

Combining inequalities (3.4) and (3.5) and noting that |F (eiθ)| = |P (eiθ)|, we
obtainfor each p > 0,{∫ 2π

0

∣∣∣B[P ](eiθ)
∣∣∣p dθ}1/p

≤ |φn(λ0, λ1, λ2)|
{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ}1/p

(3.6)

In case P1(z) has a zero on |z| = 1, then the inequality (3.6) follows by using
similar argument as in the case of Lemma 2.5. This completes the proof of
Theorem 3.1. �

Remark 3.2. For λ0 = λ2 = 0, inequality (3.1) reduces to inequality (1.2)
for each p > 0. Next if we choose λ0 = λ1 = 0 in (3.1), we immediately get∥∥P ′′∥∥

p
≤ n(n− 1) ‖P‖p , p > 0. (3.7)

Inequality (1.8) also follows from Theorem 3.1 by letting p→∞ in (3.1).

Theorem 1.1 can be sharpened if we restrict ourselves to the class of poly-
nomials P ∈ Pn having no zero in |z| < 1. In this direction, we next present
the following interesting Lp extension of the inequality (1.9) for each p > 0.

Theorem 3.3. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for each
p > 0,

‖B[P ]‖p ≤
‖φn(λ0, λ1, λ2)z + λ0‖p

‖1 + z‖p
‖P‖p , (3.8)

where B ∈ Bn and φn(λ0, λ1, λ2) is defined by (10).
The result is best possible and equality in (3.8) holds for P (z) = azn + b, |a| =
|b| = 1.

Proof. By hypothesis P ∈ Pn and P (z) does not vanish in |z| < 1, therefore,

if Q(z) = znP (1/z̄), then by Lemma 2.2, we have for 0 ≤ θ < 2π,

|B[P ](eiθ)| ≤ |B[Q](eiθ)| (3.9)
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Also, by Lemma 2.6, for each p > 0 and α real,∫ 2π

0

∫ 2π

0

∣∣∣B[P ](eiθ) + eiαB[Q](eiθ)
∣∣∣p dθdα

≤
∫ 2π

0

∣∣φn(λ0, λ1, λ2)e
iα + λ0

∣∣p dα ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ. (3.10)

Now it can be easily verified that for every real number α and r ≥ 1,∣∣r + eiα
∣∣ ≥ ∣∣1 + eiα

∣∣ .
This implies for each p > 0,∫ 2π

0

∣∣r + eiα
∣∣p dα ≥ ∫ 2π

0

∣∣1 + eiα
∣∣p dα. (3.11)

If B[P ](eiθ) 6= 0, we take r = |B[Q](eiθ)|/|B[P ](eiθ)|, then by (3.9), r ≥ 1 and
we get ∫ 2π

0

∣∣∣B[P ](eiθ) + eiαB[Q](eiθ)
∣∣∣p dα

=
∣∣∣B[P ](eiθ)

∣∣∣p ∫ 2π

0

∣∣∣∣1 + eiα
B[Q](eiθ)

B[P ](eiθ)

∣∣∣∣p dα (3.12)

=
∣∣∣B[P ](eiθ)

∣∣∣p ∫ 2π

0

∣∣∣∣eiα +

∣∣∣∣B[Q](eiθ)

B[P ](eiθ)

∣∣∣∣∣∣∣∣p dα
≥

∣∣∣B[P ](eiθ)
∣∣∣p ∫ 2π

0

∣∣1 + eiα
∣∣p dα.

For B[P ](eiθ) = 0, this inequality is trivially true. Using this in (3.10), we
conclude that for each p > 0,∫ 2π

0

∣∣∣B[P ](eiθ)
∣∣∣p dθ ∫ 2π

0

∣∣1 + eiα
∣∣p dα

≤
∫ 2π

0

∣∣φn(λ0, λ1, λ2)e
iα + λ0

∣∣p dα ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ,

which is equivalent to (3.8) and this completes the proof. �

Remark 3.4. Taking λ0 = λ2 = 0 in (3.8), one gets inequality (1.4) for each
p > 0. Next if we choose λ0 = λ1 = 0 in (3.8), it follows that if P (z) 6= 0 in
|z| < 1, then for each p > 0∥∥P ′′(z)∥∥

p
≤ n(n− 1)

‖1 + z‖p
‖P‖p . (3.13)

The extremal polynomial is P (z) = azn + b, |a| = |b| = 1.
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Inequality (1.9) can be obtained from Theorem 3.2 by letting p → ∞ in
(3.8). Moreover, by using triangle inequality, one can easily deduce Theorem
B for R = 1 from Theorem 3.2.

A polynomial P ∈ Pn is said be self-inversive if P (z) = Q(z) where Q(z) is

the conjugate polynomial of P (z), that is, Q(z) = znP (1/z).

Finally in this paper, the following result is established for self-inversive
polynomials.

Theorem 3.5. If P ∈ Pn is a self-inversive polynomial, then for each p > 0,

‖B[P ]‖p ≤
‖φn(λ0, λ1, λ2)z + λ0‖p

‖1 + z‖p
‖P‖p . (3.14)

where B ∈ Bn and φn(λ0, λ1, λ2) is defined by (10).
The result is best possible and equality in (3.13) holds for P (z) = zn + 1.

Proof. Since P ∈ Pn is self-inversive polynomial, we have P (z) = Q(z) for all

z ∈ C where Q(z) = znP (1/z̄). This gives,

|B[P ](z)| = |B[Q](z)| for all z ∈ C
so that

|B[Q](eiθ)/B[P ](eiθ)| = 1, 0 ≤ θ < 2π.

Using this in place of (3.9) and proceeding similarly as in the proof of Theorem
3.2, we get the desired result. This completes the proof of Theorem 3.3. �

Concluding Remark. The best possible estimates analogous to Theorem A,
Theorem B and other related results for the case R > 1 will appear somewhere
else.
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