STRONG CONVERGENCE THEORMS FOR VARIATIONAL INCLUSION PROBLEMS AND STRICT PSEUDO-CONTRACTIONS IN HILBERT SPACES

Ying Liu
College of Mathematics and Computer Hebei University, Baoding 071002, P.R. China
e-mail: ly_cyh2007@yahoo.com.cn

Abstract

In this paper, we introduce a new iterative scheme for finding a common element of the set of fixed points of a k-strictly pseudo-contractive mapping and the set of solutions of a variational inclusion for an α-inverse-strongly monotone mapping and a maximal monotone mapping in a real Hilbert space. Then we show that the sequence converges strongly to a common element of two sets.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let $A: H \rightarrow H$ be a single-valued mapping and $M: H \rightarrow 2^{H}$ be a multivalued mapping. Then, we consider the following variational inclusion problem which is to find $u \in H$ such that

$$
\begin{equation*}
0 \in A(u)+M(u) \tag{1.1}
\end{equation*}
$$

The set of solutions of the variational inclusion(1.1) is denoted by $V I(H, A, M)$. Special Cases.
(1) When M is a maximal monotone mapping and A is a strongly monotone and Lipschitz continuous mapping, problem (1.1) has been studied by Huang [8].

[^0](2) If $M=\partial \phi$, where $\partial \phi$ denotes the subdifferential of a proper, convex and lower semi-continuous function $\phi: H \rightarrow R \bigcup\{+\infty\}$, then problem (1.1) reduces to the following problem: find $u \in H$, such that
\[

$$
\begin{equation*}
\langle A(u), v-u\rangle+\phi(v)-\phi(u) \geq 0, \quad \forall v \in H \tag{1.2}
\end{equation*}
$$

\]

which is called a nonlinear variational inequality and has been studied by many authors; see, for example, [1-2].
(3) If $M=\partial \delta_{C}$, where δ_{C} is the indicator function of C, then problem (1.1) reduces to the following problem: find $u \in C$, such that

$$
\begin{equation*}
\langle A(u), v-u\rangle \geq 0, \quad \forall v \in C \tag{1.3}
\end{equation*}
$$

which is the classical variational inequality; see,e.g., [7,9].
A mapping $A: H \rightarrow H$ is called inverse-strongly monotone if there exists $\alpha>0$ such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in H .
$$

Such a mapping A is also called α-inverse-strongly monotone. If A is an α -inverse-strongly monotone mapping of H to H, then it is obvious that A is $\frac{1}{\alpha}$-Lipschitz continuous. We also have that for all $x, y \in H$, and $\lambda>0$,

$$
\begin{align*}
& \|(I-\lambda A) x-(I-\lambda A) y\|^{2} \\
& =\|(x-y)-\lambda(A x-A y)\|^{2} \\
& =\|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+\lambda^{2}\|A x-A y\|^{2} \tag{1.4}\\
& \leq\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} .
\end{align*}
$$

So, if $\lambda \leq 2 \alpha$, then $I-\lambda A$ is a nonexpansive mapping of H into H. See [9] for some examples of inverse-strongly monotone mappings.

A mapping T of C into itself is nonexpansive if $\|T x-T y\| \leq\|x-y\|, \forall x, y \in$ C. Recently, Iiduka and Takahashi [9], Takahashi and Toyoda [17], Chen et al. [5] , Nadezhkina and Takahashi [12], Ceng and Yao [3], Yao and Yao [19] introduced many iterative methods for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of variational inequality (1.3) for an α-inverse-strongly monotone mapping, they obtained some weak and strong convergence theorems.

On the other hand, Liu and Chen [10] introduced a hybrid iterative method for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of variational inclusion problem (1.1) for a maximal monotone mapping and an α-inverse-strongly monotone mapping.

A mapping $S: C \rightarrow H$ is said to be k-strictly pseudo-contractive if there exists a constant $k \in[0,1)$ such that

$$
\begin{equation*}
\|S x-S y\|^{2} \leq\|x-y\|^{2}+k\|(I-S) x-(I-S) y\|^{2}, \quad \forall x, y \in C \tag{1.5}
\end{equation*}
$$

Note that the class of k-strict pseudo-contractions strictly includes the class of nonexpansive mappings. That is, S is nonexpansive if and only if S is 0 -strictly pseudo-contractive.

The set of fixed points of S is denoted by $F(S)$. Very recently, by using the general approximation method Qin et al. [15] obtained a strong convergence theorem for finding an element of $F(S)$.

Since variational inclusion problem (1.1) is the generalization of variational inequality (1.3) and the class of k-strict pseudo-contractions is the generalization of the class of nonexpansive mappings, motivated and inspired by the above results, we introduce a new iteration scheme for finding a common element of the set of fixed points of a k-strict pseudo-contraction and the set of solutions of variational inclusion problem (1.1) for a maximal monotone mapping and an α-inverse-strongly monotone mapping and then obtain a strong convergence theorem.

2. Preliminaries

Throughout this paper, we always let X be a real Banach space with dual space X^{*}, H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, and let C be a closed convex subset of H. We write $x_{n} \rightharpoonup x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges weakly to $x . x_{n} \rightarrow x$ implies that $\left\{x_{n}\right\}$ converges strongly to x. We denote by N and R the sets of positive integers and real numbers, respectively. For any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$, such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\|, \quad \forall y \in C .
$$

Such a P_{C} is called the metric projection of H onto C. It is known that P_{C} is nonexpansive. Furthermore, for $x \in H$ and $u \in C$,

$$
u=P_{C} x \quad \Leftrightarrow \quad\langle x-u, u-y\rangle \geq 0, \quad \forall y \in C .
$$

A set-valued mapping $M: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H, u \in$ $M x, v \in M y$ imply $\langle x-y, u-v\rangle \geq 0$. A monotone mapping $M: H \rightarrow 2^{H}$ is maximal if the graph $G(M)$ of M is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping M is maximal if and only if for $(x, u) \in H \times H,\langle x-y, u-v\rangle \geq 0$ for every $(y, v) \in G(M)$ implies $u \in M x$.

The following definitions and lemmas are useful for our paper.
Definition 2.1. ([13]) If M is a maximal monotone mapping on H, then the resolvent operator associated with M is defined by

$$
J_{M, \lambda}(u)=(I+\lambda M)^{-1} u, \quad \forall u \in H,
$$

where $\lambda>0$ is a constant and I is the identity operator.

Definition 2.2. ([6]) A single-valued operator $A: H \rightarrow H$ is said to be hemi-continuous if for any fixed $x, y, z \in H$, the function $t \rightarrow\langle A(x+t y), z\rangle$ is continuous at 0^{+}. It is well known that a continuous mapping must be hemi-continuous.

Definition 2.3. ([6]) A set-valued mapping $A: X \rightarrow 2^{X^{*}}$ is said to be bounded if $A(B)$ is bounded for every bounded subset B of X.

Lemma 2.4. ([13]) The resolvent operator $J_{M, \lambda}$ is single-valued and nonexpansive, that is,

$$
\left\|J_{M, \lambda}(u)-J_{M, \lambda}(v)\right\| \leq\|u-v\|, \quad \forall u, v \in H
$$

Lemma 2.5. ([10]) The resolvent operator $J_{M, \lambda}$ is firmly nonexpansive, that is

$$
\left\langle J_{M, \lambda} u-J_{M, \lambda} v, u-v\right\rangle \geq\left\|J_{M, \lambda} u-J_{M, \lambda} v\right\|^{2}, \quad \forall u, v \in H
$$

Lemma 2.6. Let $M, J_{M, \lambda}$ be as in Definition 2.1. Then the following holds:

$$
\left\|J_{M, \lambda} x-J_{M, \mu} x\right\|^{2} \leq \frac{\mu-\lambda}{\mu}\left\langle J_{M, \lambda} x-J_{M, \mu} x, x-J_{M, \mu} x\right\rangle
$$

for all $\lambda, \mu>0$ and $x \in H$.
Proof. For $\lambda, \mu>0$ and $x \in H$, put $J_{M, \lambda} x=(I+\lambda M)^{-1} x=u, J_{M, \mu} x=$ $(I+\mu M)^{-1} x=v$. Then we obtain that $\frac{x-u}{\lambda} \in M u$, and $\frac{x-v}{\mu} \in M v$. So, we have $\left\langle u-v, \frac{x-u}{\lambda}-\frac{x-v}{\mu}\right\rangle \geq 0$. Hence, $\left\langle u-v, u-\frac{\lambda}{\mu} v\right\rangle \leq\left\langle u-v,\left(1-\frac{\lambda}{\mu}\right) x\right\rangle$. That is $\left\langle u-v, u-v+v-\frac{\lambda}{\mu} v\right\rangle \leq\left\langle u-v,\left(1-\frac{\lambda}{\mu}\right) x\right\rangle$. So, we have $\|u-v\|^{2} \leq$ $\left(1-\frac{\lambda}{\mu}\right)\langle u-v, x-v\rangle$.

Lemma 2.7. ([14]) If $T: X \rightarrow 2^{X^{*}}$ is a maximal monotone mapping and P : $X \rightarrow X^{*}$ is a hemi-continuous bounded monotone operator with $D(P)=X$, then the sum $S=T+P$ is a maximal monotone mapping.

Lemma 2.8. ([11]) If $S: C \rightarrow C$ is a k-strict pseudo-contraction, then the mapping $I-S$ is demiclosed (at 0). That is, if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup \tilde{x}$ and $(I-S) x_{n} \rightarrow 0$, then $(I-S) \tilde{x}=0$.

Lemma 2.9. ([11]) If $S: C \rightarrow C$ is a k-strict pseudo-contraction, then the fixed point set $F(S)$ of S is closed and convex.

Lemma 2.10. ([15]) There holds the identity in a Hilbert space H :

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in[0,1]$.
Lemma 2.11. ([16]) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space and let $\left\{\beta_{n}\right\}$ be a sequence of $[0,1]$ such that $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<$ 1. Suppose $x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) y_{n}$ for all $n \in N$ and $\limsup _{n \rightarrow \infty}\left\{\left\|y_{n+1}-y_{n}\right\|-\right.$ $\left.\left\|x_{n+1}-x_{n}\right\|\right\} \leq 0$. Then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 2.12. ([18]) Assume that $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\delta_{n}
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(i) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(ii) $\limsup _{n \rightarrow \infty} \frac{\delta_{n}}{\gamma_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.13. ([4]) In a Hilbert space H, there holds the inequality:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y,(x+y)\rangle, \quad \forall x, y \in H
$$

Lemma 2.14. The function $u \in H$ is a solution of variational inclusion (1.1) if and only if $u \in H$ satisfies the relation

$$
u=J_{M, \lambda}[u-\lambda A u],
$$

where $\lambda>0$ is a constant, M is a maximal monotone mapping and $J_{M, \lambda}=$ $(I+\lambda M)^{-1}$ is the resolvent operator.
Proof. Using Definition 2.1, we can obtain the desired result.

Lemma 2.15. Let $M: H \rightarrow 2^{H}$ be a maximal monotone mapping. Let $A: H \rightarrow H$ be an α-inverse-strongly monotone mapping. Then $V I(H, A, M)$ is closed and convex.
Proof. It follows from Lemma 2.14 that $V I(H, A, M)=F\left(J_{M, \lambda}(I-\lambda A)\right)$ (the set of fixed points of $J_{M, \lambda}(I-\lambda A)$), where $\lambda \leq 2 \alpha$. By Lemma 2.4 and formula (1.4), we have $J_{M, \lambda}(I-\lambda A)$ is a nonexpansive mapping of H into itself. Thus, $V I(H, A, M)$ is closed and convex.

3. Main Results

Theorem 3.1. Let H be a real Hilbert space. Let A be an α-inverse-strongly monotone mapping of H into itself and $M: H \rightarrow 2^{H}$ be a maximal monotone mapping. Let $S: H \rightarrow H$ be a k-strictly pseudo-contractive mapping such that $F(S) \bigcap V I(H, A, M) \neq \emptyset$. Let $u \in H$ and $x_{1} \in H$ and let $\left\{z_{n}\right\} \subset H$ and $\left\{x_{n}\right\} \subset H$ be sequences generated by

$$
\left\{\begin{array}{l}
z_{n}=J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right), \\
y_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right) z_{n}, \\
v_{n}=\gamma_{n} y_{n}+\left(1-\gamma_{n}\right) S y_{n}, \\
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) v_{n}, \quad \forall n \in N,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset(0,1),\left\{\gamma_{n}\right\} \subset[0,1)$ and $\left\{\lambda_{n}\right\} \subset(0,2 \alpha)$ satisfy the following conditions:
(B1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(B2) $0<c \leq \beta_{n} \leq d<1,0<a \leq \lambda_{n} \leq b<2 \alpha, \lim _{n \rightarrow \infty}\left|\lambda_{n+1}-\lambda_{n}\right|=0$;
(B3) $0 \leq k \leq \gamma_{n} \leq \gamma<1$ and $\lim _{n \rightarrow \infty}\left|\gamma_{n+1}-\gamma_{n}\right|=0$.
Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(H, A, M)} u$.

Proof. Take $p \in F(S) \bigcap V I(H, A, M)$. By $p=J_{M, \lambda_{n}}\left(p-\lambda_{n} A p\right)$, Lemma 2.4 and (1.4), we know that, for any $n \in N$,

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} & =\left\|J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-J_{M, \lambda_{n}}\left(p-\lambda_{n} A p\right)\right\|^{2} \\
& \leq\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2} \tag{3.1}\\
& \leq\left\|x_{n}-p\right\|^{2} .
\end{align*}
$$

So, we obtain

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|\alpha_{n}(u-p)+\left(1-\alpha_{n}\right)\left(z_{n}-p\right)\right\| \\
& \leq \alpha_{n}\|u-p\|+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\| \\
& \leq \alpha_{n}\|u-p\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| .
\end{aligned}
$$

By Lemma 2.10 and (B3), we have

$$
\begin{align*}
\left\|v_{n}-p\right\|^{2}= & \left\|\gamma_{n} y_{n}+\left(1-\gamma_{n}\right) S y_{n}-p\right\|^{2} \\
= & \left\|\gamma_{n}\left(y_{n}-p\right)+\left(1-\gamma_{n}\right)\left(S y_{n}-p\right)\right\|^{2} \\
= & \gamma_{n}\left\|y_{n}-p\right\|^{2}+\left(1-\gamma_{n}\right)\left\|S y_{n}-p\right\|^{2} \\
& -\gamma_{n}\left(1-\gamma_{n}\right)\left\|y_{n}-S y_{n}\right\|^{2} \\
\leq & \gamma_{n}\left\|y_{n}-p\right\|^{2}+\left(1-\gamma_{n}\right)\left(\left\|y_{n}-p\right\|^{2}+k\left\|y_{n}-S y_{n}\right\|^{2}\right) \tag{3.2}\\
& -\gamma_{n}\left(1-\gamma_{n}\right)\left\|y_{n}-S y_{n}\right\|^{2} \\
= & \left\|y_{n}-p\right\|^{2}-\left(1-\gamma_{n}\right)\left(\gamma_{n}-k\right)\left\|y_{n}-S y_{n}\right\|^{2} \\
\leq & \left\|y_{n}-p\right\|^{2} .
\end{align*}
$$

So, we have that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\beta_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}\right)\left(v_{n}-p\right)\right\| \\
& \leq \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|y_{n}-p\right\| \\
& \leq \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left(\alpha_{n}\|u-p\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|\right) \\
& =\left(1-\alpha_{n}\left(1-\beta_{n}\right)\right)\left\|x_{n}-p\right\|+\alpha_{n}\left(1-\beta_{n}\right)\|u-p\| .
\end{aligned}
$$

Putting $M=\max \left\{\left\|x_{1}-p\right\|,\|u-p\|\right\}$, we have that $\left\|x_{n}-p\right\| \leq M$ for all $n \in N$. In fact, it is obvious that $\left\|x_{1}-p\right\| \leq M$. Suppose that $\left\|x_{k}-p\right\| \leq M$ for some $k \in N$, then, we have that $\left\|x_{k+1}-p\right\| \leq\left(1-\alpha_{k}\left(1-\beta_{k}\right)\right) M+\alpha_{k}\left(1-\beta_{k}\right) M=$ M. By induction, we obtain that $\left\|x_{n}-p\right\| \leq M$ for all $n \in N$. So, $\left\{x_{n}\right\}$ is bounded. Hence, $\left\{A x_{n}\right\},\left\{y_{n}\right\},\left\{v_{n}\right\}$ and $\left\{z_{n}\right\}$ are also bounded. Putting $u_{n}=x_{n}-\lambda_{n} A x_{n}$, we have

$$
\begin{aligned}
y_{n+1}-y_{n}= & \alpha_{n+1} u+\left(1-\alpha_{n+1}\right) z_{n+1}-\left(\alpha_{n} u+\left(1-\alpha_{n}\right) z_{n}\right) \\
= & \left(\alpha_{n+1}-\alpha_{n}\right) u+\left(1-\alpha_{n+1}\right)\left(J_{M, \lambda_{n+1}} u_{n+1}-J_{M, \lambda_{n+1}} u_{n}\right. \\
& \left.+J_{M, \lambda_{n+1}} u_{n}-J_{M, \lambda_{n}} u_{n}+J_{M, \lambda_{n}} u_{n}\right)-\left(1-\alpha_{n}\right) J_{M, \lambda_{n}} u_{n} .
\end{aligned}
$$

So, we have that

$$
\begin{align*}
& \left\|y_{n+1}-y_{n}\right\| \\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left(1-\alpha_{n+1}\right)\left\|u_{n+1}-u_{n}\right\| \\
& \quad+\left(1-\alpha_{n+1}\right)\left\|J_{M, \lambda_{n+1}} u_{n}-J_{M, \lambda_{n}} u_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{M, \lambda_{n}} u_{n}\right\| \tag{3.3}\\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\| \\
& \quad+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{M, \lambda_{n}} u_{n}\right\|+\left(1-\alpha_{n+1}\right)\left\|J_{M, \lambda_{n+1}} u_{n}-J_{M, \lambda_{n}} u_{n}\right\| .
\end{align*}
$$

Note that

$$
\begin{align*}
& \left\|v_{n+1}-v_{n}\right\| \\
& =\left\|\gamma_{n+1} y_{n+1}+\left(1-\gamma_{n+1}\right) S y_{n+1}-\gamma_{n} y_{n}-\left(1-\gamma_{n}\right) S y_{n}\right\| \tag{3.4}\\
& =\| \gamma_{n+1} y_{n+1}-\gamma_{n+1} y_{n}+\left(1-\gamma_{n+1}\right) S y_{n+1}-\left(1-\gamma_{n+1}\right) S y_{n} \\
& \quad+\gamma_{n+1} y_{n}+\left(1-\gamma_{n+1}\right) S y_{n}-\gamma_{n} y_{n}-\left(1-\gamma_{n}\right) S y_{n} \| .
\end{align*}
$$

It follows from Lemma 2.10 that

$$
\begin{align*}
& \left\|\gamma_{n+1} y_{n+1}-\gamma_{n+1} y_{n}+\left(1-\gamma_{n+1}\right) S y_{n+1}-\left(1-\gamma_{n+1}\right) S y_{n}\right\|^{2} \\
& =\gamma_{n+1}\left\|y_{n+1}-y_{n}\right\|^{2}+\left(1-\gamma_{n+1}\right)\left\|S y_{n+1}-S y_{n}\right\|^{2} \\
& \quad-\gamma_{n+1}\left(1-\gamma_{n+1}\right)\left\|y_{n+1}-S y_{n+1}-\left(y_{n}-S y_{n}\right)\right\|^{2} \\
& \leq \gamma_{n+1}\left\|y_{n+1}-y_{n}\right\|^{2}+\left(1-\gamma_{n+1}\right)\left(\left\|y_{n+1}-y_{n}\right\|^{2}\right. \\
& \left.\quad+k\left\|\left(y_{n+1}-S y_{n+1}\right)-\left(y_{n}-S y_{n}\right)\right\|^{2}\right) \tag{3.5}\\
& \quad-\gamma_{n+1}\left(1-\gamma_{n+1}\right)\left\|y_{n+1}-S y_{n+1}-\left(y_{n}-S y_{n}\right)\right\|^{2} \\
& =\left\|y_{n+1}-y_{n}\right\|^{2}-\left(1-\gamma_{n+1}\right)\left(\gamma_{n+1}-k\right)\left\|y_{n+1}-S y_{n+1}-\left(y_{n}-S y_{n}\right)\right\|^{2} \\
& \leq\left\|y_{n+1}-y_{n}\right\|^{2} .
\end{align*}
$$

Combining (3.4) with (3.5), we obtain

$$
\begin{align*}
\left\|v_{n+1}-v_{n}\right\| \leq & \left\|y_{n+1}-y_{n}\right\| \\
& +\left\|\gamma_{n+1} y_{n}+\left(1-\gamma_{n+1}\right) S y_{n}-\gamma_{n} y_{n}-\left(1-\gamma_{n}\right) S y_{n}\right\| \tag{3.6}\\
\leq & \left\|y_{n+1}-y_{n}\right\|+\left\|y_{n}-S y_{n}\right\|\left|\gamma_{n+1}-\gamma_{n}\right| .
\end{align*}
$$

It follows from (3.6) and (3.3) that

$$
\begin{align*}
& \left\|v_{n+1}-v_{n}\right\| \leq\left\|y_{n+1}-y_{n}\right\|+\left\|y_{n}-S y_{n}\right\|\left|\gamma_{n+1}-\gamma_{n}\right| \\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left\|x_{n+1}-x_{n}\right\| \\
& \quad+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{M, \lambda_{n}} u_{n}\right\| \tag{3.7}\\
& \quad+\left(1-\alpha_{n+1}\right)\left\|J_{M, \lambda_{n+1}} u_{n}-J_{M, \lambda_{n}} u_{n}\right\|+\left\|y_{n}-S y_{n}\right\|\left|\gamma_{n+1}-\gamma_{n}\right| .
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
& \left\|v_{n+1}-v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{M, \lambda_{n}} u_{n}\right\| \\
& \quad+\left(1-\alpha_{n+1}\right)\left\|J_{M, \lambda_{n+1}} u_{n}-J_{M, \lambda_{n}} u_{n}\right\|+\left\|y_{n}-S y_{n}\right\|| | \gamma_{n+1}-\gamma_{n} \mid .
\end{aligned}
$$

It follows from Lemma $2.6,(B 1),(B 2),(B 3)$ that

$$
\limsup _{n \rightarrow \infty}\left(\left\|v_{n+1}-v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 .
$$

From Lemma 2.11, we get

$$
\begin{equation*}
v_{n}-x_{n} \rightarrow 0, \quad(n \rightarrow \infty) . \tag{3.8}
\end{equation*}
$$

Consequently, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|v_{n}-x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Using (3.2) and (3.1), we also have

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2} \\
& =\left\|\beta_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}\right)\left(v_{n}-p\right)\right\|^{2} \\
& \leq \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|y_{n}-p\right\|^{2} \\
& =\beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|\alpha_{n}(u-p)+\left(1-\alpha_{n}\right)\left(z_{n}-p\right)\right\|^{2} \\
& \leq \tag{3.10}\\
& \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left(\alpha_{n}\|u-p\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2}\right) \\
& \leq \\
& \quad \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left(\alpha_{n}\|u-p\|^{2}\right. \\
& \left.\quad+\left(1-\alpha_{n}\right)\left(\left\|x_{n}-p\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2}\right)\right) \\
& \leq \\
& \quad\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right) \alpha_{n}\|u-p\|^{2} \\
& \quad+\left(1-\beta_{n}\right)\left(1-\alpha_{n}\right) \lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A p\right\|^{2},
\end{align*}
$$

and hence

$$
\begin{aligned}
& (1-d)\left(1-\alpha_{n}\right) a(2 \alpha-b)\left\|A x_{n}-A p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\left(1-\beta_{n}\right) \alpha_{n}\|u-p\|^{2}
\end{aligned}
$$

It follows from $(B 1),(B 2)$ and (3.9) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-A p\right\|=0 \tag{3.11}
\end{equation*}
$$

Using Lemma 2.5, we have

$$
\begin{aligned}
&\left\|z_{n}-p\right\|^{2} \\
&=\left\|J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-J_{M, \lambda_{n}}\left(p-\lambda_{n} A p\right)\right\|^{2} \\
& \leq\left\langle\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right), z_{n}-p\right\rangle \\
&= \frac{1}{2}\left(\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)\right\|^{2}+\left\|z_{n}-p\right\|^{2}\right. \\
&\left.-\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)-\left(z_{n}-p\right)\right\|^{2}\right) \\
& \leq \frac{1}{2}\left(\left\|x_{n}-p\right\|^{2}+\left\|z_{n}-p\right\|^{2}-\left\|\left(x_{n}-z_{n}\right)-\lambda_{n}\left(A x_{n}-A p\right)\right\|^{2}\right) \\
&= \frac{1}{2}\left(\left\|x_{n}-p\right\|^{2}+\left\|z_{n}-p\right\|^{2}-\left\|x_{n}-z_{n}\right\|^{2}\right. \\
&\left.-\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}+2 \lambda_{n}\left\langle x_{n}-z_{n}, A x_{n}-A p\right\rangle\right)
\end{aligned}
$$

So, we have

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n}-z_{n}\right\|^{2} \\
& -\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}+2 \lambda_{n}\left\langle x_{n}-z_{n}, A x_{n}-A p\right\rangle \tag{3.12}
\end{align*}
$$

Then, from (3.10) and (3.12), we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\beta_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}\right)\left(v_{n}-p\right)\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left(\alpha_{n}\|u-p\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2}\right) \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\alpha_{n}\|u-p\|^{2}+\left(1-\beta_{n}\right)\left\|z_{n}-p\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\alpha_{n}\|u-p\|^{2}+\left(1-\beta_{n}\right)\left(\left\|x_{n}-p\right\|^{2}\right. \\
& \left.-\left\|x_{n}-z_{n}\right\|^{2}-\lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}+2 \lambda_{n}\left\langle x_{n}-z_{n}, A x_{n}-A p\right\rangle\right) \\
\leq & \left\|x_{n}-p\right\|^{2}+\alpha_{n}\|u-p\|^{2}-\left(1-\beta_{n}\right)\left\|x_{n}-z_{n}\right\|^{2} \\
& +2\left(1-\beta_{n}\right) \lambda_{n}\left\|x_{n}-z_{n}\right\|\left\|A x_{n}-A p\right\|
\end{aligned}
$$

and hence,

$$
\begin{aligned}
(1-d)\left\|x_{n}-z_{n}\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n}\|u-p\|^{2} \\
& +2\left(1-\beta_{n}\right) \lambda_{n}\left\|x_{n}-z_{n}\right\|\left\|A x_{n}-A p\right\|
\end{aligned}
$$

Using (3.9), $\alpha_{n} \rightarrow 0$ and (3.11), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

Since $y_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right) z_{n}$, we have

$$
\begin{equation*}
\left\|y_{n}-z_{n}\right\|=\alpha_{n}\left\|u-z_{n}\right\| \rightarrow 0, \quad(n \rightarrow \infty) \tag{3.14}
\end{equation*}
$$

Since $\left\|v_{n}-y_{n}\right\| \leq\left\|v_{n}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-y_{n}\right\|$, from (3.8), (3.13) and (3.14), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|v_{n}-y_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

Next, putting $z_{0}=P_{F(S) \cap V I(H, A, M)} u$, we shall show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-z_{0}, y_{n}-z_{0}\right\rangle \leq 0 \tag{3.16}
\end{equation*}
$$

Take a subsequence $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-z_{0}, y_{n}-z_{0}\right\rangle=\lim _{i \rightarrow \infty}\left\langle u-z_{0}, y_{n_{i}}-z_{0}\right\rangle \tag{3.17}
\end{equation*}
$$

Without loss of generality, we may assume that $y_{n_{i}} \rightharpoonup w$. Let us show $w \in$ $F(S) \bigcap V I(H, A, M)$. From (3.14), we have $z_{n_{i}} \rightharpoonup w$. Since A is $\frac{1}{\alpha}$-Lipschitz continuous monotone and $D(A)=H$, by Lemma $2.7, M+A$ is a maximal
monotone mapping. Let $(v, f) \in G(M+A)$. Since $f-A v \in M v$ and $\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-\right.$ $\left.z_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right) \in M z_{n_{i}}$, we have

$$
\left\langle v-z_{n_{i}},(f-A v)-\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-z_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right)\right\rangle \geq 0 .
$$

Therefore, we have

$$
\begin{aligned}
\left\langle v-z_{n_{i}}, f\right\rangle \geq & \left\langle v-z_{n_{i}}, A v+\frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-z_{n_{i}}-\lambda_{n_{i}} A x_{n_{i}}\right)\right\rangle \\
= & \left\langle v-z_{n_{i}}, A v-A x_{n_{i}}\right\rangle+\left\langle v-z_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-z_{n_{i}}\right)\right\rangle \\
= & \left\langle v-z_{n_{i}}, A v-A z_{n_{i}}\right\rangle+\left\langle v-z_{n_{i}}, A z_{n_{i}}-A x_{n_{i}}\right\rangle \\
& +\left\langle v-z_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-z_{n_{i}}\right)\right\rangle \\
\geq & \left\langle v-z_{n_{i}}, A z_{n_{i}}-A x_{n_{i}}\right\rangle+\left\langle v-z_{n_{i}}, \frac{1}{\lambda_{n_{i}}}\left(x_{n_{i}}-z_{n_{i}}\right)\right\rangle .
\end{aligned}
$$

Let $i \rightarrow \infty$, we obtain $\langle v-w, f\rangle \geq 0$. Since $A+M$ is maximal monotone, we have $0 \in A w+M w$ and hence $w \in V I(H, A, M)$. Next, we prove $w \in F(S)$. It follows from (3.15) and (B3) that

$$
\begin{equation*}
\left\|S y_{n}-y_{n}\right\|=\frac{1}{1-\gamma_{n}}\left\|v_{n}-y_{n}\right\| \leq \frac{1}{1-\gamma}\left\|v_{n}-y_{n}\right\| \rightarrow 0, \quad(n \rightarrow \infty) . \tag{3.18}
\end{equation*}
$$

By Lemma 2.8, we have $w \in F(S)$. Therefore, we have $w \in F(S) \bigcap V I(H, A, M)$. From (3.17) and the property of metric projection, we have

$$
\limsup _{n \rightarrow \infty}\left\langle u-z_{0}, y_{n}-z_{0}\right\rangle=\lim _{n \rightarrow \infty}\left\langle u-z_{0}, y_{n_{i}}-z_{0}\right\rangle=\left\langle u-z_{0}, w-z_{0}\right\rangle \leq 0 .
$$

Finally, we prove $x_{n} \rightarrow z_{0}$. In fact, since $y_{n}-z_{0}=\alpha_{n}\left(u-z_{0}\right)+\left(1-\alpha_{n}\right)\left(z_{n}-z_{0}\right)$, from (3.2), Lemma 2.13 and (3.1), we have

$$
\begin{aligned}
\left\|x_{n+1}-z_{0}\right\|^{2} \leq & \beta_{n}\left\|x_{n}-z_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left\|v_{n}-z_{0}\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-z_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left\|y_{n}-z_{0}\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-z_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left(\left(1-\alpha_{n}\right)\left\|z_{n}-z_{0}\right\|^{2}\right. \\
& \left.+2 \alpha_{n}\left\langle u-z_{0}, y_{n}-z_{0}\right\rangle\right) \\
\leq & \left(1-\left(1-\beta_{n}\right) \alpha_{n}\right)\left\|x_{n}-z_{0}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle u-z_{0}, y_{n}-z_{0}\right\rangle .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty}\left(1-\beta_{n}\right) \alpha_{n}=\infty$ and $\limsup _{n \rightarrow \infty} 2\left\langle u-z_{0}, y_{n}-z_{0}\right\rangle \leq 0$, from Lemma 2.12, we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{0}\right\|=0
$$

This completes the proof.

Remark 3.2. Take $k=0,\left\{\gamma_{n}\right\}=\{0\}$ in Theorem 3.1, we can obtain a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of a variational inclusion for a maximal monotone mapping and an α-inverse-strongly monotone mapping.

References

[1] L. Ceng, Existence and algorithm of solutions for general multivalued mixed implicit quasi-variational inequalities, Appl. Math. Mech. 24 (2003), 1324-1333.
[2] L. Ceng, Perturbed proximal point algorithm for generalized nonlinear set-valued mixed quasi-variational inclusions, Acta. Math. Sin. 47 (2004), 11-18.
[3] L. Ceng and J. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), 12931303.
[4] S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal.TMA 30 (1997), 4197-4208.
[5] J. Chen, L. Chang and T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl. 334 (2007), 1450-1461.
[6] Y. Fang and N. Huang, H-Accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl Math Lett. 17 (2004), 647-653.
[7] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inequalities, J. Math. Anal. Appl. 185 (1994), 706-712.
[8] N. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Computers Math.Applic. 35 (1998), 9-14.
[9] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
[10] Y. Liu and Y. Chen, The Common Solution for the Question of Fixed Point and the Question of Variational Inclusion, J. Math. Res. Exposition 29 (2009), 477-484.
[11] G. Marino and H. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.
[12] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), 191-201.
[13] M. Noor, Equivalence of variational inclusions with resolvent equations, Nonlinear Anal. 41 (2000), 963-970.
[14] D. Pascali, Nonlinear mappings of monotone type, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn (1978).
[15] X. Qin, M. Shang and S. Kang, Strong convergence theorems of Modified Mann iterative process for strict pseudo-contractions in Hilbert spaces, Nonlinear Analysis. 70 (2009), 1257-1264.
[16] S. Takahashi and W. Takahashi, Strong convergence theorems for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Analysis. 69 (2008),1025-1033.
[17] W. Takahashi and M. Toyoda, SWeak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
[18] H. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279-291.
[19] Y. Yao and J. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007),1551-1558.

[^0]: ${ }^{0}$ Received August 17, 2012. Revised November 16, 2012.
 ${ }^{0} 2000$ Mathematics Subject Classification: 47H09, 47H05,4 7H06, 47J25, 47J05
 ${ }^{0}$ Keywords: Metric projection, variational inclusion, strict pseudo-contraction, inversestrongly monotone mapping, strong convergence.
 ${ }^{0}$ This work was financially supported by the Natural Science Foundation of Hebei Education Commission(2010110), the Natural Science Foundation of Hebei Province(A2011201053 A2012201054) and the National Natural Science Foundation of China(11101115).

