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Abstract. In this paper, we introduce a new iterative scheme for finding a common element
of the set of fixed points of a k—strictly pseudo-contractive mapping and the set of solutions
of a variational inclusion for an a—inverse-strongly monotone mapping and a maximal mono-
tone mapping in a real Hilbert space. Then we show that the sequence converges strongly

to a common element of two sets.

1. INTRODUCTION

Let H be a real Hilbert space and C be a nonempty closed convex subset
of H. Let A: H — H be a single-valued mapping and M : H — 2 be a
multivalued mapping. Then, we consider the following variational inclusion
problem which is to find w € H such that

0 € A(u) + M(u). (1.1)

The set of solutions of the variational inclusion(1.1) is denoted by VI(H, A, M).
Special Cases.

(1) When M is a maximal monotone mapping and A is a strongly monotone
and Lipschitz continuous mapping, problem (1.1) has been studied by Huang
[3].
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(2) If M = 0¢, where 0¢ denotes the subdifferential of a proper, convex
and lower semi-continuous function ¢ : H — R|J{+o0}, then problem (1.1)
reduces to the following problem: find u € H, such that

(A(u),v —u) + ¢(v) — p(u) >0, YveH, (1.2)

which is called a nonlinear variational inequality and has been studied by
many authors; see, for example, [1-2].

(3) If M = 9d¢, where d¢ is the indicator function of C, then problem (1.1)
reduces to the following problem: find v € C| such that

(A(u),v—u) >0, Yved, (1.3)

which is the classical variational inequality; see,e.g., [7,9].
A mapping A : H — H is called inverse-strongly monotone if there exists
a > 0 such that

<$—y,A£L'—Ay> Z05H14$_‘4y||27 Vx,@/GH-

Such a mapping A is also called a-inverse-strongly monotone. If A is an a-
inverse-strongly monotone mapping of H to H, then it is obvious that A is
%—Lipschitz continuous. We also have that for all z,y € H, and A > 0,

(I = AA)z — (I = XA)y|]?

= [[(z —y) — AM(Az — Ay)|]?

= |lz — y|* — 2Mz — y, Az — Ay) + N*|| Az — Ayl
< lz = ylI> + A(X — 2a)|| Az — Ay|>.

(1.4)

So, if A < 2a, then I — AA is a nonexpansive mapping of H into H. See [9] for
some examples of inverse-strongly monotone mappings.

A mapping T of C into itself is nonexpansive if | Tz —Ty|| < ||z —y||,Vz,y €
C. Recently, liduka and Takahashi [9], Takahashi and Toyoda [17], Chen et
al. [5] , Nadezhkina and Takahashi [12], Ceng and Yao [3], Yao and Yao [19]
introduced many iterative methods for finding a common element of the set of
fixed points of a nonexpansive mapping and the set of solutions of variational
inequality (1.3) for an a-inverse-strongly monotone mapping, they obtained
some weak and strong convergence theorems.

On the other hand, Liu and Chen [10] introduced a hybrid iterative method
for finding a common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of variational inclusion problem (1.1) for a
maximal monotone mapping and an a—inverse-strongly monotone mapping.

A mapping S : C — H is said to be k—strictly pseudo-contractive if there
exists a constant k € [0, 1) such that

1Sz = Syl* < ||z — y|* + k(I = S)z — (I = S)yll*, Va,yeC. (1.5
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Note that the class of k—strict pseudo-contractions strictly includes the class
of nonexpansive mappings. That is, .S is nonexpansive if and only if S is
0-strictly pseudo-contractive.

The set of fixed points of S is denoted by F'(S). Very recently, by using the
general approximation method Qin et al. [15] obtained a strong convergence
theorem for finding an element of F'(S).

Since variational inclusion problem (1.1) is the generalization of variational
inequality (1.3) and the class of k—strict pseudo-contractions is the general-
ization of the class of nonexpansive mappings, motivated and inspired by the
above results, we introduce a new iteration scheme for finding a common ele-
ment of the set of fixed points of a k—strict pseudo-contraction and the set of
solutions of variational inclusion problem (1.1) for a maximal monotone map-
ping and an a—inverse-strongly monotone mapping and then obtain a strong
convergence theorem.

2. PRELIMINARIES

Throughout this paper, we always let X be a real Banach space with dual
space X*, H be a real Hilbert space with inner product (-,-) and norm || - ||,
and let C be a closed convex subset of H. We write x,, — z to indicate that
the sequence {x,} converges weakly to x. z,, — = implies that {x, } converges
strongly to x. We denote by N and R the sets of positive integers and real
numbers, respectively. For any x € H, there exists a unique nearest point in
C, denoted by Pcx, such that

|z — Pox|| < [lz —yll, vyeC.

Such a P is called the metric projection of H onto C. It is known that Pg is
nonexpansive. Furthermore, for x € H and u € C,

u=PFPerx < (r—uu—y)>0, Vyel.

A set-valued mapping M : H — 2 is called monotone if for all 2,y € H,u €
Mz,v € My imply (z —y,u —v) > 0. A monotone mapping M : H — 2
is maximal if the graph G(M) of M is not properly contained in the graph
of any other monotone mapping. It is known that a monotone mapping M

is maximal if and only if for (z,u) € H x H,(x — y,u —v) > 0 for every
(y,v) € G(M) implies u € Mz.

The following definitions and lemmas are useful for our paper.

Definition 2.1. ([13]) If M is a maximal monotone mapping on H, then the
resolvent operator associated with M is defined by

Jua(u) = +AM) " u, Yue H,
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where A > 0 is a constant and [ is the identity operator.

Definition 2.2. ([6]) A single-valued operator A : H — H is said to be
hemi-continuous if for any fixed x,y,z € H, the function t — (A(x + ty), 2)
is continuous at 0%. It is well known that a continuous mapping must be
hemi-continuous.

Definition 2.3. ([6]) A set-valued mapping A : X — 2% is said to be
bounded if A(B) is bounded for every bounded subset B of X.

Lemma 2.4. ([13]) The resolvent operator Jyr is single-valued and nonex-
pansive, that is,

[ Tara(u) = Tara()[] < flu—oll,  Vu,v € H.

Lemma 2.5. ([10]) The resolvent operator Jys x is firmly nonexpansive, that
18

<JM,)\U — Jupv,u — v) > ||JM,)\U — JM’)\UH2, Yu,v € H.

Lemma 2.6. Let M, Jyy be as in Definition 2.1. Then the following holds:
o _ H—A
||JM7)\.’E - JM#CUH < T<JM’>\x — JM,/ﬂ?aiU - JM,#1‘>,

forall A\, >0 and x € H.

Proof. For \,u > 0 and z € H, put Jyx = (I + AM) "tz = u, IMpr =
(I + pM) 'z = v. Then we obtain that £3* € Mu, and 5 € Mv. So, we
have (u — v, &% — %) > 0. Hence, (u —v,u — %v) < (u—wv,(1- %):1:>
That is (u —v,u — v+ v — %v> <(u—wv,(1- %)x> So, we have |ju — v[|? <

A
(1=2)u—v,z—v). O

Lemma 2.7. ([14)) If T : X — 2X" is a mazimal monotone mapping and P :
X — X* is a hemi-continuous bounded monotone operator with D(P) = X,
then the sum S =T 4+ P is a maximal monotone mapping.

Lemma 2.8. ([11]) If S : C — C is a k—strict pseudo-contraction, then the
mapping I — S is demiclosed (at 0). That is, if {zn} is a sequence in C' such
that x, = & and (I — S)x, — 0, then (I — S)z = 0.

Lemma 2.9. ([11)) If S : C — C is a k—strict pseudo-contraction, then the
fized point set F(S) of S is closed and convez.
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Lemma 2.10. ([15]) There holds the identity in a Hilbert space H :

Az + (1= Nyl = Allz[” + (1 = Myl* = 21 = V]lz -yl
for all z,y € H and X € [0,1].

Lemma 2.11. ([16]) Let {x,} and {y,} be bounded sequences in a Banach
space and let {5, } be a sequence of [0, 1] such that 0 < hm mf Bn < hm sup Bn <

1. Suppose xp11 = Bpxn+ (1= Bn)yn for alln € N and hm sup{||yn+1 —ynH —
lnss — 2all} 0. Then, Tim [lyn — 2al] = 0.
n—oo

Lemma 2.12. ([18]) Assume that {a,} is a sequence of nonnegative real num-
bers such that

An+1 < (1 - r}/n)an + 6na
where {y,} is a sequence in (0,1) and {0,} is a sequence such that

(i i’fvn:oo;

(i) limsup 5 6" <0 or Z |05] < o0

n—oo n=1

Then lim a, = 0.
n—oo

Lemma 2.13. ([4]) In a Hilbert space H, there holds the inequality:
lz +yl* < ll2l* + 2(y, (= +y)), Va,y e H.

Lemma 2.14. The function u € H is a solution of variational inclusion (1.1)
if and only if uw € H satisfies the relation

u = Jyr[u— NAul,
where A > 0 is a constant, M is a maximal monotone mapping and Jyr ) =
(I + AM)~! is the resolvent operator.
Proof. Using Definition 2.1, we can obtain the desired result. Il

Lemma 2.15. Let M : H — 28 be a mazimal monotone mapping. Let
A: H — H be an a—inverse-strongly monotone mapping. Then VI(H, A, M)
is closed and converz.

Proof. It follows from Lemma 2.14 that VI(H, A, M) = F(Jya(I —AA)) (the
set of fixed points of Jyr\(I — AA) ), where A < 2a. By Lemma 2.4 and
formula (1.4), we have Jy x(I — AA) is a nonexpansive mapping of H into
itself. Thus, VI(H, A, M) is closed and convex. O
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3. MAIN RESULTS

Theorem 3.1. Let H be a real Hilbert space. Let A be an a—inverse-strongly
monotone mapping of H into itself and M : H — 2" be a mazimal monotone
mapping. Let S : H — H be a k—strictly pseudo-contractive mapping such
that F(S)(VI(H,A,M) # 0. Let u € H and x1 € H and let {z,} C H and
{zn} C H be sequences generated by

Zn = JM,)\n (xn - AnAxn%

Yn = QpU + (1 - an)zn7

Up = YnYn + (1 - ’Yn)Sym

Tnt1 = PnTn + (1 — Bn)vn, VN €N,

where {an} C (0,1),{8n} C (0,1), {yn} C [0,1) and {\,} C (0,2¢c) satisfy the
following conditions:

oo
(B1) lim an, =0 and Y a, = oo
n—oo e

1
(B2) 0<c<fp<d<10<a<h <b<2a lim At — M| = 0;
n oo
(B3) 0<k <y <y<1land lim |ypi1 — | =0.
n—oo

Then, {zn} converges strongly to Pp(sy\vi(H,AM)U-

Proof. Take p € F(S)(\VI(H,A,M). By p = Jam,(p — A\nAp), Lemma 2.4
and (1.4), we know that, for any n € N,

l|2n — p”2 = ”JM,An (Tn — A Azn) — I, (p— /\nAp)HQ
< |(zn — AnAzy) — (p — AnAp)”2
< |lzn _pH2 + An(An = 20) || Az, — APH2

< lwn — oIl
So, we obtain

[yn = pll = llan(w = p) + (1 — an)(zn — p)||
< apllu = pll + (1 = an)|[2n = pll
< apllu = pll + (1 = an)f|zn = pl-

By Lemma 2.10 and (B3), we have
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lon = plI* = [nyn + (1 = ) Syn — I

= [ (yn —p) + (L = 7)(Syn — p)

= llyn — plI> + (1 = %) Sy — plI?
— (1 =70 [yn — Synll®

< Anllyn = ol + (1 =) ([gn =PI + Ellyn — Synll)
— Y (1 = ) [lyn — Syal?

= [lyn — pII> = (1 = 7) (Y0 — B) |y — Syml?

< lyn — pl*.

I

(3.2)

So, we have that

1201 = pll = [Bn(zn — p) + (1 = Bn)(vn — p)
< Bullwn —pll + (1 = Bn)llyn — pll
< Bullen = pll + (1 = Ba)(anflu = pll + (1 = an)l[zn = pl)
= (1= an(1 = Bn)llen — pll + an(l = Bn)[lu —pl|

Putting M = max{|lz1—p||, ||lu—pl||}, we have that ||z,,—p| < M for alln € N.
In fact, it is obvious that ||z1 — p|| < M. Suppose that ||z — p|| < M for some
k € N, then, we have that ||zx+1 —p|| < (1 —ax(1 — Bk))M + ar(1 — i) M =
M. By induction, we obtain that ||z, — p|| < M for all n € N. So, {z,}
is bounded. Hence, {Az,}, {yn}, {vn} and {z,} are also bounded. Putting
Up = Ty — ApAz,, we have

Yn+1 — Yn = QiU + (1 - an+1)zn+1 - (anu + (1 - an)zn)

= (g1 — an)u + (I — ans1) (I Untt — IM A0 Un

+ JM,)\n+1un - JM,)\nun + JM,/\nun) - (1 - an)']M7/\nun-
So, we have that

[Yn+1 = Yl
< lan+1 — aglflull + (1 = ang1) [[unt1 — unl]

+ (1= ant DI a1 Un — I, tnll + lans1 — anlllJars,unll - (3.3)
< lan+1 — aplflull + [[Zn41 = 2ol + [Ans1 — Anl[[ Az |

+ lant1 — anlll I, unll + (1 = ans )l Inn 1 Un — I a, tnll-

Note that
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[vn+1 — vnl|
= [[+1¥n+1 + (1 = Yn41)SYn+1 — WYn — (1 = 70) Synl| (3.4)
= [[+19n+1 = mr1yn + (1 = 1) SYns1 — (1 = mt1)Syn
+ Ynr1Yn + (1 = Ynt+1)SYn = Ynyn — (L = 70) Syn|-
It follows from Lemma 2.10 that
[+ 1¥n+1 = Yns1Un + (1 = Yag1)Synt1 — (L= Ynr1)Syall?
= Yot 1lYnt1 = vall? + (1 = Y )1 Syns1 — Syall?
— Y1 (1= Yt ) [9nt1 = Synt1 = (yn — Sy |12
< Ynt1llYn+1 — yn||2 + (1 = Yt1) ([Yn+1 — ynHz (3.5)

+ E[[(Yn+1 — Syn+1) — (yn — Syn)”Q)
— 1 (1= Y ) [Ynt1 = SYnt1 — (yn — Syn) I
= |lyn+1 — yn||2 — (L= Yt1) (1 = B)Yyn+1 — SYnt1 — (Yn — Syn)
< Nynr1 — ynl*.
Combining (3.4) with (3.5), we obtain
[on41 = vnll < [[yns1 — ynl
[ ns1yn + (1 = m41)SYn = yn — (1 = 1) Synll ~ (3.6)
< Yyn+1 = Yull + lyn — Synlllvn+1 — !l
It follows from (3.6) and (3.3) that
[vn1 = vnll < NYnt1 — yull + lyn — Synlllvnt1 — 1l
< lomgr — anll|ul] + lntr — n|
+ [An+1 = Al Azn || 4 o1 — aml[|Tarn, |
+(1— O‘n+1)||JM,>\n+1un - JM,AnunH + lYn — Synll|¥nr1 — Yl

I

Therefore, we have
lvns1 = vnll = [[En41 — o
< lant1 — anlllull + [An+1 = Anll[Azn || + |ent1 — anll| Jar, unl|
+(1— O‘n+1)HJM,)\n+1Un - JM,/\nunH + 1Yn — Synll|¥ns1 — Yal-
It follows from Lemma 2.6 , (B1), (B2), (B3) that

lim sup([|vn41 = vn|| = [[2n4+1 — 2al]) < 0.
n—0o0

From Lemma 2.11, we get

Up — Tp — 0, (n — 00). (3.8)
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Consequently, we obtain
nh_{go |Zn+1 — znll = nh_{go(l = Bn)llvn — znll = 0. (3.9)
Using (3.2) and (3.1), we also have

|zn+1 —p”2
= [Bn(zn —p) + (1 -
< Ballzn = plI* + (1 = Ba)llyn — pII?
= Bullzn = plI + (1 = Ba)llan(u = p) + (1 = an) (20 — p)|?
< Ballzn = plI* + (1 = Ba)(anllu = pl* + (1 = @) |20 — pl*) (3.10)
< Bullzn = plI* + (1 = Bu)(anlu — pl®
+ (1= an)(llzn = pl* + An(An — 20) Az, — Ap||*))
<l = pl* + (1 = Bo)anlu — p|®
+ (1= Ba) (1 = an)An (A — 20) || Az, — Ap|?,

Bn)(vn = p)|I?

and hence
(1-=d)(1 — ap)a2a —b)||Az, — ApH2
< lzn _pH2 — [|7p41 _pH2 + (1 = Bn)an|lu — p”Q-
It follows from (B1), (B2) and (3.9) that
li_>m |Azy, — Apl|| = 0. (3.11)
Using Lemma 2.5, we have
l2n — pl?
= [T n, (0 — AnAzn) — T, (p — AnAp) |
< <($n - )\nAxn) - (p - )\nAp)a Zn — p>
1
= i(H(xn — MAzy) = (p— )\nAp)HQ + [|zn _pH2
— |(zn — AnAzn) — (p = AnAp) — (20 — )|I*)

1
< i(chn - p||2 + [z — p||2 —[(#n — 2n) — An(Axp — AP)HQ)

1
= 5 (lzn = pl* + llzn = plI? = ll2n — 20

— A2 || Az, — Ap|* + 20y — 2, Azyy — Ap)).

So, we have
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120 = pI* < ll&n = plI* = |20 — 20? (3.12)
— X2 Aws = AP+ 20l — 2 Ava—Ap).

Then, from (3.10) and (3.12), we have

|Zn-41 =PI = [1Ba(@n —p) + (1 = Ba) (va —p)|I?
< Bullen = plI* + (1 = Ba)(anllu = p|* + (1 = an)ll20 — o)
< Ballzn = pl1* + anllu = pl|* + (1 = Ba) |20 — 2|
< Ballzn = plI* + anllu = p|* + (1 = Ba) (|20 — plI?
—llzn = 20ll* = Abll Azn — Ap||® + 2Xn {25 — 20, Az, — Ap))
<l = plI* + anllu = pl* = (1 = Ba) |25 — 2nl|?
+2(1 = Bu)Anllzn — znll[| Azn — Apl|,
and hence,
(1= ) — 2l < = 9l = s — oI+ allu — pl?
+2(1 = Bn)Anllzn — znlll| Azn — Apl|.
Using (3.9), o, — 0 and (3.11), we have
lim ||z, — z,|| = 0. (3.13)

n—oo
Since Yy, = apu + (1 — ay )2y, we have
|lyn — znll = anllu — zn]| = 0, (n — o). (3.14)

Since ||vn, — Ynll < ||vn — znl| + |2n — 2nl| + ||2n — ynl|, from (3.8), (3.13) and
(3.14), we have

lim [jv, — ynl = 0. (3.15)
n—oo
Next, putting zo = Pp(s)nvi(m,4,m)U, We shall show that
lim sup(u — 20, yn — 20) < 0. (3.16)
n—o0

Take a subsequence {yy, } of {y,} such that

lim sup(u — 20, yn — 20) = lim (u — 20, Yn, — 20)- (3.17)
n—00 1—00

Without loss of generality, we may assume that y,, — w. Let us show w €
F(S)NVI(H,A,M). From (3.14), we have z,, — w. Since A is 1 —Lipschitz
continuous monotone and D(A) = H, by Lemma 2.7, M + A is a maximal
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monotone mapping. Let (v, f) € G(M + A). Since f— Av € Mv and ﬁ(aznz -

Zp; — An;Axyn,;) € Mz,,, we have

<U — Zngs (f - AU) - )\L(xm — Rn; — )\niAxni)> > 0.

Therefore, we have

<U — Zn;, f> > <U — Zn; Av + L(‘73711 — Rn; — )\nzAxnz)>

Ao
= <U - znwAv - Axni) + <1) — Zngs T(xnz - zm)>
= (v — 2n;, Av — Azy,) + (v — 2p,;, Az, — Azp,)
1
=+ <U — Zngs Tm(xm - an)>
1
> <v - vaAZm - A‘Tni> + <v — Znyg) T(mm - Zn¢)>'

Let ¢ — oo, we obtain (v — w, f) > 0. Since A+ M is maximal monotone, we
have 0 € Aw + Mw and hence w € VI(H, A, M). Next, we prove w € F(S).
It follows from (3.15) and (B3) that

1
HSyn_ynH = ||Un_yn|| < ,}/H'Un_yn” — 0, (TL—)OO) (3'18)

11—, 1-

By Lemma 2.8, we have w € F'(S). Therefore, we have w € F(S)(\VI(H, A, M).
From (3.17) and the property of metric projection, we have

lim sup(u — 20, yn — 20) = lim (u — 20, Yn, — 20) = (u — 20, w — 29) < 0.
n—oo n—00

Finally, we prove z,, — z¢. In fact, since y, —z¢0 = ap(u—20)+ (1 — ) (zn—20),
from (3.2), Lemma 2.13 and (3.1), we have

2011 = 20l < Bullzn — 20/1* + (1 = Bu)lvn — 20l
< Ballzn = 20l* + (1 = Ba)llyn — 2ol
< Ballen = zol* + (1 = Ba) (1 = an)l|2n — 2ol
+ 20, (u — 20, Yn — 20))
<(1-01=Bn)an)llzn — Z0H2 +2(1 = Bn)an(u — 20, Yn — 20)-

o0
Since Y (1—fBp)an = oo and limsup 2(u — 20, yn, — 20) < 0, from Lemma 2.12,

n=1 n—o0
we have
lim ||z, — 20| = 0.
n—oo

This completes the proof. O
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Remark 3.2. Take k& = 0, {y,} = {0} in Theorem 3.1, we can obtain a
common element of the set of fixed points of a nonexpansive mapping and the
set of solutions of a variational inclusion for a maximal monotone mapping
and an a—inverse-strongly monotone mapping.
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