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Abstract. In this paper, an iterative sequence for relatively nonexpansive multi-valued map-

ping by modifying Halpern’s iterations is introduced and the strong convergence theorems

are proved. At the end of the paper some applications are given also.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers
and real numbers, respectively. Let D be a nonempty closed subset of a real
Banach space E. A single-valued mapping T : D → D is called nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ D. Let N(D) and CB(D) denote
the family of nonempty subsets and nonempty closed bounded subsets of D,
respectively. The Hausdorff metric on CB(D) is defined by

H(A1, A2) = max

{
sup
x∈A1

d(x,A2), sup
y∈A2

d(y,A1)

}
, (1.1)
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for A1, A2 ∈ CB(D), where d(x,A1) = inf{‖x−y‖, y ∈ A1}. The multi-valued
mapping T : D → CB(D) is called nonexpansive if H(T (x), T (y)) ≤ ‖x − y‖
for all x, y ∈ D. An element p ∈ D is called a fixed point of T : D → N(D) if
p ∈ T (p). The set of fixed points of T is represented by F (T ).

Let E be a real Banach space with dual E∗. We denote by J the normalized
duality mapping from E to 2E

∗
defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, x ∈ E. (1.2)

where 〈·, ·〉 denotes the generalized duality pairing.

A Banach space E is said to be strictly convex if ‖x+y‖
2 < 1 for all x, y ∈

U = {z ∈ E : ‖z‖ = 1} with x 6= y. E is said to be uniformly convex if, for

each ε ∈ (0, 2], there exists δ > 0 such that ‖x+y‖
2 < 1− δ for all x, y ∈ U with

‖x− y‖ ≥ ε. E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(1.3)

exists for all x, y ∈ U . E is said to be uniformly smooth if the above limit
exists uniformly in x, y ∈ U .

Remark 1.1. The following basic properties for Banach space E and for the
normalized duality mapping J can be found in Cioranescu [1].

(i) If E is an arbitrary Banach space, then J is monotone and bounded;
(ii) If E is a strictly convex Banach space, then J is strictly monotone;

(iii) If E is a a smooth Banach space, then J is single-valued, and hemi-
continuous, i.e., J is continuous from the strong topology of E to the
weak star topology of E;

(iv) If E is a uniformly smooth Banach space, then J is uniformly contin-
uous on each bounded subset of E;

(v) If E is a reflexive and strictly convex Banach space with a strictly
convex dual E∗ and J∗ : E∗ → E is the normalized duality mapping
in E∗, then J−1 = J∗, JJ∗ = I∗E and J∗J = IE ;

(vi) If E is a smooth, strictly convex and reflexive Banach space, then the
normalized duality mapping J is single-valued, one-to-one and onto;

(vii) A Banach space E is uniformly smooth if and only if E∗ is uniformly
convex. If E is uniformly smooth, then it is smooth and reflexive.

Let E be a smooth Banach space. In the sequel, we always use φ : E×E →
R+ to denote the Lyapunov functional defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E. (1.4)

It is obvious from the definition of φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2, ∀x, y ∈ E. (1.5)
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In addition, the function φ has the following property:

φ(y, x) = φ(z, x) + φ(y, z) + 2〈z − y, Jx− Jz〉, ∀x, y, z ∈ E (1.6)

and

φ(x, J−1(λJy + (1− λ)Jz) ≤ λφ(x, y) + (1− λ)φ(x, z), (1.7)

for all λ ∈ [0, 1] and x, y, z ∈ E.

Let C is a nonempty closed convex subset of a reflexive, strictly convex
and smooth Banach space E. Following Alber [2], the generalized projection
ΠC : E → C is defined by

ΠC(x) = arg inf
y∈C

φ(y, x), ∀x ∈ E.

Let D be a nonempty subset of a smooth Banach space. A mapping T : D → E
is relatively nonexpansive [3-5], if the following properties are satisfied:

(R1) F (T ) 6= Ø;
(R2) φ(p, Tx) ≤ φ(p, x) for all p ∈ F (T ) and x ∈ D;
(R3) I − T is demi-closed at zero, that is, whenever a sequence {xn} in

D converges weakly to p and {xn − Txn} converges strongly to 0, it
follows that p ∈ F (T ).

If T satisfies (R1) and (R2), then T is called quasi-φ-nonexpansive [6].

Iterative methods for approximating fixed points of multi-valued mappings
in Banach spaces have been studied by some authors, see for instance [7-11].

Let D be a nonempty closed convex subset of a smooth Banach space E.
A mapping T : D → N(D) is relatively nonexpansive multi-valued mapping
[11], if the following properties are satisfied:

(S1) F (T ) 6= Ø;
(S2) φ(p, z) ≤ φ(p, x), ∀x ∈ D, z ∈ T (x), p ∈ F (T );
(S3) I − T is demi-closed at zero, that is, whenever a sequence {xn} in D

which weakly to p and lim
n→∞

d(xn, T (xn)) = 0, it follows that p ∈ F (T ).

In this article, we introduce the following iterative sequence for finding a
fixed point of strongly reatively nonexpansive multi-valued mapping T : D →
N(D). Given u ∈ E, x1 ∈ D,

xn+1 = ΠDJ
−1(αnJu+ (1− αn)Jwn), (1.8)

where wn ∈ Txn for all n ∈ N , D is a nonempty closed convex subset of a
uniformly convex and uniformly smooth Banach space E, ΠD is the generalized
projection of E onto D and {αn} is sequences in (0,1). We proved the strong
convergence theorems in uniformly convex and uniformly smooth Banach space
E.
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2. Preliminaries

In the sequel, we denote the strong convergence and weak convergence of
the sequence {xn} by xn → x and xn ⇀ x, respectively.

First, we recall some conclusions.

Lemma 2.1. (cf. [12, Proposition 2]) Let E be a uniformly convex and smooth
Banach space and let {xn} and {yn} be two sequences of E such that {xn} or
{yn} is bounded. If φ(xn, yn)→ 0, then xn − yn → 0.

Remark 2.2. For any bounded sequences {xn} and {yn} in a uniformly con-
vex and uniformly smooth Banach space E, we have

φ(xn, yn)→ 0⇐⇒ xn − yn → 0⇐⇒ Jxn − Jyn → 0.

Lemma 2.3. (cf. [12, Propositions 4 and 5]) Let E be a smooth, strictly
convex and reflexive Banach space and C be a nonempty closed convex subset
of E. Then the following conclusions hold:

(a) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E;
(b) If x ∈ E and z ∈ C, then z = ΠCx⇐⇒ 〈z − y, Jx− Jz〉 ≥ 0,∀y ∈ C;
(c) For x, y ∈ E, φ(x, y) = 0 if and only x = y.

Remark 2.4. The generalized projection mapping ΠC above is relatively non-
expansive and F (ΠC) = C.

Lemma 2.5. (cf. [11, Proposition 2.1]) Let E be a strictly convex and smooth
Banach space, and D a nonempty closed convex subset of E. Suppose T :
D → N(D) is a relatively nonexpansive multi-valued mapping. Then, F (T ) is
closed and convex.

Lemma 2.6. (cf. [13, Lemma1]) Suppose that {an} and {bn} are sequences
of nonnegative real numbers such that

an+1 ≤ an + bn, n = 1, 2, 3, . . .

If
∞∑
n=1

bn <∞, then lim
n→∞

an exists.

3. Main Results

In this section, we use Halpern’s idea [14] for finding fixed point of rela-
tively nonexpansive multi-valued mappings in a uniformly convex and smooth
Banach space.
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Theorem 3.1. Let D be a nonempty, closed and convex subset of a uniformly
convex and smooth Banach space E and let T : D → N(D) be a relatively
nonexpansive multi-valued mapping. Let {xn} be the sequence in D defined by

(1.8), where {αn} is a sequence in (0, 1) satisfying
∞∑
n=1

αn <∞. If the interior

of F (T ) is nonempty, then {xn} converges strongly to some fixed point of T .

Proof. The proof of Theorem 3.1 is divided into two steps:

Step 1. Firstly We show that {xn} converges strongly in D.

Let yn ≡ J−1(αnJu + (1 − αn)Jwn). Then xn+1 ≡ ΠDyn. By Lemma
2.5, F (T ) is nonempty, closed and convex, so, we can define the generalized
projection ΠF (T ) onto F (T ). Let z ∈ F (T ), From the definition of relatively

nonexpansive multi-valued mapping and the convexity of ‖ · ‖2, we have

φ(z, xn+1)

= φ(z,ΠDJ
−1(αnJu+ (1− αn)Jwn))

≤ φ(z, J−1(αnJu+ (1− αn)Jwn))

= ‖z‖2 − 2〈z, αnJu+ (1− αn)Jwn〉+ ‖αnJu+ (1− αn)Jwn‖2

= ‖z‖2 − 2αn〈z, Ju〉 − 2(1− αn)〈z, Jwn〉+ αn‖u‖2 + (1− αn)‖wn‖2

= αnφ(z, u) + (1− αn)φ(z, wn)

= αnφ(z, u) + φ(z, xn).

(3.1)

By
∞∑
n=1

αn <∞, from Lemma 2.6, we have lim
n→∞

φ(p, xn) exists and in partic-

ular, {φ(p, xn)} is bounded. This implies {xn}, {Txn} are bounded. Since the
interior of F (T ) is nonempty, there exist p ∈ F (T ), h ∈ E with ‖h‖ ≤ 1 and
r > 0, such that p+ rh ∈ F (T ). By (1.6), we have

φ(z, xn) = φ(xn+1, xn) + φ(z, xn+1) + 2〈xn+1 − z, Jxn − Jxn+1〉,

this implies

〈xn+1 − z, Jxn − Jxn+1〉+
1

2
φ(xn+1, xn) =

1

2
(φ(z, xn)− φ(z, xn+1)). (3.2)

Since p+ rh ∈ F (t), we obtain

φ(p+ rh, xn+1) ≤ φ(p+ rh, xn) + αnφ(p+ rh, u).

Notice (3.2), above inequality is equivalent to

0 ≤ 〈xn+1 − (p+ rh), Jxn − Jxn+1〉+
1

2
φ(xn+1, xn) +

1

2
αnφ(p+ rh, u).
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Then by (3.2), we have

r〈h, Jxn − Jxn+1〉 ≤ 〈xn+1 − p, Jxn − Jxn+1〉

+
1

2
φ(xn+1, xn) +

1

2
αnφ(p+ rh, u)

=
1

2
(φ(p, xn)− φ(p, xn+1)) +

1

2
αnφ(p+ rh, u),

and hence

〈h, Jxn − Jxn+1〉 ≤
1

2r
(φ(p, xn)− φ(p, xn+1)) +

1

2r
αnφ(p+ rh, u).

Since h with ‖h‖ ≤ 1 is arbitrary, we have

‖Jxn − Jxn+1‖ ≤
1

2r
(φ(p, xn)− φ(p, xn+1)) +

1

2r
αnφ(p+ rh, u). (3.3)

So, if n > m, then

‖Jxm − Jxn‖ = ‖Jxm − Jxm+1 + Jxm+1 − · · · − Jxn−1 + Jxn−1 − Jxn‖

≤
n−1∑
i=m

‖Jxi − Jxi+1‖

≤ 1

2r

n−1∑
i=m

(φ(p, xi)− φ(p, xi+1)) +
φ(p+ rh, u)

2r

n−1∑
i=m

αi

=
1

2r
(φ(p, xm)− φ(p, xn)) +

φ(p+ rh, u)

2r

n−1∑
i=m

αi.

We know that {φ(p, xn)} converges. So, {Jxn} is a Cauchy sequence. Since
E∗ is complete, so {Jxn} converges strongly to some point in E∗. Since E∗

has a Fréchet differentiable norm, then J−1 is continuous on E∗. Hence xn
converges strongly to some point q in D.

Step 2. Next we prove that q ∈ F (T ) where q = lim
n→∞

ΠF (T )xn. By (3.3) and

the convergence of {φ(p, xn)}, it follows that

lim
n→∞

‖Jxn − Jxn+1‖ = 0. (3.4)

Since yn ≡ J−1(αnJu+ (1− αn)Jwn), we have

‖Jyn − Jwn‖ = ‖αnJu− αnJwn‖ = αn‖Ju− Jwn‖,

from lim
n→∞

αn = 0, we obtain

lim
n→∞

‖Jyn − Jwn‖ = 0. (3.5)
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By J−1 is uniformly norm-to-norm continuous on bounded sets, from (3.4)
and (3.5) we have

lim
n→∞

‖xn − xn+1‖ = 0, (3.6)

and
lim
n→∞

‖yn − wn‖ = 0. (3.7)

Since xn+1 ≡ ΠDyn, from Lemma 2.3, we have

φ(wn, xn+1) + φ(xn+1, yn) = φ(wn,ΠDyn) + φ(ΠDyn, yn)

≤ φ(wn, yn).

Since
φ(wn, yn) = φ(wn, J

−1(αnJu+ (1− αn)Jwn))

= ‖wn‖2 − 2〈wn, αnJu+ (1− αn)Jwn〉
+ ‖αnJu+ (1− αn)Jwn‖2

≤ ‖wn‖2 − 2αn〈wn, Ju〉 − 2(1− αn)〈wn, Jwn〉
+ αn‖u‖2 + (1− αn)‖wn‖2

= αnφ(wn, u) + (1− αn)φ(wn, wn),

and lim
n→∞

αn = 0, Then we have

lim
n→∞

φ(wn, xn+1) = lim
n→∞

φ(xn+1, yn) = 0.

By Lemma2.1 we obtain

lim
n→∞

‖wn − xn+1‖ = lim
n→∞

‖xn+1 − yn‖ = 0. (3.8)

From
‖xn − wn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − wn‖.

Therefore, by (3.6), (3.6), (3.8) we obtain

lim
n→∞

‖xn − wn‖ = 0.

So, we have q ∈ F (T ), where q = lim
n→∞

ΠF (T )xn. �

4. Application to zero point problem of maximal monotone
mappings

Let E be a smooth, strictly convex and reflexive Banach space. An operator
A : E → 2E

∗
is said to be monotone, if 〈x − y, x∗ − y∗〉 ≥ 0 whenever x, y ∈

E, x∗ ∈ Ax, y∗ ∈ Ay. We denote the zero point set {x ∈ E : 0 ∈ Ax}
of A by A−10. A monotone operator A is said to be maximal, if its graph
G(A) := {(x, y) : y ∈ Ax} is not properly contained in the graph of any
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other monotone operator. If A is maximal monotone, then A−10 is closed and
convex. Let A be a maximal monotone operator, then for each r > 0 and
x ∈ E, there exists a unique xr ∈ D(A) such that J(x) ∈ J(xr) + rA(xr) (see,
for example, [2]). We define the resolvent of A by Jrx = xr. In other words
Jr = (J + rA)−1J, ∀r > 0. We know that Jr is a single-valued relatively
nonexpansive mapping and A−10 = F (Jr), ∀r > 0, where F (Jr) is the set of
fixed points of Jr.

We have the following:

Theorem 4.1. Let E, {αn} be the same as in Theorem 3.1. Let A : E → 2E
∗

be a maximal monotone operator and Jr = (J + rA)−1J for all r > 0 such
that A−10 6= ∅. Let {xn} be the sequence generated by u, x1 ∈ E and

xn+1 = J−1(αnJu+ (1− αn)JJrxn),

then {xn} converges strongly to some point of A−10.

Proof. In Theorem 3.1 taking D = E, T = Jr, r > 0, then T : E → E
is a single-valued relatively nonexpansive mapping and A−10 = F (T ) =
F (Jr), ∀r > 0 is a nonempty closed convex subset of E. Therefore all the
conditions in Theorem 3.1 are satisfied. The conclusion of Theorem 4.1 can
be obtained from Theorem 3.1 immediately. �
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