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Abstract. We present sufficient convergence conditions for the semilocal convergence of

Newton-like methods in order to approximate a locally unique solution of a nonlinear equa-

tion containing a nondifferentiable term in a Banach space setting. The operators involved

are Fréchet or Gateaux differentiable. Our results unify, improve the error bounds and also

extend the applicability of earlier results. Numerical examples are also provided in this

study.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

F (x) +G(x) = 0, (1.1)

where F is Fréchet or Gateaux differentiable operator defined on an open
convex subset D of a Banach space X with values in a Banach space Y and
G : D → Y is a continuous operator.

A large number of problems in applied mathematics and engineering are
solved by finding the solutions of certain equations. For example, dynamic
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systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, we assume that a time-invariant system is driven by the equa-
tion ẋ = F (x) + G(x), for some suitable operators F and G, where x is
the state. Then the equilibrium states are determined by solving equation
F (x) + G(x) = 0. Similar equations are used in the case of discrete systems.
The unknowns of engineering equations can be functions (difference, differen-
tial, and integral equations), vectors (systems of linear or nonlinear algebraic
equations), or real or complex numbers (single algebraic equations with single
unknowns). Except in special cases, the most commonly used solution meth-
ods are iterative. In fact, starting from one or several initial approximations
a sequence is constructed that converges to a solution of the equation. It-
eration methods are also applied for solving optimization problems. In such
cases, the iteration sequences converge to an optimal solution of the problem
at hand. Since all of these methods have the same recursive structure, they
can be introduced and discussed in a general framework.

We use Newton-like method

xn+1 = xn−A−1n (F (xn)+G(xn)) for each n = 0, 1, 2, . . . , x0 ∈ D, (1.2)

to generate a sequence {xn} approximating x∗. Here, An ∈ L(X,Y ), for n ≥ 0,
is the space of bounded linear operators from X into Y .

For:

(a) An = A(xn) = F ′(xn), we obtain the Zabrejko-Zincenko iteration
[1, 2, 5, 8, 9]. If G(x) = 0, we obtain Newton’s method.

(b) An = F ′(xn) + [xn−1, xn;G], we obtain Catinas’ iteration [8], where
[x, y;G] is the divided difference of order one for G at the points x, y ∈
D with x 6= y satisfying

[x, y;G](x− y) = G(x)−G(y). (1.3)

Several other choices of linear operators An are possible [1–13]. In particular
we shall use Newton-like method (1.2) in the form

xn+1 = xn − L−1n (F (xn) +G(xn)), for all n ≥ 0, x0 ∈ D, (1.4)

where, for predetermined sequences {γn}, {δn} in [0, 1] and {zn} in D,

Ln = Bn + Cn,

Bn = γnF
′(xn) + (1− γn)F ′(zn)

and

Cn = δn[xn−1, xn;G] + (1− δn)[zn−1, zn;G].
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The convergence of Newton-like method (1.2) has been studied by many
authors under various Lipschitz-type conditions. A survey of such results can
be found in [5] and the references there (see also [9, 12]).

Here, we provide new semilocal convergence results that unify, extend the
applicability and improve the error bounds on the distances ‖xn+1 − xn‖,
‖xn − x∗‖, for n ≥ 0, of earlier ones under the same information as before.

Numerical examples validating the theoretical results and justifying the
claims made above are also provided in this study.

The paper is organized as follows. In Section 2 we provide the semilocal
convergence analysis of Newton-like method (1.2), when F ′ is Fréchet differen-
tiable, whereas in Section 3, F ′ is only Gateaux differentiable. Special cases,
applications and numerical examples are provided in the concluding Section 4
of this study.

2. Semilocal Convergence Analysis I

A semilocal convergence analysis for Newton-like method (1.2) is provided
in this section. We need a result on majorizing sequences for Newton-like
method (1.2).

Lemma 2.1. Let η,K > 0, L,M,N, l, µ ≥ 0 be given constants. Define
polynomial h : [0,+∞)→ (−∞,+∞) by

h(s) = (1− l)s2 − (µ+N + 1− l − Lη)s+ µ+N + (2K +M)η. (2.1)

Assume polynomial h has a minimal root α ∈ (0, 1) such that

0 ≤ α0 =
Kη + 2(µ+N)

2(1− l − Lη)
≤ α. (2.2)

Then, scalar sequence {tn} given by
t0 = 0, t1 = η,

tn+2 = tn+1 +
K(2tn + 1

2(tn+1 − tn)) +Mtn + µ+N

1− l − Ltn+1
(tn+1 − tn)

(2.3)

is non-decreasing, bounded from above by

t∗∗ =
η

1− α
+ (α0 − α)η (2.4)

and converges to its unique least upper bound t∗ satisfying

0 ≤ t∗ ≤ t∗∗. (2.5)

Moreover, the following estimates hold

tn+1 − tn ≤ α(tn − tn−1) ≤ αnη (2.6)
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and

t∗ − tn ≤
αnη

1− α
· (2.7)

Proof. We shall show using induction

0 ≤ 2(2K +M)tn +K(tn+1 − tn) + 2(µ+N)

2(1− l − Ltn+1)
≤ α· (2.8)

Estimate (2.8) is true for n = 0 by hypothesis (2.2). We then have 0 ≤ t2−t1 ≤
α(t1 − t0) = αη.

Let us assume (2.8) holds for all k ≤ η. We get

tk+1 − tk ≤ α(tk − tk−1) ≤ αkη, (2.9)

so

tk+1 ≤ η + α0η + α2η + · · ·+ αkη ≤ 1− αk+1

1− α
η + (α0 − α)η ≤ t∗∗. (2.10)

In view of (2.9) and (2.10) estimate (2.8) holds if

2(2K +M)tk +K(tk+1 − tk) + 2(µ+N) + 2Lαtk+1 − 2α(1− l) ≤ 0 (2.11)

or
2(2K +M)(1 + α+ · · ·+ αk−1)η +Kαkη

+ 2αL(1 + α+ · · ·+ αk)η + 2(µ+N)− 2α(1− l)
≤ 0.

(2.12)

Estimate (2.12) motivates us to define recurrent function fk : [0,+∞) →
(−∞,+∞) by

fk(s) = 2(2K +M)(1 + s+ · · ·+ sk−1)η +Kskη

+ 2sL(1 + s+ · · ·+ sk)η + 2(µ+N)− 2s(1− l).
(2.13)

That is we can show instead of (2.12):

fk(α) ≤ 0. (2.14)

We need a relationship between two consecutive function fk:

fk+1 = fk(s) + 2(2K +M)skη +Ksk+1η −Kskη + 2Lsk+2η

so,

fk+1(s) = fk(s) + g(s)skη, (2.15)

where,

g(s) = 2Ls2 +Ks+ 3K + 2M ≥ 0. (2.16)

In view of (2.15) and (2.16) we have

fk(s) ≤ fk+1(s). (2.17)
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Let us define function f∞ : [0, 1)→ (−∞,+∞) by

f∞(s) = lim
k→+∞

fk(s). (2.18)

Then, we have

fk(α) ≤ f∞(α). (2.19)

It follows from (2.14) and (2.19) that we can show instead of (2.19)

f∞(α) = 0. (2.20)

Using (2.13) and (2.18) we get

f∞(α) = 2

[
(2K +M)η

1− α
+

Lαη

1− α
+ µ+N − α(1− l)

]
. (2.21)

By the choice of α, (2.1) and (2.21) we get f∞(α) ≤ 0. That completes the
induction for (2.6) and (2.8). Hence, sequence {tn} is non-decreasing, bounded
from above by t∗∗ and as such it converges to t∗. Finally, estimate (2.7) follows
from (2.6) by using standard majorization techniques [5, 12]. That completes
the proof of the Lemma. �

We shall use An for A(xn) until the end of the study.

We can show the following semilocal convergence result for Newton-like
method (1.2).

Theorem 2.2. Let F : D ⊆ X → Y be a Fréchet-differentiable operator,
G : D → Y be continuous, A(x) in L(X,Y ) and x0 ∈ D be such that A(x0)

−1 ∈
L(Y,X). Assume there exist constants η, L,M,N, l, µ ≥ 0 and K > 0, such
that for all x, y ∈ D

‖A−10 (F (x0) +G(x0))‖ ≤ η, (2.22)

‖A−10 (F ′(x)− F ′(x0))‖ ≤ K‖x− x0‖, (2.23)

‖A−10 (F ′(x)−A(x))‖ ≤M‖x− x0‖+ µ, (2.24)

‖A−10 (A(x)−A0)‖ ≤ L‖x− x0‖+ l, (2.25)

‖A−10 (G(x)−G(y))‖ ≤ N‖x− y‖, (2.26)

hypothesis of Lemma 2.1 hold and

U(x0, t
∗) = {x ∈ X : ‖x− x0‖ ≤ t∗} ⊆ D, (2.27)

where t∗ is given in Lemma 2.1. Then, sequence {xn} generated by Newton-like
method (1.2) is well defined, remains in U(x0, t

∗) for all n ≥ 0 and converges
to a solution x∗ ∈ U(x0, t

∗) of equation F (x) + G(x) = 0. Moreover, the
following estimates hold

‖xn+1 − xn‖ ≤ tn+1 − tn (2.28)
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and

‖xn − x∗‖ ≤ t∗ − tn, (2.29)

where sequence {tn} is given by (2.3). Furthermore, if there exists R ≥ t∗ such
that

U(x0, R) ⊂ D (2.30)

and
3

2
KR+ (K +M + L)t∗ + µ+N + l < 1, (2.31)

then, x∗ is the unique solution of R equation F (x) +G(x) = 0 in U(x0, R).

Proof. We shall show using induction:

‖xk+1 − xk‖ ≤ tk+1 − tk (2.32)

and

U(xk+1, t
∗ − tk+1) ⊆ U(xk, t

∗ − tk). (2.33)

For every z ∈ U(x1, t
∗ − t1)

‖z − x0‖ ≤ ‖z − x1‖+ ‖x1 − x0‖ ≤ t∗ − t1 + t1 − t0 = t∗ − t0

shows z ∈ U(x0, t
∗ − t0).

Since, also

‖x1 − x0‖ = ‖A−10 (F (x0) +G(x0))‖ ≤ η = t1 − t0,

estimate (2.32) holds for k = 0. Assume (2.32) and (2.33) hold for all k ≤ n.
Then, we have

‖xk+1 − x0‖ = ‖xk+1 − xk‖+ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖
≤ (tk+1 − tk) + (tk − tk−1) + · · ·+ (t1 − t0) = tk+1 ≤ t∗

and

‖xk + θ(xk+1 − xk − x0)‖ ≤ tk + θ(tk+1 − tk) ≤ t∗, θ ∈ [0, 1].

Using (2.25) and the induction hypothesis we get

‖A−10 (A(xk)−A0)‖ ≤ L‖xk − x0‖+ l ≤ Ltk + l < 1 (2.34)

(by Lemma 2.1).

It follows from (2.34) and the Banach Lemma on invertible operators [5,12]
that A(xk)−1 ∈ L(Y,X) and

‖A(xk)−1A0‖ ≤
1

1− l − L‖xk+1 − x0‖
≤ 1

1− l − Ltk+1
· (2.35)
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Using (1.2) we obtain in term

F (xk) +G(xk) = F (xk) +G(xk)− F (xk−1)−G(xk−1)

−A(xk−1)(xk − xk−1)

=

∫ 1

0

[
(F ′(xk−1 + θ(xk − xk−1))− F ′(x0))

+ (F ′(x0)− F ′(xk−1))
]
(xk − xk−1) dθ

+ (F ′(xk−1)−A(xk−1))(xk − xk−1)
+ (G(xk)−G(xk−1)).

(2.36)

Then, by (2.3), (2.23), (2.24), (2.26), (2.36) and the induction hypothesis we
get

‖A−10 (F (xk) +G(xk))‖ ≤
∫ 1

0
‖A−10 [F ′(xk−1 + θ(xk − xk+1))

− F ′(x0)]‖‖xk − xk−1‖
+ ‖A−10 (F ′(x0)− F ′(xk−1))‖‖xk − xk−1‖
+ ‖A−10 (F ′(xk−1)−A(xk−1))‖‖xk − xk−1‖
+ ‖A−10 (G(xk)−G(xk−1))‖

≤ [K(2‖xk−1 − x0‖+
1

2
‖xk − xk−1‖)

+M‖xk−1 − x0‖+ µ+M ]‖xk − xk−1‖

≤ [K(2tk−1 +
1

2
(tk − tk−1))

+Mtk−1 + µ+N ](tk − tk−1).

(2.37)

It follows from (1.2), (2.35) and (2.37)

‖xk+1 − xk‖
= ‖[A(xk)−1A0][A

−1
0 (F (xk) +G(xk))]‖

≤ ‖A(xk)−1A0‖‖A−10 (F (xk) +G(xk))‖

≤
K(2tk−1 + 1

2(tk − tk−1)) +Mtk−1 + µ+N

1− l − Ltk
(tk − tk−1)

= tk+1 − tk,

(2.38)

with completes the induction for (2.32).

For every w ∈ U(xk+1, t
∗ − tk+1) we have

‖w − xk‖ ≤ ‖w − xk+1‖+ ‖xk+1 − xk‖ ≤ t∗ − tk+1 + tk+1 − tk = t∗ − tk,
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showing (2.33). Lemma 2.1 implies {tn} is a Cauchy sequence. It then follows
from (2.32) and (2.33) that {xn} is a Cauchy sequence too in a Banach space X
and as such it converges to some x∗ ∈ U(x0, t

∗) (since U(x0, t
∗) is a closed set).

By letting k → +∞ in (2.37) we get F (x∗)+G(x∗) = 0. Estimate (2.29) follows
from (2.28) by using standard majorization techniques [5,12]. Finally, to show
uniqueness, let y∗ ∈ U(x0, R) be a solution of equation F (x) + G(x) = 0. As
in (2.36) we obtain the approximation

xk+1 − y∗

= −A(xk)−1
[ ∫ 1

0
F ′((y∗ + θ(xk − y∗))− F ′(x0))(xk − y∗) dθ

+ (F ′(x0)− F ′(xk))(xk − y∗)

+ (F ′(xk)−A(xk))(xk − y∗) + (G(xk)−G(y∗))

]
.

(2.39)

Then, as in (2.35) and (2.37) we get

‖xk+1 − y∗‖

≤
[K(‖y∗ − x0‖+ 1

2‖xk − y
∗‖+ ‖xk − x0‖) +M‖xk − x0‖

1− l − L‖xk − x0‖

+
η +N ]‖xk − y∗‖

1− l − L‖xk − x0‖

≤
3
2KR+ (k +M)z∗ + µ+N

1− l − Lt∗
‖xk − y∗‖

< ‖xk − y∗‖

(2.40)

(by (2.30) and (2.31)), which implies lim
k→+∞

xk = y∗. But we showed lim
k→+∞

xk =

x∗. Hence, we deduce x∗ = y∗. That completes the proof of the Theorem. �

(a) Note that t∗∗ given in closed form by (2.4) can replace t∗ in Theorem
2.2.

(b) We have already provided convergence results under conditions (2.22)–
(2.27) together with the Lipschitz condition

‖A−10 (F ′(x)− F ′(y))‖ ≤ K‖x− y‖ (2.41)

for all x, y ∈ D. [5, 12]. However, there are operators F ′ satisfying
(2.23) but not (2.41) (see Section 4). Hence, Theorem 2.2 is weaker
than in earlier results using (2.22), (2.24)-(2.27) and (2.41) can be
found in [1–12].

The importance of introducing center-Lipschitz condition (2.23) and using it
(in combination with (2.41) or not) has been shown in [13], where weaker than
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before sufficient convergence conditions and tighter error bounds for Newton-
like methods have been found.

3. Semilocal Convergence Analysis II

In Section 3 we study the semilocal convergence analysis of Newton-like
method (1.4). As in Lemma 2.1 we need a result on majorizing sequences for
Newton-like method (1.4).

Lemma 3.1. Let η > 0, ε ∈
(

0,
1

2

)
and µ0 ∈ (0, 3) be given. Set

b0 =
ε
4(3− µ0)

1− ε
4(3− µ0)

and b =
ε

1− ε
· (3.1)

Define scalar sequence {sn} by{
s0 = 0, s1 = η, s2 = s1 + b0(s1 − s0),
sn+2 = sn+1 + b(sn+1 − sn).

(3.2)

Then, sequence {sn} is non-decreasing bounded from above by

s∗∗ =
bn

1− b
+ (b0 − b)η (3.3)

and converges to its unique least upper bound s∗ satisfying

s∗ ∈ [0, s∗∗]. (3.4)

Moreover the following estimates hold

sn+1 − sn ≤ b(sn − sn−1) ≤ bnη (3.5)

and

s∗ − sn ≤
bnη

1− b
· (3.6)

As in Theorem 2.2 we can show the following semilocal convergence result
for Newton-like method (1.4).

Theorem 3.2. Let F : D ⊂ X → Y be Gateaux-differentiable, G : X → Y
continuous with divided difference of order one denoted by [x, y;G]. Assume:

(i) there exist x0, z−1, z0 ∈ D such that L−10 ∈ L(Y,X), {γn}, {sn} in

[0, 1], {zn} ∈ U(x0, s
∗) ⊆ D, z−1 = x0, z0 = x0,

(ii) F ′(x), [x, y;G] are precewise-hemicontinuous on U(x0, s
∗), U

2
(x0, s

∗),
respectively,
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(iii) for ε ∈
(

0,
1

2

)
‖L−10 (F ′(x)− F ′(x0))‖ ≤

ε

4
(3.7)

and

‖L−10 ([x, y;G]− [x−1, x0;G])‖ ≤ ε

4
(3.8)

for all x, y ∈ U(x0, s
∗).

Then, sequence {xn} generated by Newton-like method (1.4) is well defined,
remains in U(x0, s

∗) for all n ≥ 0 and converges to a unique solution x∗ in
U(x0, s

∗) of equation F (x)+G(x) = 0. Moreover, the following estimates hold

‖xn+1 − xn‖ ≤ sn+1 − sn (3.9)

and

‖xn − x∗‖ ≤ s∗ − sn. (3.10)

Proof. We use the proof of Theorem 2.2 but instead of (2.34) and (2.36), we
need, respectively

L−10 (Lk − L0)

= γkL
−1
0 (F ′(xk)− F ′(x0)) + (1− γk)L−10 (F ′(zk)− F ′(x0))

+ δkL
−1
0 ([xk+1, xk;G]− [x−1, x0;G])

+ (1− δk)L−10 ([zk−1, zk;G]− [x−1, x0;G])

+ (1− δk)L−10 ([x−1, x0;G]− [z−1, z0;G])

(3.11)

and

F (xk) +G(xk) = [F (xk)− F (xk−1)−Bk−1(xk − xk−1)]
+ [G(xk)−G(xk−1)− Ck−1(xk − xk−1)]

= Pk +Qk,

(3.12)

where

Pk = γk

∫ 1

0
[F ′(xk−1 + θ(xk − xk−1))− F ′(x0)](xk − xk−1) dθ

+ γk(F ′(x0)− F ′(xk−1))(xk − xk−1)

+ (1− γk)

∫ 1

0
[F ′(xk−1 + θ(xk − xk−1))− F ′(x0)](xk − xk−1) dθ

+ (1− γk)(F ′(x0)− F ′(zn))(xk − xk−1),

(3.13)
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Qk = δk([xk, xk−1;G]− [x−1, x0;G])(xk − xk−1)
+ δk([x−1, x0;G]− [xk−2, xk−1;G])(xk − xk−1)
+ (1− δk)([xk, xk−1;G]− [x−1, x0;G])(xk − xk−1)
+ (1− δk)([x−1, x0;G]− [zk−2, zk−1;G])(xk − xk−1).

(3.14)

Then, we have by (3.7), (3.8), (3.11) and the choices of {zk}, ε:

‖L−10 (Lk − L0)‖ ≤ γk
ε

4
+ (1− γk)

ε

4
+ δk

ε

4
+ (1− δk)

ε

4
= ε < 1.

(3.15)

It follows from (3.15) and the Banach Lemma on invertible operators that
L−1k ∈ L(Y,X) so that

‖L−1k L0‖ ≤
1

1− ε
· (3.16)

Using (3.2), (3.7), (3.8) and (3.12), we get

‖L−10 (F (xk) +G(xk))‖ ≤ [2
ε

4
γk + 2

ε

4
(1− γk) + 2

ε

4
δk

+ 2
ε

4
(1− δk)]‖xk − xk−1‖

≤ ε‖xk − xk−1‖ ≤ ε(sk − sk−1).

(3.17)

In view of (1.4), (3.1), (3.2), (3.16) and (3.17) we get

‖x2−x1‖ ≤ ‖L−11 L0‖‖L−10 (F (x1)+G(x1))‖ ≤ b0‖x1−x0‖ ≤ b0(t1−t0) = t2−t1,

‖xk+1 − xk‖ ≤ ‖LkL0‖‖L−10 (F (xk) +G(xk))‖ ≤ b(tk − tk−1) = tk+1 − tk,

which show estimate (3.5). Then, (3.6) follows from (3.5). Moreover, by (1.4)
we have

‖L−10 (F (xk) +G(xk))‖ ≤ ‖L−10 Lk(xk+1 − xk)‖
≤ ‖L−10 Lk‖‖xk+1 − xk‖
≤ ‖L−10 (Lk − L0 + L0)‖(tk+1 − tk)

≤ (1 + ‖L−10 (Lk − L0)‖)(tk−1 − tk)

= (1 + ε)(tk+1 − tk).

(3.18)

That is F (x∗) +G(x∗) = 0. Finally, to show uniqueness let x∗ and y∗ be two
distinct solutions of equation

F (x) +G(x) = 0 in U(x0, s
∗).

Then, we have
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‖x∗ − y∗‖ = ‖x∗ − y∗ − L−10 (F (x∗) +G(x∗)− F (y∗)−G(y∗))‖

= ‖L−10

{
γ0

∫ 1

0
[F ′(y∗ + θ(x∗ − y∗))− F ′(x0)] dθ

+ (1− γ0)
∫ 1

0
[F ′(y∗ + θ(x∗ − y∗))− F ′(x0)] dθ

+ (1− γ0)(F ′(x0)− F ′(z0))
+ δ0([x

∗, y∗;G]− [x−1, x0;G])

+ (1− δ0)([x∗, y∗;G]− [z−1, z0;G])

}
(x∗ − y∗)‖

≤
[
γ0
ε

4
+ 2(1− γ0)

ε

4
+ δ0

ε

4
+ 2(1− δ0)

ε

4

]
‖x∗ − y∗‖

=
ε

4
(4− (γ0 + δ0))‖x∗ − y∗‖ ≤ ε‖x∗ − y∗‖

< ‖x∗ − y∗‖,

(3.19)

which is a contradiction. Hence, we deduce x∗ = y∗. That completes the proof
of the Theorem. �

(a) The point s∗∗ given in closed form by (3.3) can replace s∗ in Theorem
3.2.

(b) Theorem 3.2 generalizes the results of Vijesh and Subrahmanyan, Weer-
akoon and Fernando, Sahuand Singh. Theorem 2.2 also extends the
results of Ozban from real line to Banach spaces [14].

(c) For G(x) = 0, γn = 0 and zn = x0, Theorem 3.2 reduces to the
modified Newton method [3, 5].

Set γn = γ and δn = δ in Theorem 3.2 to obtain:

Corollary 3.3. Suppose that F and G are continuous and satisfy all con-
ditions of Theorem 3.2. Then, Newton-like method (1.4) converges strongly
to the unique solution x∗ of equation F (x) + G(x) = 0 in U(x0, s

∗), where
zn ∈ U(x0, s

∗).

(a) If δn = δ = 0, then corollary 3.3 reduces to corollary 2.1 in [13].
Moreover, if G(x) = 0, corollary 3.3 reduces to a result by Vijeshand
Subrahmanyam [14].

(b) If zn =
xn + yn

2
and δn = δ = 0, we obtain Theorem 2.2 in [5]. In this

case, theorem 3.2 is more general than Argyros [5].
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4. Special Cases and Numerical Examples

We first provide an application of Lemma 2.1 and theorem 2.2 in the special
case when A(x) = F ′(x) and G(x) = 0. Then, Lemma 2.1 reduces to:

Proposition 4.1. Let η, k > 0 be given constants. Assume:

kη ≤ 5− 2
√

6. (4.1)

Then, scalar sequence {tn} given by
t0 = 0, t1 = η,

tn+2 = tn+1 +
k(2tn + 1

2(tn+1 − tn))

1− ktn+1
(tn+1 − tn)

(4.2)

is non-decreasing, bounded from above by

t∗∗ =
η

1− α
+ (α0 − α)η (4.3)

and converges to its unique least upper bound t∗ satisfying

0 ≤ t∗ ≤ t∗∗, (4.4)

where

α =
1− kη −

√
(1− kη)2 − 8kη

2
and α0 =

kη

2(1− kη)
· (4.5)

Moreover, the following estimates hold

tn+1 − tn ≤ α(tn − tn−1) ≤ αnη (4.6)

and

t∗ − tn ≤
αnη

1− α
(4.7)

Proof. Set M = N = l = µ = 0 and L = k in Lemma 2.1. �

Next we provide Numerical examples where (2.25) holds but not (2.41).

Example 1. Let X = R, D = (0, 1.9) and F : D → R a function defined by

F (x) =

 x2 cos

(
1

x

)
− 1.6, x 6= 0,

−1.6, x = 0.

Then F is Gateaux differentiable function on D and its derivative at point
x ∈ D is

F ′x =

 2x cos

(
1

x

)
+ sin

(
1

x

)
, x 6= 0,

0, x = 0.
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Let initial point x0 = 1.5 ∈ D and radius of closed ball U(x0, r) is 0.3 then,
we have

‖F ′−1x0
F (x0)‖ ≤ 0.056553 . . . = η,

‖F ′−1x0
(F ′x − F ′x0

)‖ < 0.25 = K.

For this equation, condition (4.1) in Proposition (4.1) is verified and we
can construct the scalar sequence {tn} corresponding to (4.2) and obtain the
iterations and a priori error bounds that are in Table 1. Besides, we have that
the sequence converges to t∗ = 0.0569510105 . . ..

Iteration tn+2 |tn+2 − tn+1|
1 0.0569390233 . . . 0.000405 . . .
2 0.0569506643 . . . 0.000011 . . .
3 0.0569510005 . . . 3.3621 . . .× 10−7

4 0.0569510102 . . . 9.7122 . . .× 10−9

Table 1. Scalar sequence {tn} and a priori error bounds

Example 2. Let X = L2([0, 1]) and consider el operator equation (1.1) with
G(x) = 0, where

F (x)(t) = x(t) + λ cos

(∫ t

0
x(s) ds

)
, λ ∈ R.

Then F is nowhere Fréchet differentiable but everywhere Gateaux differen-
tiable and x → F ′x is hemicontinuous. The Gateaux derivative of F is given
by

F ′xh(t) = h(t) + λ

∫ t

0
h(s) ds sin

(∫ 1

0
h(s) ds

)
, for all h ∈ L2([0, 1]).

For the choice x0 = 0, take r = 0.02 and we have

F ′x0
= I.

Clearly, the operator F ′x0
is invertible. Again, we have

‖F ′−1x0
F (x0)‖ = λ.

For x ∈ U(x0, r) and using definition of norm, we can write

‖F ′−1x0
(F ′x − F ′x0

)h(t)‖ = λ

∥∥∥∥∫ t

0
h(s) ds sin

(∫ t

0
x(s) ds

)∥∥∥∥
= λ

[∫ 1

0

∣∣∣∣∫ t

0
h(s) ds sin

(∫ t

0
x(s) ds

)∣∣∣∣2
] 1

2

≤ λ‖h‖.
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Hence we get

‖F ′−1x0
(F ′x − F ′x0

)‖ ≤ λ.
In particular, if λ = 0.01 then η = 0.01 and K = 0.01. The condition (4.1) of
Proposition 4.1 is verified and the scalar sequence {tn} in (4.2) converges to
its unique least upper bound t∗ = 0.010000500150046264 . . .. We can see the
results in Table 2.

Iteration tn+2 |tn+2 − tn+1|
1 0.01000050005000500 . . . 5.0005 . . .× 10−7

2 0.01000050015002625 . . . 1.0002 . . .× 10−10

3 0.01000050015004626 . . . 2.0006 . . .× 10−14

4 0.01000050015004626 . . . 3.4694 . . .× 10−18

Table 2. Scalar sequence {tn} and a priori error bounds
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