
Nonlinear Functional Analysis and Applications
Vol. 17, No. 4 (2012), pp. 471-489

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2012 Kyungnam University Press

PARTIALLY ORDERED METRIC SPACES,
RATIONAL CONTRACTIVE EXPRESSIONS

AND COUPLED FIXED POINTS

Hemant Kumar Nashine1 and Zoran Kadelburg2

1Department of Mathematics, Disha Institute of Management and Technology
Satya Vihar, Vidhansabha-Chandrakhuri Marg, Mandir Hasaud,

Raipur-492101(Chhattisgarh), India
e-mail: drhknashine@gmail.com, nashine 09@rediffmail.com

2University of Belgrade, Faculty of Mathematics
Studentski trg 16, 11000 Beograd, Serbia

e-mail: kadelbur@matf.bg.ac.rs

Abstract. We prove some coupled fixed point theorems for maps satisfying contractive

conditions involving a rational expression in the setting of partially ordered metric spaces.

We also present a result on the existence and uniqueness of coupled fixed points. An example

is given to support the usability of our results, and to distinguish them from the known ones.

1. Introduction

The well-known Banach contraction theorem plays a major role in solving
problems in many branches in pure and applied mathematics. A great number
of generalizations of the Banach contraction principle were obtained in various
directions. Many authors generalized this theorem to ordered metric spaces.
The first such result was given by Ran and Reurings [19] who presented its
applications to linear and nonlinear matrix equations. Subsequently, Nieto and
Rodŕıguez-López [17] extended this result for non-decreasing mappings and
applied it to obtain a unique solution for a periodic boundary value problem.
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Guo and Lakshmikantham [3] introduced the notion of a coupled fixed point
for two mappings. Bhaskar and Lakshmikantham [2] proved some interesting
coupled fixed point theorems for mappings satisfying a mixed monotone prop-
erty. Subsequently, several authors obtained many results of this kind (see,
e.g., [5, 8, 11, 15, 16, 18, 21, 22, 24, 25]). These results have a lot of ap-
plications, e.g., in proving existence of solutions of periodic boundary value
problems (e.g., [1, 2]) as well as particular integral equations (e.g., [7, 12, 13]).

Dass and Gupta [4] and Jaggi [10] proved fixed point theorems in metric
spaces using contractive conditions involving rational expressions. Recently,
Harjani et al. [6] and Luong and Thuan [14] derived results with such expres-
sions in ordered metric spaces. In [23], Samet and Yazidi derived some coupled
fixed point theorems of this kind.

In this paper we establish coupled fixed point results for mappings satisfying
contractive condition involving a rational expression, more general than in [23],
in the frame of partially ordered complete metric spaces. An example is given
to support the usability of our results, and to distinguish them from the known
ones.

2. Main results

Recall the following definitions.

Definition 2.1. ([3]) Let (X,�) be a partially ordered set. A mapping F :
X × X → X is said to have mixed monotone property if the following two
conditions are satisfied:

(∀x1, x2, y ∈ X) x1 � x2 =⇒ F (x1, y) � F (x2, y),

(∀x, y1, y2 ∈ X) y1 � y2 =⇒ F (x, y1) � F (x, y2).

Definition 2.2. ([3]) Let X be a nonempty set and let F : X ×X → X. A
point (x, y) ∈ X × X is said to be a coupled fixed point of F if F (x, y) = x
and F (y, x) = y.

We will prove now coupled fixed point results which generalize the results
of Samet and Yazidi [23].

Theorem 2.3. Let (X, d,�) be a partially ordered complete metric space. Let
F : X×X → X be a continuous mapping having the mixed monotone property
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and satisfying

d(F (x, y), F (u, v))

≤ α

2
[d(x, u) + d(y, v)] + βM((x, y), (u, v)) (2.1)

+
γ

2
[d(x, F (x, y)) + d(u, F (u, v)) + d(y, F (y, x)) + d(v, F (v, u))]

+
δ

2
[d(x, F (u, v)) + d(y, F (v, u)) + d(u, F (x, y)) + d(v, F (y, x))],

for all (x, y), (u, v) ∈ X ×X with x � u and y � v, where

M((x, y), (u, v)) = min

{
d(x, F (x, y))

2 + d(u, F (u, v)) + d(v, F (v, u))

2 + d(x, u) + d(y, v)
, (2.2)

d(u, F (u, v))
2 + d(x, F (x, y)) + d(y, F (y, x))

2 + d(x, u) + d(y, v)

}
and α, β, γ, δ ≥ 0 with α + β + 2γ + 2δ < 1. We assume that there exists
x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0). (2.3)

Then, F has a coupled fixed point (x̄, ȳ) ∈ X ×X.

Proof. Denote x1 = F (x0, y0) and y1 = F (y0, x0). Then x0 � x1 and y0 � y1,
by (2.3). Further denote

x2 = F (x1, y1) = F (F (x0, y0), F (y0, x0)) = F 2(x0, y0)

and

y2 = F (y1, x1) = F (F (y0, x0), F (x0, y0)) = F 2(y0, x0).

Due to the mixed monotone property of F , we have

x2 = F (x1, y1) � F (x0, y1) � F (x0, y0) = x1

and

y2 = F (y1, x1) � F (y0, x1) � F (y0, x0) = y1.

Further, for n = 1, 2, . . . , we let

xn+1 = Fn+1(x0, y0) = F (Fn(x0, y0), F
n(y0, x0))

and

yn+1 = Fn+1(y0, x0) = F (Fn(y0, x0), F
n(x0, y0)).

We check easily that

x0 � x1 � x2 � · · · ≤ xn � · · · (2.4)

and

y0 � y1 � y2 � · · · � yn � · · · . (2.5)
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If xn+1 = xn and yn+1 = yn for some n, then F (xn, yn) = xn and F (yn, xn) =
yn, hence (xn, yn) is a coupled fixed point of F . Suppose, further, that

xn 6= xn+1 or yn 6= yn+1 for each n ∈ N0.

Now, we claim that, for n ∈ N0,

d(xn+1, xn) + d(yn+1, yn) ≤
(

α+ γ + δ

1− β − γ − δ

)n
[d(x1, x0) + d(y1, y0)]. (2.6)

Indeed, for n = 1, using x1 � x0, y1 � y0 and (2.1), we get:

d(x2, x1) = d(F (x1, y1), F (x0, y0)) (2.7)

≤ α

2
[d(x1, x0) + d(y1, y0)] + βM((x1, y1), (x0, y0))

+
γ

2
[d(x1, F (x1, y1))+d(x0, F (x0, y0))+d(y1, F (y1, x1))+d(y0, F (y0, x0))]

+
δ

2
[d(x1, F (x0, y0))+d(y1, F (y0, x0))+d(x0, F (x1, y1))+d(y0, F (y1, x1))]

≤ α

2
[d(x0, x1) + d(y0, y1)]

+ βd(x1, F (x1, y1))
2 + d(x0, F (x0, y0)) + d(y0, F (y0, x0))

2 + d(x0, x1) + d(y0, y1)

+
γ

2
[d(x1, x2) + d(x0, x1) + d(y1, y2) + d(y0, y1)]

+
δ

2
[d(x1, x1) + d(y1, y1) + d(x0, x2) + d(y0, y2)]

≤ α

2
[d(x0, x1) + d(y0, y1)] + βd(x1, x2)

+
γ + δ

2
[d(x0, x1) + d(y0, y1) + d(x1, x2) + d(y1, y2)].

Similarly, using that d(y2, y1)=d(F (y1, x1), F (y0, x0))=d(F (y0, x0), F (y1, x1))
and

M((x1, y1), (x0, y0)) ≤ d(y1, F (y1, x1))
2 + d(y0, F (y0, x0)) + d(x0, F (x0, y0))

2 + d(y0, y1) + d(x0, x1)

= d(y1, y2),

we get

d(y2, y1) ≤
α

2
[d(x0, x1) + d(y0, y1)] + βd(y1, y2) (2.8)

+
γ + δ

2
[d(x0, x1) + d(y0, y1) + d(x1, x2) + d(y1, y2)].
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Adding (2.7) and (2.8), we have

d(x2, x1) + d(y2, y1) ≤
(

α+ γ + δ

1− β − γ − δ

)
[d(x0, x1) + d(y0, y1)].

In a similar way, proceeding by induction, if we assume that (2.6) holds, we
get that

d(xn+2, xn+1) + d(yn+2, yn+1) ≤
(

α+ γ + δ

1− β − γ − δ

)
[d(xn+1, xn) + d(yn+1, yn)]

≤
(

α+ γ + δ

1− β − γ − δ

)n+1

[d(x0, x1) + d(y0, y1)].

Hence, by induction, (2.6) is proved.
Set

hn := d(xn, xn+1) + d(yn, yn+1), n ∈ N

and ∆ := α+γ+δ
1−β−γ−δ < 1. Then, the sequence {hn} is decreasing and

hn ≤ ∆nh0.

By assumption (2.4), hn > 0 for n ∈ N0. Then, for each n ≥ m we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

and

d(yn, ym) ≤ d(yn, yn−1) + d(yn−1, yn−2) + · · ·+ d(ym+1, ym).

Therefore,

d(xn, xm) + d(yn, ym) ≤ hn−1 + hn−2 + · · ·+ hm

≤ (∆n−1 + ∆n−2 + · · ·+ ∆m)h0

≤ ∆m

1−∆
h0

which implies that {xn} and {yn} are Cauchy sequences in X since 0 ≤ ∆ < 1.
Since (X, d) is a complete metric space, there exists (x̄, ȳ) ∈ X ×X such that

lim
n→∞

xn = x̄ and lim
n→∞

yn = ȳ. (2.9)

Finally, we claim that (x̄, ȳ) is a coupled fixed point of F . Indeed, from
xn+1 = F (xn, yn) and yn+1 = F (yn, xn), using (2.9) and the continuity of F ,
it immediately follows that x̄ = F (x̄, ȳ) and ȳ = F (ȳ, x̄). This completes the
proof of the theorem. �

In the next theorem, we will substitute the continuity hypothesis on F by
an additional property satisfied by the space (X, d,�).
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Theorem 2.4. Let (X, d,�) be a partially ordered complete metric space. Let
F : X ×X → X be a mapping having the mixed monotone property. Assume
that there exist α, β, γ, δ ≥ 0 with α+ β + 2γ + 2δ < 1 such that

d(F (x, y), F (u, v))

≤ α

2
[d(x, u) + d(y, v)] + βM((x, y), (u, v))

+
γ

2
[d(x, F (x, y)) + d(u, F (u, v)) + d(y, F (y, x)) + d(v, F (v, u))]

+
δ

2
[d(x, F (u, v)) + d(y, F (v, u)) + d(u, F (x, y)) + d(v, F (y, x))]

for all (x, y), (u, v) ∈ X ×X with x � u and y � v, where

M((x, y), (u, v)) = min

{
d(x, F (x, y))

2 + d(u, F (u, v)) + d(v, F (v, u))

2 + d(x, u) + d(y, v)
,

d(u, F (u, v))
2 + d(x, F (x, y)) + d(y, F (y, x))

2 + d(x, u) + d(y, v)

}
.

Suppose that there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0).

Finally, assume that X has the following properties:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn � x
for all n,

(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn � y
for all n.

Then, F has a coupled fixed point (x̄, ȳ) ∈ X ×X.

Proof. Following the proof of Theorem 2.3, we only have to show that (x̄, ȳ)
is a coupled fixed point of F . We have

d(F (x̄, ȳ), x̄) ≤ d(F (x̄, ȳ), xn+1) + d(xn+1, x̄)

= d(F (x̄, ȳ), F (xn, yn)) + d(xn+1, x̄).
(2.10)

Since the nondecreasing sequence {xn} converges to x̄ and the nonincreasing
sequence {yn} converges to ȳ, by (i)–(ii), we have:

x̄ � xn and ȳ � yn, ∀n.
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Now, from the contractive condition (2.1), we have:

d(F (x̄, ȳ), F (xn, yn))

≤ α

2
[d(x̄, xn) + d(ȳ, yn)] + βM((x̄, ȳ), (xn, yn))

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, F (xn, yn)) + d(ȳ, F (ȳ, x̄)) + d(yn, F (yn, xn))]

+
δ

2
[d(x̄, F (xn, yn)) + d(ȳ, F (yn, xn)) + d(xn, F (x̄, ȳ)) + d(yn, F (ȳ, x̄))]

≤ α

2
[d(x̄, xn) + d(ȳ, yn)]

+ βd(x̄, F (x̄, ȳ))
2 + d(xn, xn+1) + d(yn, yn+1)

2 + d(x̄, xn) + d(ȳ, yn)

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, xn+1) + d(ȳ, F (ȳ, x̄)) + d(yn, yn+1)]

+
δ

2
[d(x̄, xn+1) + d(ȳ, yn+1) + d(xn, F (x̄, ȳ)) + d(yn, F (ȳ, x̄))].

Then, from (2.10), we get:

d(F (x̄, ȳ), x̄)

≤ d(xn+1, x̄)

+
α

2
[d(x̄, xn) + d(ȳ, yn)] + βd(x̄, F (x̄, ȳ))

2 + d(xn, xn+1) + d(yn, yn+1)

2 + d(x̄, xn) + d(ȳ, yn)

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, xn+1) + d(ȳ, F (ȳ, x̄)) + d(yn, yn+1)]

+
δ

2
[d(x̄, xn+1) + d(ȳ, yn+1) + d(xn, F (x̄, ȳ)) + d(yn, F (ȳ, x̄))].

Taking limit as n→∞, we have

d(F (x̄, ȳ), x̄) ≤ βd(x̄, F (x̄, ȳ)) +
γ + δ

2
[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))]. (2.11)

Similarly,

d(ȳ, F (ȳ, x̄)) ≤ βd(ȳ, F (ȳ, x̄)) +
γ + δ

2
[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))]. (2.12)

Adding (2.11) and (2.12), we have

d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))

≤ (β + γ + δ)[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))]

≤ (α+ β + 2γ + 2δ)[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))].

Since 0 ≤ α+ β + 2γ + 2δ < 1, we obtain d(F (x̄, ȳ), x̄) = 0 and d(ȳ, F (ȳ, x̄)),
i.e., F (x̄, ȳ) = x̄ and F (ȳ, x̄) = ȳ. This completes the proof of the theorem. �
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Now we shall prove a uniqueness theorem for the coupled fixed point. Note
that, if (X,�) is a partially ordered set, then we endow the product space
X ×X with the following partial order:

for (x, y), (u, v) ∈ X ×X, (u, v) � (x, y)⇔ x � u, y � v.

Theorem 2.5. Assume that

∀(x, y), (x∗, y∗) ∈ X ×X, ∃ (z1, z2) ∈ X ×X
that is comparable to (x, y) and (x∗, y∗).

(2.13)

Adding (2.13) to the hypotheses of Theorem 2.3, we obtain the uniqueness of
the coupled fixed point of F .

Proof. From Theorem 2.3 we know that there exists a coupled fixed point (x̄, ȳ)
of F , which is obtained as x̄ = limn→∞ F

n(x0, y0) and ȳ = limn→∞ F
n(y0, x0).

Suppose that (x∗, y∗) is another coupled fixed point, i.e.,

F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗.

Let us prove that

d(x̄, x∗) + d(ȳ, y∗) = 0. (2.14)

We distinguish two cases.
Case I: (x̄, ȳ) is comparable with (x∗, y∗) with respect to the ordering in

X × X. Let, e.g., x̄ � x∗ and ȳ � y∗. Then, we can apply the contractive
condition (2.1) to obtain

d(x̄, x∗) = d(F (x̄, ȳ), F (x∗, y∗))

≤ α

2
[d(x̄, x∗) + d(ȳ, y∗)] + δ[d(x̄, x∗) + d(ȳ, y∗)],

and

d(ȳ, y∗) = d(F (ȳ, x̄), F (y∗, x∗)) = d(F (y∗, x∗), F (ȳ, x̄))

≤ α

2
[d(x̄, x∗) + d(ȳ, y∗)] + δ[d(x̄, x∗) + d(ȳ, y∗)].

Adding up, we get that

d(x̄, x∗) + d(ȳ, y∗) ≤ (α+ 2δ)[d(x̄, x∗) + d(ȳ, y∗)].

Since 0 ≤ α+ 2δ < 1, (2.14) holds.
Case II: (x̄, ȳ) is not comparable with (x∗, y∗). In this case, there exists

(z1, z2) ∈ X ×X that is comparable both to (x̄, ȳ) and (x∗, y∗). Then, for all
n ∈ N, (Fn(z1, z2), F

n(z2, z1)) is comparable both to (Fn(x̄, ȳ), Fn(ȳ, x̄)) =
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(x̄, ȳ) and (Fn(x∗, y∗), Fn(y∗, x∗)) = (x∗, y∗). We have

d(x̄, x∗) + d(ȳ, y∗) = d(Fn(x̄, ȳ), Fn(x∗, y∗)) + d(Fn(ȳ, x̄), Fn(y∗, x∗))

≤ d(Fn(x̄, ȳ), Fn(z1, z2)) + d(Fn(z1, z2), F
n(x∗, y∗))

+ d(Fn(ȳ, x̄), Fn(z2, z1)) + d(Fn(z2, z1), F
n(y∗, x∗))

≤ (αn + 2δn)[d(x̄, z1) + d(ȳ, z2) + d(x∗, z1) + d(y∗, z2)].

Since 0 < α, δ < 1, (2.14) holds.
We deduce that in all cases (2.14) holds. This implies that (x̄, ȳ) = (x∗, y∗)

and the uniqueness of the coupled fixed point of F is proved. �

If x0, y0 in X are comparable, we have the following result.

Theorem 2.6. In addition to the hypotheses of Theorem 2.3 (resp. Theorem
2.4), suppose that x0, y0 in X are comparable. Then x̄ = ȳ.

Proof. Suppose that x0 � y0. We claim that

xn � yn, ∀n ∈ N. (2.15)

From the mixed monotone property of F , we have

x1 = F (x0, y0) � F (y0, y0) � F (y0, x0) = y1.

Assume that xn � yn for some n. Now,

xn+1 = Fn+1(x0, y0) = F (Fn(x0, y0), F
n(y0, x0))

= F (xn, yn)

� F (yn, yn) � F (yn, xn)

= yn+1.

Hence, (2.15) holds.
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Now, using (2.15) and the contractive condition, we get

d(x̄, ȳ)

≤ d(x̄, xn+1) + d(xn+1, yn+1) + d(yn+1, ȳ)

= d(x̄, xn+1) + d(F (yn, xn), F (xn, yn)) + d(yn+1, ȳ)

≤ d(x̄, xn+1) + d(yn+1, ȳ) + αd(xn, yn) + βM((yn, xn), (xn, yn))

+
γ

2
[d(xn,F (xn, yn))+d(yn,F (yn, xn))+d(yn,F (yn, xn))+d(xn,F (xn, yn)))]

+
δ

2
[d(xn,F (yn, xn))+d(yn,F (xn, yn))+d(yn,F (xn, yn))+d(xn,F (yn, xn))]

≤ d(x̄, xn+1) + d(yn+1, ȳ) + αd(xn, yn)

+ βd(yn, yn+1)
2 + d(xn, xn+1) + d(yn, yn+1)

2 + 2d(yn, xn)

+ γ[d(xn, xn+1) + d(yn, yn+1)] + δ[d(xn, yn+1) + d(yn, xn+1)]

≤ d(x̄, xn+1) + d(yn+1, ȳ) + αd(xn, yn)

+ βd(yn, yn+1)[2 + d(xn, xn+1) + d(yn, yn+1)]

+ γ[d(xn, xn+1) + d(yn, yn+1)] + δ[d(xn, yn+1) + d(yn, xn+1)].

Passing to the limit as n→∞, we get that

d(x̄, ȳ) ≤ (α+ 2δ)d(x̄, ȳ).

Since 0 ≤ α+ 2δ < 1, this implies that d(x̄, ȳ) = 0, i.e., x̄ = ȳ. This completes
the proof of the theorem. �

Remark 2.7. If we put

T (x) = F (x, x), ∀x ∈ X,
then for x = y and u = v, the contractive condition (2.1) reduces to the
condition for a single map (in the case without order) of Rhoades from [20,
Corollary 15].

We illustrate our results by the following example which also distinguishes
these result from the known ones.

Example 2.8. Let X = [0,+∞) be equipped with the standard metric and
ordered by the relation � given by

x � y ⇐⇒ x = y ∨ (x, y ∈ [0, 1] ∧ x ≤ y).

Consider the (continuous) mapping F : X ×X → X given by

F (x, y) =


x2 − y2

8
, x ≥ y

0, x < y.
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Let α, β, γ, δ be nonnegative numbers satisfying 1
2 ≤ α < 1 and α+β+2γ+2δ <

1, and denote by L and R, respectively, the left-hand and right-hand side of
(2.1). Suppose that x � u and y � v and consider the following possible cases.

1) x, u, y, v ∈ [0, 1] and hence x ≥ u, y ≤ v. Considering further six possi-
bilities for the order of points x, y, u, v on the segment [0, 1] (and using that
x+ y ≤ 2 and u+ v ≤ 2), we get that in each case

L ≤ x− y
4
≤ α

2
[d(x, u) + d(y, v)] ≤ R.

For example, if 0 ≤ y ≤ u ≤ x ≤ v ≤ 1 then

L = d(F (x, y), F (u, v)) = d

(
x2 − y2

8
, 0

)
=
x2 − y2

8
≤ x− y

4
;

the other five cases are treated similarly.
2a) x, u ∈ [0, 1] and y = v > 1; then L = 0 and the condition is satisfied.
2b) y, v ∈ [0, 1] and x = u > 1; then

L = d

(
x2 − y2

8
,
u2 − v2

8

)
=
x2 − y2

8
− x2 − v2

8
=
v2 − y2

8
≤ v − y

4

≤ α

2
[d(x, u) + d(y, v)] ≤ R,

since 1
2 ≤ α < 1.

3) x = u > 1 and y = v > 1; then obviously L = 0.
Thus, F satisfies all the assumptions of the given theorems and it has a

unique coupled fixed point (which is (0, 0)).
On the other hand, consider the same example in the case without order.

Take x = 4 and u = y = v = 0. Then F (x, y) = 2, F (u, v) = 0, L = 2, but

R =
α

2
[4 + 0] + β · 0 +

γ

2
[2 + 0 + 0 + 0] +

δ

2
[4 + 0 + 2 + 0] = 2α+ γ + 3δ

≤ 2(α+ β + 2γ + 2δ) < 2,

whatever coefficients are taken satisfying the given condition.

The second main theorem uses contractive condition having a different type
of rational expression.

Theorem 2.9. Let (X, d,�) be a partially ordered complete metric space. Let
F : X×X → X be a continuous mapping having the mixed monotone property
and satisfying

d(F (x, y), F (u, v))

≤ α

2
[d(x, u) + d(y, v)] + βN((x, y), (u, v)) (2.16)

+
γ

2
[d(x, F (x, y)) + d(u, F (u, v)) + d(y, F (y, x)) + d(v, F (v, u))],
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for all (x, y), (u, v) ∈ X×X with x � u and y � v, when D1 = d(x, F (u, v)) +
d(u, F (x, y)) 6= 0 and D2 = d(y, F (v, u)) + d(v, F (y, x)) 6= 0, where

N((x, y), (u, v)) (2.17)

= min

{
d2(x, F (u, v)) + d2(u, F (x, y))

d(x, F (u, v)) + d(u, F (x, y))
,
d2(y, F (v, u)) + d2(v, F (y, x))

d(y, F (v, u)) + d(v, F (y, x))

}
and α, β, γ ≥ 0 with α+ 2β + 2γ < 1. Further,

d(F (x, y), F (u, v)) = 0 if D1 = 0 or D2 = 0. (2.18)

We assume that there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0). (2.19)

Then, F has a coupled fixed point (x̄, ȳ) ∈ X ×X.

Proof. Following the proof of Theorem 2.3, we can construct sequences {xn}
and {yn} satisfying conditions (2.4) and (2.5).

Now, we claim that, for n ∈ N,

d(xn+1, xn) + d(yn+1, yn) ≤
(
α+ β + γ

1− β − γ

)n
[d(x1, x0) + d(y1, y0)]. (2.20)

Indeed, for n = 1, consider the following possibilities.
Case I: x0 6= x2 and y0 6= y2. Then d(x1, F (x0, y0)) + d(x0, F (x1, y1)) 6= 0

and d(y1, F (y0, x0)) + d(y0, F (y1, x1)) 6= 0. Hence, using x1 � x0, y1 � y0 and
(2.16), we get:

d(x2, x1) = d(F (x1, y1), F (x0, y0)) (2.21)

≤ α

2
[d(x1, x0) + d(y1, y0)] + βN(x1, y1), (x0, y0))

+
γ

2
[d(x1,F (x1, y1))+d(x0,F (x0, y0))+d(y1,F (y1, x1))+d(y0,F (y0, x0))]

≤ α

2
[d(x0, x1) + d(y0, y1)] + β

d2(x1, F (x0, y0)) + d2(x0, F (x1, y1))

d(x1, F (x0, y0)) + d(x0, F (x1, y1))

+
γ

2
[d(x1, x2) + d(x0, x1) + d(y1, y2) + d(y0, y1)]

≤ α

2
[d(x0, x1) + d(y0, y1)] + β[d(x0, x1) + d(x1, x2)]

+
γ

2
[d(x0, x1) + d(y0, y1) + d(x1, x2) + d(y1, y2)].

Similarly, using that d(y2, y1)=d(F (y1, x1), F (y0, x0))=d(F (y0, x0), F (y1, x1))
and

N((y1, x1), (y0, x0)) ≤
d2(y1, F (y0, x0) + d2(y0, F (y1, x1))

d(y1, F (y0, x0)) + d(y0, F (y1, x1))

= d(y0, y2) ≤ d(y0, y1) + d(y1, y2),
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we get

d(y2, y1) ≤
α

2
[d(x0, x1) + d(y0, y1)] + β[d(y0, y1) + d(y1, y2)] (2.22)

+
γ

2
[d(x0, x1) + d(y0, y1) + d(x1, x2) + d(y1, y2)].

Adding (2.21) and (2.22), we have

d(x2, x1) + d(y2, y1) ≤
(
α+ β + γ

1− β − γ

)
[d(x0, x1) + d(y0, y1)]. (2.23)

Case II: x0 = x2 and y0 6= y2. The first equality implies that d(x1, F (x0, y0))
+d(x0, F (x1, y1)) = 0, and hence d(x1, x2) = d(F (x0, y0), F (x1, y1)) = 0, by
(2.18). This means that x0 = x1 = x2. From y0 6= y2, as in the first case, we
get that (2.22) holds true. As a consequence

d(y1, y2) ≤
α
2 + β + γ

2

1− β − γ
2

d(y0, y1) ≤
α+ β + γ

1− β − γ
d(y0, y1),

since
α
2
+β+ γ

2

1−β− γ
2
≤ α+β+γ

1−β−γ . But then d(x0, x1) = d(x1, x2) = 0 implies that (2.23)

holds.
The case x0 6= x2 and y0 = y2 is treated analogously.
Case III: If x0 = x2 and y0 = y2, then d(x1, F (x0, y0))+d(x0, F (x1, y1)) = 0

and d(y1, F (y0, x0)) + d(y0, F (y1, x1)) = 0. Hence, (2.18) implies that x1 =
x2 = x3 and y1 = y2 = y3, and so (2.23) holds trivially.

Thus, (2.20) holds for n = 1. In a similar way, proceeding by induction, if
we assume that (2.20) holds, we get that

d(xn+2, xn+1) + d(yn+2, yn+1) ≤
(
α+ β + γ

1− β − γ

)
[d(xn+1, xn) + d(yn+1, yn)]

≤
(
α+ β + γ

1− β − γ

)n+1

[d(x0, x1) + d(y0, y1)].

Hence, by induction, (2.20) is proved.
Using similar arguments as in the proof of Theorem 2.3, we have the desired

result. This completes the proof of the theorem. �

In the next theorem, we will substitute the continuity hypothesis on F by
an additional property satisfied by the space (X, d,�).

Theorem 2.10. Let (X, d,�) be a partially ordered complete metric space.
Let F : X × X → X be a mapping having the mixed monotone property.
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Assume that there exist α, β, γ ≥ 0 with α+ 2β + 2γ < 1 such that

d(F (x, y), F (u, v))

≤ α

2
[d(x, u) + d(y, v)] + βN((x, y), (u, v))

+
γ

2
[d(x, F (x, y)) + d(u, F (u, v)) + d(y, F (y, x)) + d(v, F (v, u))],

for all (x, y), (u, v)∈X×X with x�u and y�v, when

D1=d(x, F (u, v)) + d(u, F (x, y)) 6= 0

and

D2 = d(y, F (v, u)) + d(v, F (y, x)) 6= 0,

where

N((x, y), (u, v))

= min

{
d2(x, F (u, v)) + d2(u, F (x, y))

d(x, F (u, v)) + d(u, F (x, y))
,
d2(y, F (v, u)) + d2(v, F (y, x))

d(y, F (v, u)) + d(v, F (y, x))

}
.

Further, d(F (x, y), F (u, v)) = 0 if D1 = 0 or D2 = 0.
Suppose that there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0).

Finally, assume that X has the following properties:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn � x
for all n,

(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn � y
for all n.

Then, F has a coupled fixed point (x, y) ∈ X ×X.

Proof. Following the proof of Theorem 2.9, we only have to show that (x̄, ȳ)
is a coupled fixed point of F . Suppose this is not the case, i.e., F (x̄, ȳ) 6= x̄ or
F (ȳ, x̄) 6= ȳ (e.g., let the first one of these holds). We have

d(F (x̄, ȳ), x̄) ≤ d(F (x̄, ȳ), xn+1) + d(xn+1, x̄)

= d(F (x̄, ȳ), F (xn, yn)) + d(xn+1, x̄).
(2.24)

Since the nondecreasing sequence {xn} converges to x̄ and the nonincreasing
sequence {yn} converges to ȳ, by (i)–(ii), we have:

x̄ � xn and ȳ � yn, ∀n.
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Now, from the contractive condition, we have:

d(F (x̄, ȳ), F (xn, yn))

≤ α

2
[d(x̄, xn) + d(ȳ, yn)] + βN((x̄, ȳ), (xn, yn))

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, F (xn, yn)) + d(ȳ, F (ȳ, x̄)) + d(yn, F (yn, xn))]

≤ α

2
[d(x̄, xn) + d(ȳ, yn)] + β

d2(x̄, xn+1) + d2(xn, F (x̄, ȳ))

d(x̄, xn+1) + d(xn, F (x̄, ȳ))

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, xn+1) + d(ȳ, F (ȳ, x̄)) + d(yn, yn+1)].

We note that the case d(x̄, xn+1) + d(xn, F (x̄, ȳ)) = 0 is impossible, since
otherwise the condition (2.18) would imply x̄ = F (x̄, ȳ), which is excluded.
Then, from (2.24), we get:

d(F (x̄, ȳ), x̄)

≤ d(xn+1, x̄) +
α

2
[d(x̄, xn) + d(ȳ, yn)] + β

d2(x̄, xn+1) + d2(xn, F (x̄, ȳ))

d(x̄, xn+1) + d(xn, F (x̄, ȳ))

+
γ

2
[d(x̄, F (x̄, ȳ)) + d(xn, xn+1) + d(ȳ, F (ȳ, x̄)) + d(yn, yn+1)].

Taking limit as n→∞ (and again using that F (x̄, ȳ) 6= x̄), we have

d(F (x̄, ȳ), x̄) ≤ βd(x̄, F (x̄, ȳ)) +
γ

2
[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))]. (2.25)

Now, if ȳ = F (ȳ, x̄), using that β + γ
2 < 1, it follows immediately that x̄ =

F (x̄, ȳ), a contradiction. If this is not the case, we similarly get

d(ȳ, F (ȳ, x̄)) ≤ βd(ȳ, F (ȳ, x̄)) +
γ

2
[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))]. (2.26)

Adding (2.25) and (2.26), we have

d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄)) ≤ (β + γ)[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))]

≤ (α+ 2β + 2γ)[d(x̄, F (x̄, ȳ)) + d(ȳ, F (ȳ, x̄))].

Since 0 ≤ α+ 2β + 2γ < 1, we obtain d(F (x̄, ȳ), x̄) = 0 and d(ȳ, F (ȳ, x̄)) = 0,
i.e., F (x̄, ȳ) = x̄ and F (ȳ, x̄) = ȳ, again a contradiction. This completes the
proof of the theorem. �

Now we shall prove a uniqueness theorem for the coupled fixed point.

Theorem 2.11. Assume that

∀(x, y), (x∗, y∗) ∈ X ×X, ∃ (z1, z2) ∈ X ×X
that is comparable to (x, y) and (x∗, y∗).

(2.27)

Adding (2.27) to the hypotheses of Theorem 2.9, we obtain the uniqueness of
the coupled fixed point of F .
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Proof. From Theorem 2.9 we know that there exists a coupled fixed point (x̄, ȳ)
of F , which is obtained as x̄ = limn→∞ F

n(x0, y0) and ȳ = limn→∞ F
n(y0, x0).

Suppose that (x∗, y∗) is another coupled fixed point, i.e.,

F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗.

Let us prove that

d(x̄, x∗) + d(ȳ, y∗) = 0. (2.28)

We distinguish two cases.
Case I: (x̄, ȳ) is comparable with (x∗, y∗) with respect to the ordering in

X × X. Let, e.g., x̄ � x∗ and ȳ � y∗. Then, we can apply the contractive
condition (2.16) to obtain

d(x̄, x∗) = d(F (x̄, ȳ), F (x∗, y∗))

≤ α

2
[d(x̄, x∗) + d(ȳ, y∗)] + βd(x̄, x∗),

and

d(ȳ, y∗) = d(F (ȳ, x̄), F (y∗, x∗)) = d(F (y∗, x∗), F (ȳ, x̄))

≤ α

2
[d(x̄, x∗) + d(ȳ, y∗)] + βd(ȳ, y∗).

Adding up, we get that

d(x̄, x∗) + d(ȳ, y∗) ≤ (α+ β)[d(x̄, x∗) + d(ȳ, y∗)].

Since 0 ≤ α+ β < 1, (2.28) holds.
Case II: (x̄, ȳ) is not comparable with (x∗, y∗). In this case, there exists

(z1, z2) ∈ X ×X that is comparable both to (x̄, ȳ) and (x∗, y∗). Then, for all
n ∈ N, (Fn(z1, z2), F

n(z2, z1)) is comparable both to (Fn(x̄, ȳ), Fn(ȳ, x̄)) =
(x̄, ȳ) and (Fn(x∗, y∗), Fn(y∗, x∗)) = (x∗, y∗). We have

d(x̄, x∗) + d(ȳ, y∗) = d(Fn(x̄, ȳ), Fn(x∗, y∗)) + d(Fn(ȳ, x̄), Fn(y∗, x∗))

≤ d(Fn(x̄, ȳ), Fn(z1, z2)) + d(Fn(z1, z2), F
n(x∗, y∗))

+ d(Fn(ȳ, x̄), Fn(z2, z1)) + d(Fn(z2, z1), F
n(y∗, x∗))

≤ (αn + βn)[d(x̄, z1) + d(ȳ, z2) + d(x∗, z1) + d(y∗, z2)].

Since 0 < α, β < 1, (2.28) holds.
We deduce that in all cases (2.28) holds. This implies that (x̄, ȳ) = (x∗, y∗)

and the uniqueness of the coupled fixed point of F is proved. �

Our next result is as follows:

Theorem 2.12. In addition to the hypotheses of Theorem 2.9 (resp. Theorem
2.10), suppose that x0, y0 in X are comparable. Then x̄ = ȳ.
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Proof. Suppose that x0 � y0. We claim that

xn � yn, ∀n ∈ N. (2.29)

From the mixed monotone property of F , we have

x1 = F (x0, y0) � F (y0, y0) � F (y0, x0) = y1.

Assume that xn � yn for some n. Now,

xn+1 = Fn+1(x0, y0) = F (Fn(x0, y0), F
n(y0, x0))

= F (xn, yn) � F (yn, yn) � F (yn, xn) = yn+1.

Hence, (2.29) holds.
Now, using (2.29) and the contractive condition, we get

d(x̄, ȳ)

≤ d(x̄, xn+1) + d(xn+1, yn+1) + d(yn+1, ȳ)

= d(x̄, xn+1) + d(F (yn, xn), F (xn, yn)) + d(yn+1, ȳ)

≤ d(x̄, xn+1) + d(yn+1, ȳ) + αd(xn, yn) + βN((yn, xn), (xn, yn))

+
γ

2
[d(xn,F (xn, yn))+d(yn,F (yn, xn))+d(yn,F (yn, xn))+d(xn,F (xn, yn)))]

≤ d(x̄, xn+1)+d(yn+1, ȳ)+αd(xn, yn)+β
d2(xn, F (yn, xn))+d2(yn, F (xn, yn))

d(xn, F (yn, xn))+d(yn, F (xn, yn))

+ γ[d(xn, xn+1) + d(yn, yn+1)]

≤ d(x̄, xn+1) + d(yn+1, ȳ) + αd(xn, yn) + β
d2(xn, yn+1) + d2(yn, xn+1)

d(xn, yn+1) + d(yn, xn+1)

+ γ[d(xn, xn+1) + d(yn, yn+1)] (provided d(xn, yn+1) + d(yn, xn+1) 6= 0).

Passing to the limit as n→∞, we get that

d(x̄, ȳ) ≤ (α+ β)d(x̄, ȳ).

Since 0 ≤ α+ β < 1, this implies that d(x̄, ȳ) = 0, i.e., x̄ = ȳ.
In the case when d(xn, yn+1)+d(yn, xn+1) = 0, the conditions of the theorem

readily imply that d(x̄, ȳ) = 0. This completes the proof of the theorem. �

Remark 2.13. If we put

T (x) = F (x, x), ∀x ∈ X,

then for x = y and u = v, the contractive condition (2.16) reduces to the
condition for a single map (in the case without order) of Imdad et al. from [9,
Theorem 2.1].



488 H.K. Nashine and Z. Kadelburg

Remark 2.14. The results of this paper can be easily modified in a way
to obtain the existence of a coupled coincidence point of the mapping F :
X ×X → X and an additional mapping g : X → X, in the case when F has
the g-mixed monotone property (see respective definitions in [11]).

Acknowledgements: The second author is thankful to the Ministry of Sci-
ence and Technological Development of Serbia.
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