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Abstract. A new semilocal convergence analysis for Newton’s method is developed under

uniformly continuity assumptions on the Fréchet-derivative of the operator. It turns out

that our analysis has several advantages over earlier studies. For example, error bounds

derived in this work are finer than the known results in scientific literature [1, 3, 18, 24,

25, 27, 28, 31, 38, 40, 41, 43, 46, 48, 53, 54, 55] and, under the same or weaker sufficient

convergence conditions, our analysis provide at least as precise information on the location

of the solution. Numerical examples are also presented which further validate the developed

theoritical results.

1. Introduction

In this work, we are concerned with the problem of approximating a locally
unique solution x? of equation

F(x) = 0, (1.1)

where, F is a Fréchet differentiable operator defined on an open ball U(x0, R)
(R > 0) of a Banach space X with values in a Banach space Y. Numerous
problems in science and engineering can be reduced to solving the above equa-
tion [4, 9, 15, 28, 31, 33, 34, 41, 44, 47]. Consequently, solving these equations
is an important scientific field of research. In many situations, finding a closed
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form solution for the non-linear equation (1.1) is not possible. Therefore,
iterative solution techniques are employed for solving these equations.

One of the most important iterative method is the Newton’s method (NM)
which is given as

xn+1 = xn −F ′(xn)
−1F(xn), (n ≥ 0), (x0 ∈ D). (1.2)

The Newton’s method is one of the most popular, and may be the most used,
iterative procedure for generating a sequence {xn} to approximate the solution
x? of equation (1.1). There exists an extensive literature on local as well as
semilocal convergence for the Newton’s method under various Lipschitz type
conditions. A recent survey of such results can be found in [9, 12, 15], and the
references therein (see also [1–5] and [15–50]).

We study convergence of (NM) assuming there exists x0 ∈ X, R > 0 and
a non-decreasing function w : [0, R)→ [0, R) such that

F ′(x0)−1 ∈ L(Y,X), (1.3)

lim
t→∞

w(t) = 0 (1.4)

and ∥∥∥F ′(x0)−1 (F ′(x)− F ′(y)
)∥∥∥ ≤ w(‖x− y‖) (1.5)

for all x, y ∈ U(x0, R). More generally, we assume that∥∥∥F ′(x0)−1 (F ′(x)− F ′(y)
)∥∥∥ ≤ v(r, ‖x− y‖) (1.6)

for all x, y ∈ U(x0, r) and 0 < r < R. For some non-decreasing (in both
arguments) function v : [0, R)× [0, R)→ [0,+∞) satisfying

lim
t→∞

v(r, t) = 0, 0 ≤ r ≤ R. (1.7)

Sufficient convergence conditions for the semilocal convergence of (NM) un-
der the assumptions (1.3)-(1.6) were given in [1]. Later in [3], and under the
same assumptions (1.3)-(1.6), we provided finer error estimates on the dis-
tances ‖xn+1 − xn‖, ‖xn − x?‖ (n ≥ 0) by introducing the center-Lipschitz
type condition ∥∥∥F ′(x0)−1 (F ′(x)− F ′(x0)

)∥∥∥ ≤ w0 (‖x− x0‖) (1.8)

for all x ∈ U(x0, R) (see also Remark 2.3). Note that (1.5) (or (1.6)) imply
the existence of function w0 : [0, R) → [0,+∞) which can be chosen to be
non-decreasing and which satisfies

lim
t→∞

w0(t) = 0. (1.9)
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Moreover, for all t ∈ [0, R) the following

w0(t) ≤ w(t), (1.10)

w0(t) ≤ v(t, t) (1.11)

hold and w/w0, v/w0 can be arbitrarily large (see Example 4.3).
In this study, we develop a finer convergence analysis and also provide

sufficient conditions which are weaker than before [1, 3]. The rest of the paper
is organized as follows. In the Section 2, we present results on majorizing
sequences for (NM). While the Section 3 develops a semilocal convergence
analysis of (NM). Finally, numerical examples are presented in the concluding
Section 4.

2. Majorizing sequences for (NM)

We need a result on majorizing sequences, involving functions (w0, w) and
constants (η, R), for (NM).

Lemma 2.1. Let the constants η ≥ 0, R > 0 and non-decreasing functions
w0, w : [0,∞)→ [0,+∞) with lim

t→0
w0(t) = lim

t→0
w(t) = 0 be given. Define scalar

sequence {tn} by

t0 = 0, t1 = η, tn+2 = tn+1 +

∫ 1
0 w(θ(tn+1 − tn))(tn+1 − tn) dθ

1− w0(tn+1)
, (2.1)

sequences of functions {fn}, {gn} on [0, 1) by

fn(t) =

∫ 1

0
w (tnθη) dθ+tw0 [(1 + t+ · · ·+ tn)η]− t, (2.2)

gn(t) = fn+1(t)− fn(t)

=

∫ 1

0

[
w(tn+1θη)− w(tnθη)

]
dθ

+ t
[
w0

(
(1 + t+ · · ·+ tn+1)η

)
− w0 ((1 + t+ · · ·+ tn)η)

] (2.3)

and function f∞ on [0, 1) by

f∞(t) = t

[
w0

(
η

1− t

)
− 1

]
. (2.4)

Additionally, assume that either of the following set of conditions hold:
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H1. there exists α ∈ [0, 1) such that

0 ≤
∫ 1
0 w(θη) dθ

1− w0(η)
≤ α, (2.5)

w0

(
η

1− α

)
≤ 1 (2.6)

and

gn(α) ≥ 0 for all n. (2.7)

H2. there exists α ∈ [0, 1) such that

f1(α) ≤ 0, (2.8)

0 ≤
∫ 1
0 w(θη) dθ

1− w0(η)
≤ α,

and

gn(α) ≥ 0 for all n. (2.9)

Then, the sequence {tn} is well defined, non-decreasing, bounded from above
by

t?? =
η

1− α
(2.10)

and converges to its unique least upper bound t? satisfying

0 ≤ t? ≤ t??. (2.11)

Moreover, the following estimates hold

0 ≤ tn+1 − tn ≤ αnη (2.12)

and

0 ≤ t? − tn ≤
αnη

1− α
. (2.13)

Proof. We consider the following two parts.

Part I. We shall show using induction

0 <

∫ 1
0 w(θ(tn+1 − tn)) dθ

1− w0(tn+1)
≤ α. (2.14)

Estimate (2.14) holds for n = 0 by the initial conditions and (2.5). It then
follows from (2.1) that

0 ≤ t2 − t1 ≤ α(t1 − t0) = αη.
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Let us assume that (2.14) holds for all n ≤ k. Then, we have by the induction
hypotheses

tk+1 − tk ≤ αkη and tk+1 ≤
1− αk+1

1− α
η ≤ t??.

Estimate (2.14) can be written as∫ 1

0
w(θ(tn+1 − tn)) dθ + αw0

(
1− αk+1

1− α
η

)
− α ≤ 0,

or ∫ 1

0
w(αkθη) dθ + αw0

(
1− αk+1

1− α
η

)
− α ≤ 0. (2.15)

Estimate (2.15) motivates us to define recurrent functions fk given by (2.2)
and instead of the estimate (2.15) prove that

fk(α) ≤ 0. (2.16)

We need a relationship between two consecutive functions fk. We obtain from
(2.2) and (2.3)

fk+1(α) = fk(α) + gk(α). (2.17)

Moreover by the hypotheses (2.7)

fk(α) ≤ fk+1(α). (2.18)

Furthermore, let us define function f∞ on [0, 1) as follows

f∞(α) = lim
k→∞

fk(α). (2.19)

Then, from (2.3) we get

f∞(α) = α

[
w0

(
η

1− α

)
− 1

]
. (2.20)

In view of (2.16)-(2.20), instead of (2.16), we can show

f∞(α) ≤ 0, (2.21)

which is true by (2.6) and (2.20). The induction for (2.14) is completed. It
follows that the sequence {tn} is non-decreasing and bounded from above by
t?? and as such it converges to t?. Estimate (2.13) follows from (2.12) (which
is implied by (2.14) and (2.1)). That completes the proof of the Part I.
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Part II. In this case by using (2.9), (2.16) and (2.17) we can show, instead
of (2.16), f1(α) ≤ 0 and which is true by (2.8). The rest of the proof follows
as in Part I. That completes the proof of the Lemma. �

The corresponding results of majorizing sequences for (NM) involving func-
tions w0, v and constants η,R are given in a similar way by:

Lemma 2.2. Let constants η ≥ 0, R > 0 and non-decreasing functions
w0 : [0, R)→ [0,∞), v : [0, R)×[0, R)→ [0,∞) with lim

t→0
w0(t) = 0, lim

t→0
v(r, t) =

0 (0 ≤ r < R) be given. Define scalar sequence {rn}
r0 = 0, r1 = η,

rn+2 = rn+1 +

∫ 1
0 v(rn+1, θ(rn+1 − rn))(rn+1 − rn) dθ

1− w0(rn+1)
,

(2.22)

sequences of functions {f1n}, {g1n} on (0, 1) by

f1n(t) =

∫ 1

0
v ((1 + t+ · · ·+ tn)η, tnθη) dθ

+ tw0 [(1 + t+ · · ·+ tn)η]− t, (2.23)

g1n(t) = f1n+1(t)− f1n(t) (2.24)

and function f1∞ on (0, 1) by

f1∞(t) = t

[
w0

(
η

1− t

)
− 1

]
. (2.25)

Assume that either of the set of conditions hold:

H1. there exists φ ∈ (0, 1) such that

0 ≤
∫ 1
0 v(η, θη) dθ

1− w0(η)
≤ φ, (2.26)

w0

(
η

1− φ

)
≤ 1 (2.27)

and

g1n(φ) ≥ 0 for all n. (2.28)

H2. there exists φ ∈ [0, 1) such that

f11 (α) ≤ 0, (2.29)

0 ≤
∫ 1
0 v(η, θη) dθ

1− w0(η)
≤ φ,
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and

g1n(φ) ≥ 0 for all n. (2.30)

Then, the sequence {rn} is well defined, non-decreasing, bounded from above
by

r?? =
η

1− φ
(2.31)

and converges to its unique least upper bound r? satisfying

0 ≤ r? ≤ r??. (2.32)

Moreover, the following estimates hold

0 ≤ rn+1 − rn ≤ φnη (2.33)

and

0 ≤ r? − rn ≤
φnη

1− φ
. (2.34)

Remark 2.3. Let us define scalar sequences {tn}, {rn} by

t0 = 0, t1 = η, t2 = t1 +

∫ 1
0 w0(θ(t1 − t0))(t1 − t0) dθ

1− w0(t1)
,

tn+2 = tn+1 +

∫ 1
0 w(θ(tn+1 − tn))(tn+1 − tn) dθ

1− w0(tn+1)
, (n ≥ 1)

(2.35)

and

r0 = 0, r1 = η, r2 = r1 +

∫ 1
0 w0(θ(r1 − r0))(r1 − r0) dθ

1− w0(r1)
,

rn+2 = rn+1 +

∫ 1
0 v(rn+1, θ(rn+1 − rn))(rn+1 − rn) dθ

1− w0(rn+1)
, (n ≥ 1)

(2.36)

A simple induction argument shows that under the hypotheses of Lemma 2.1
and 2.2 the sequences {tn}, {rn} are finer than {tn}, {rn}. That is for n > 1

tn < tn, (2.37)

tn+1 − tn < tn+1 − tn, (2.38)

t
? ≤ t?, (2.39)

rn < rn, (2.40)

rn+1 − rn < rn+1 − rn, (2.41)

and

r? ≤ r?. (2.42)
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Later we shall show that {tn}, {rn}, {tn}, {rn} are majorizing sequences for
{xn}. Before doing that let us show that these sequences are finer than the
known results in the published literature [1, 3, 18, 24, 25, 27, 28, 31, 38, 40,
41, 43, 46, 48, 53, 54, 55].

Proof. Let us define functions w, ψ0, ψ, ψ : [0, R)→ [0,∞) by

w = sup{w(u) + w(v) : u+ v = r}, (2.43)

ψ0(r) = η +

∫ r

0
w0(t) dt− r, (2.44)

ψ(r) = η +

∫ r

0
w(t) dt− r, (2.45)

ψ(r) = η +

∫ r

0
w(t) dt− r, (2.46)

and sequences {sn}, {sn} by

sn+1 = sn −
ψ(sn)

ψ′(sn)
, (2.47)

sn+1 = sn −
ψ(sn)

ψ′0(sn)
. (2.48)

If equation

ψ(r) = 0 (2.49)

has a unique solution s? in [0, R], then the sequence {xn} generated by the
Newton’s method for (1.1) is well defined and converges to a solution x? ∈
U(x0, s

?) of equation F(x) = 0 such that

‖xn+1 − xn‖ ≤ sn+1 − sn (2.50)

and

‖xn+1 − x?‖ ≤ s? − sn. (2.51)

Here, s? = lim
n→∞

sn. We have shown, under the same assumptions, that

‖xn+1 − xn‖ ≤ sn+1 − sn ≤ sn+1 − sn (2.52)

and

‖xn+1 − x?‖ ≤ s? − sn (2.53)

(see [3]). Here, s? = lim
n→∞

sn. A simple inductive argument shows that

tn < sn, (2.54)

tn+1 − tn < sn+1 − sn, (2.55)
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and

t? ≤ s?. (2.56)

Hence {tn} is a finer sequence than {sn}. Later we shall show that the suffi-
cient convergence conditions of {tn} can be weaker than those of {sn}. Similar
favorable comparisons follow for the case of sequence {rn} and the correspond-
ing ones in [1, 3] (quasi majorant case). �

3. Semilocal convergence analysis of (NM)

This section develops semilocal convergence results for (NM) using func-
tions w0 and w.

Theorem 3.1. Let x0 ∈ X and R > 0 be such that F : U(x0, R) → Y is
Fréchet-differentiable. Assume conditions (1.3)-(1.5), hypotheses of Lemma
2.1, ∥∥F ′(x0)−1F(x0)

∥∥ ≤ η (3.1)

and

t? < R (3.2)

hold. Then, sequence {xn} generated by (NM) is well defined, remains in
U(x0, t

?) for all n ≥ 0 and converges to a solution x? ∈ U(x0, x
?) of equation

F(x) = 0. Moreover, the following estimates hold

‖xn+1 − xn‖ ≤ tn+1 − tn (3.3)

and

‖xn − x?‖ ≤ t? − tn. (3.4)

Furthermore, if there exists R0 ∈ [t?, R) such that∫ 1

0
w0 [(1− θ)t? + θ R0] dθ ≤ 1 (3.5)

then, the solution x? is unique in U(x0, R0).

Proof. We shall show using induction

‖xk+1 − xk‖ ≤ tk+1 − tk (3.6)

and

U(xk+1, t
? − tk+1) ⊆ U(xk, t

? − tk). (3.7)
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For every z ∈ U(x1, t
? − t1),

‖z − x0‖ ≤ ‖z − x0‖+ ‖x1 − x0‖ ≤ t? − t1 + t1 − t0 = t? − t0

implies that z ∈ U(x0, t
? − t0). We also have from (2.1) and (3.1)

‖x1 − x0‖ =
∥∥F ′(x0)−1F(x0)

∥∥ ≤ η = t1 − t0.

That is estimates (3.6) and (3.7) hold for k = 0. Given they hold for n ≤ k,
then

‖xk+1 − x0‖ ≤
k+1∑
i=1

‖xi − xi−1‖ ≤
k+1∑
i=1

(ti − ti−1) = tk+1 − t0 = tk+1 ≤ t??

and

‖xk + θ(xk+1 − xk)− x0‖ ≤ tk + θ(tk+1 − tk) ≤ t??

for all θ ∈ [0, 1]. Using (1.8), (2.19) and the induction hypotheses, we get∥∥F ′(x0)−1 (F ′(xk+1)− F ′(x0)
)∥∥ ≤ w0 (‖xk+1 − x0‖) ≤ w0(tk+1) < 1. (3.8)

It follows from (3.8) and the Banach Lemma on invertible operators [28] that
F ′(xk+1)

−1 ∈ L(Y,X) and∥∥F ′(xk+1)
−1F ′(x0)

∥∥ ≤ 1

1− w0(tk+1)
. (3.9)

In view of (1.2), we have the approximation

F(xk+1) = F(xk+1)−F(xk)− F ′(xk)(xk+1 − xk)

=

∫ 1

0

[
F ′(xk + θ(xk+1 − xk))−F ′(xk)

]
(xk+1 − xk) dθ . (3.10)

Then, by (1.5), (1.8), (2.1), (3.10) and the induction hypotheses, we obtain∥∥F ′(x0)−1F ′(x1)∥∥ ≤ ∫ 1

0

∥∥F ′(x0)−1 [F ′(x0+θ(x1 − x0))−F ′(x0)
]

(x1−x0) dθ
∥∥

≤
∫ 1

0
w0 (‖θ(x1 − x0)‖) ‖x1 − x0‖ dθ

≤
∫ 1

0
w0 (θt1) t1 dθ

≤
∫ 1

0
w (θt1) t1 dθ (3.11)
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and for k ≥ 1∥∥F ′(x0)−1F (xk+1)
∥∥

≤
∫ 1

0

∥∥F ′(x0)−1 [F ′(xk + θ(xk+1 − xk))− F ′(xk)
]

(xk+1 − xk) dθ
∥∥

≤
∫ 1

0
w (‖θ(xk+1 − xk)‖) ‖xk+1 − xk‖ dθ

≤
∫ 1

0
w (‖θ(tk+1 − tk)‖) (tk+1 − tk) dθ . (3.12)

Moreover, by (1.2), (2.1), (3.9), (3.12) we get

‖x2 − x1‖ ≤
∥∥F ′(x1)−1F ′(x0)∥∥∥∥F ′(x0)−1F (x1)

∥∥
≤ 1

1− w0(t1)

∫ 1

0
w0(θ t1)t1 dθ

≤ 1

1− w0(t1)

∫ 1

0
w(θ t1)t1 dθ = t2 − t1 (3.13)

and for k ≥ 1

‖xk+2 − xk+1‖ ≤
∥∥F ′(xk+1)

−1F ′(x0)
∥∥∥∥F ′(x0)−1F (xk+1)

∥∥
≤ 1

1− w0(tk+1)

∫ 1

0
w0(θ(tk+1 − tk))(tk+1 − tk) dθ

= tk+2 − tk+1 (3.14)

which completes the induction for (3.6). Furthermore, for every w ∈ U(xk+2, t
?−

tk+2), we obtain

‖w − xk+1‖ ≤ ‖w − xk+2‖+ ‖xk+2 − xk+1‖
≤ t? − tk+2 + tk+2 − tk+1 = t? − tk+1,

therefore w ∈ U(xk+1, t
? − tk+1), which completes the induction for (3.7).

Lemma (2.1) implies that sequence {tn} is Cauchy. It follows from (3.6) and
(3.7) that {xn} is also Cauchy sequence in a Banach space and as such it
converges to some x? ∈ U(x0, t

?) (since U(x0, t
?) is a closed set). By letting

k →∞ in (3.12) and using (1.4), we obtain F(x?) = 0. Estimate (3.4) follows
from (3.3) by using standard majorization techniques [4, 9, 31]. Finally to
show the uniqueness let y? ∈ U(x0, R0) such that F(y?) = 0. Define operator
M as follows

M =

∫ 1

0
F ′(x? + θ(y? − x?)) dθ .
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Then, using (1.8) we obtain in turn∥∥∥∥F ′(x0)−1 ∫ 1

0

[
F ′(x? + θ(y? − x?))− F ′(x0)

]∥∥∥∥
≤
∫ 1

0
w0 (‖x? + θ(y? − x?)− x0‖) dθ

≤
∫ 1

0
w0 ((1− θ)‖x? − x0‖+ θ‖y? − x0‖) dθ

<

∫ 1

0
w0 ((1− θ)t? + θR0) dθ ≤ 1.

It follows that M−1 ∈ L(Y,X). Using the identity

F(y?)−F(x?) =M(y? − x?)

we deduce x? = y?. That completes the proof of the Theorem. �

Remark 3.2.

a. It follows from the proof of the Theorem 3.1 that {tn} given by (2.35)
is also a linear majorizing sequence for {xn}. In particular, we have

‖xn+1 − xn‖ ≤ tn+1 − tn (3.15)

and

‖xn+1 − x?‖ ≤ t? − tn. (3.16)

See also (2.37)-(2.39).
b. If w, {tn} (or {tn}), (1.4), (1.5) are replaced by v, {rn} (or {rn}), (1.7),

(1.6), respectively, then following verbatim the proof of Theorem 2.2,
we arrive at:

Theorem 3.3. Let x0 ∈ X and R > 0 be such that F : U(x0, R)→ Y
is Fréchet-differentiable. Assume conditions (1.3), (1.6), (1.7), (1.8),
hypotheses of Lemma 2.2, (3.1) and

r? < R (3.17)

hold. Then, sequence {xn} generated by (NM) is well-defined, remains
in U(x0, r

?) for all n ≥ 0 and converges to a solution x? ∈ U(x0, r
?)

of equation F(x) = 0. Moreover, the following estimates holds

‖xn+1 − xn‖ ≤ rn+1 − rn (3.18)

and

‖xn − x?‖ ≤ r? − rn. (3.19)



On the convergence of Newton’s method under uniform continuity conditions 531

Furthermore, if there exists R1 ∈ [r?, R) such that∫ 1

0
w0 [(1− θ)R1 + θ r?] dθ ≤ 1 (3.20)

then, the solution is unique in U(x0, R1).

4. Applications

4.1. Application - I. We shall examine the interesting Lipschitz case for
Fréchet-differentiable operator. Other cases and choices for functions w0, w,
v can be found in [1, 3, 4, 9, 41, 44]. We set

w0(t) = L0 t, w(t) = L t and v(r, t) = L t.

According to (2.1), (2.35), (2.47) and (2.48) we have corresponding sequences

t0 = 0, t1 = η, tn+2 = tn+1 +
L(tn+1 − tn)2

2(1− L0 tn+1)
, (4.1)

t0 = 0, t1 = η, t2 = t1 +
L0(t1 − t0)2

2(1− L0t1)
, tn+2 = tn+1 +

L(tn+1 − tn)2

2(1− L0 tn+1)
, (4.2)

s0 = 0, sn+1 = sn −
1/2Ls2n − sn + η

L sn − 1
. (4.3)

The related functions are

f∞(t) = t

[
L0η

1− t
− 1

]
, (4.4)

gn(t) =
1

2
p(t)tnη, p(t) = 2L0t

2 + Lt− L (4.5)

and

ψ(t) =
1

2
L t2 − t+ η. (4.6)

The sufficient convergence conditions for the sequences {tn}, {tn}, {sn}, re-
spectively(see, [4, 12, 28]) are

h1 = L1η ≤ 1, L1 =
1

4

(
L+ 4L0 +

√
L2 + 8LL0

)
, (4.7)

h2 = L2η ≤ 1, L2 =
1

4

(
L0 +

√
LL0 + 8L2

0 +
√
L0L

)
, (4.8)

and

hk = Lη ≤ 1

2
. (4.9)



532 I. K. Argyros and S. K. Khattri

Condition (4.9) is the well-known Newton-Kantorovich hypotheses for solving
equation (1.1) which is famous for its simplicity and clarity [28]. Note that

L0 ≤ L (4.10)

holds in general and L/L0 can be arbitrarily large (see Example 4.3). In case
L0 = L conditions (4.7) and (4.8) reduce to (4.9). Otherwise (that is if L0 < L)
we have

hk ≤ 1 =⇒ h1 ≤ 1 =⇒ h2 ≤ 1 (4.11)

but not necessarily vice versa. We also have as L0/L→ 0

h1
hk
→ 1

4
,

h2
hk
→ 0 and

h2
h1
→ 0. (4.12)

We shall complete this application by considering a numerical example.

Example 4.1. Let X = Y = R2 be equipped with the max-norm, x0 =
(1, 1)T , D = U(x0, 1− q). Let us define F on D by

F(x) =
(
ξ31 − q, ξ32 − q

)T
, x = (ξ1, ξ2)

T .

Through algebraic manipulations, we obtain

η =
1− q

2
, L0 = 3− q and L = 2(2− q) > L0.

From (4.7), (4.8) and (4.10) we get

L1 = 4− 3

2
q +

1

2

√
(q − 2) (5 q − 14),

L2 = 3− q +

√
2

4

[√
(5 q − 14) (q − 3) +

√
(q − 2) (q − 3)

]
,

h1 =
1

4

(
8− 3 q +

√
(q − 2) (5 q − 14)

)
(1− q) ,

h2 =
1

8

(
12− 4 q +

√
2
√

(5 q − 14) (q − 3) +
√

2
√

(q − 2) (q − 3)
)

(1− q)

and

hk = (q − 2) (q − 1) .

Furthermore we obtain convergence interval

h1 ≤ 1 =⇒ q ∈ [0.6041, 2] ∪ [2.8, 4.745] ,

h2 ≤ 1 =⇒ q ∈ [0.5906, 2] ∪ [3,−∞) ,

hk ≤
1

2
=⇒ q ∈

[
3

2
−
√

3

2
,
3

2
+

√
3

2

]
.

Let us choose q = 0.8.
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n tn+1 − tn tn+1 − tn sn+1 − sn
0 1, 000, 000 · 10−01 1, 000, 000 · 10−01 1, 000, 000 · 10−01

1 1, 538, 462 · 10−02 1, 410, 256 · 10−02 1, 578, 947 · 10−02

2 3, 806, 503 · 10−04 3, 186, 475 · 10−04 4, 143, 011 · 10−04

3 2, 332, 882 · 10−07 1, 628, 328 · 10−07 2, 856, 349 · 10−07

4 8, 762, 471 · 10−14 4, 252, 115 · 10−14 1, 357, 695 · 10−13

5 1, 236, 215 · 10−26 2, 899, 554 · 10−27 3, 067, 494 · 10−26

6 2, 460, 531 · 10−52 1, 348, 291 · 10−53 1, 565, 839 · 10−51

7 9, 747, 621 · 10−104 2, 915, 333 · 10−106 4, 080, 126 · 10−102

8 1, 529, 812 · 10−206 1, 363, 005 · 10−211 2, 770, 300 · 10−203

9 3, 768, 055 · 10−412 2, 979, 313 · 10−422 1, 277, 124 · 10−405

Table 1. Sequences {tn} and {tn} are finer than {sn}.

4.2. Application - II. Let us consider twice-Fréchet differentiable operators.
Let γ0, γ be the functions w0, w, respectively. Moreover assume for all θ ∈ [0, 1]∥∥F ′(x0)−1F ′′(x0 + θ(x− x0))

∥∥ ≤ γ0 (θ‖x− x0‖)

and ∥∥F ′(x0)−1F ′′(y + θ(x− y))
∥∥ ≤ γ (θ‖y − x0‖+ θ‖x− y‖)

for all x, y ∈ U(x0, r), 0 < r < R. Then we can set

w0(t) =

∫ 1

0
γ0(θ t)t

2 dθ and w(r, t) =

∫ 1

0
γ(r + θ t)t2(1− θ) dθ .

Similar choices for m-Fréchet-differentiable (m > 2) operators can be found
(see [books]).

Example 4.2. Let X = Y = C[0, 1], equipped with the norm ‖ x ‖=
max
0≤s≤1

|x(s)|. Consider the following nonlinear boundary value problem [9]{
u′′ = −u3 − γ u2,

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+

∫ 1

0
Q(s, t) (u3(t) + γ u2(t)) dt (4.13)

where Q is the Green function:

Q(s, t) =

{
t (1− s), t ≤ s
s (1− t), s < t.



534 I. K. Argyros and S. K. Khattri

We observe that

max
0≤s≤1

∫ 1

0
|Q(s, t)| dt =

1

8
.

Then problem (4.13) is in the form (1.1), where, F : D −→ Y is defined as

[F(x)] (s) = x(s)− s−
∫ 1

0
Q(s, t) (x3(t) + γ x2(t)) dt.

It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v] (s) = v(s)−
∫ 1

0
Q(s, t) (3 x2(t) + 2 γ x(t)) v(t) dt.

If we set u0(s) = s and D = U(u0, R), then since ‖ u0 ‖= 1, it is easy to verify
that U(u0, R) ⊂ U(0, R+ 1). Then, we have

η =
1 + γ

5− 2 γ
, L =

γ + 6R+ 3

4
and L0 =

2 γ + 3R+ 6

8
.

Note that L = L0 + 9/8R thus L > L0.

Example 4.3. Define the scalar function F by F(x) = c0 x+ c1 + c2 sin ec3 x,
x0 = 0, where ci, i = 0, 1, 2, 3 are given parameters. Then it can easily be seen
that for c3 large and c2 sufficiently small, L/L0 can be arbitrarily large. That
is (2.28) may be satisfied but not (2.35).

Example 4.4. Let X = Y = C[0, 1] be the space of real–valued continuous
functions defined on the interval [0, 1], equipped with the max–norm ‖ . ‖. Let
θ ∈ [0, 1] be a given parameter. Consider the “Cubic” Chandrasekhar integral
equation [4, 9, 15, 28]

u(s) = u3(s) + λu(s)

∫ 1

0
q(s, t)u(t) dt+ y(s)− θ. (4.14)

Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1]× [0, 1]. The parameter λ in (4.14) is a real number called the “albedo”
for scattering, and y(s) is a given continuous function defined on [0, 1] and
x(s) is the unknown function sought in C[0, 1]. For simplicity, we choose

u0(s) = y(s) = 1, and q(s, t) =
s

s+ t
, for all s ∈ [0, 1], and t ∈ [0, 1], with

s+ t 6= 0. If we let D = U(u0, 1− θ), and define the operator F on D by

F(x)(s) = x3(s)− x(s) + λx(s)

∫ 1

0
q(s, t)x(t) dt+ y(s)− θ, (4.15)

for all s ∈ [0, 1], then every zero of F satisfies equation (4.14). We have the
estimates

max
0≤s≤1

|
∫ 1

0

s

s+ t
dt| = ln 2.
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Therefore, if we set ξ =‖ F ′(u0)−1 ‖, then

η = ξ (|λ| ln 2 + 1− θ),

L = 2 ξ (|λ| ln 2 + 3 (2− θ)) and L0 = ξ (2 |λ| ln 2 + 3 (3− θ)).
It follows that if conditions (4.7) and (4.8) holds, then problem (4.14) has a
unique solution near u0. These assumptions are weaker than the one given
before using the Newton–Kantorovich hypothesis (4.9). Since L = L0 +3ξ(1−
θ) thus L0 ≤ L for all θ ∈ [0, 1].
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