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Abstract. We further refine the mesh independence principle, proposed by Alt et al. (see

[14]), for solving generalized equations in a Banach space setting by using Newton’s method.

1. Introduction

Generalized equations can be used to solve optimization, optimal control
and other problems [1–37]. Solution of such equations usually involves an iter-
ative method. The most popular method for solving generalized equations is
undoubtedly the generalized Newton’s method (GNM) [3, 14, 15, 33, 34, 35].
Robinson provided local and semilocal results for generalized equations in
[35]. Josephy [24] used the results in [32] to provide a convergence analysis of
Newton type methods for variational inequalities in finite dimensional spaces.
Applications of these results to optimization and nonlinear control problems
were given by Alt et al. [10]-[14], Dontcher et al. [16]-[18] and Malanowski
[28, 29]. Argyros [1]-[8] introduced the center-Lipschitz condition and more
precise majorizing sequences to show convergence of Newton’s method with
the following advantages over the works in [9]: Semilocal case - a) Weaker
sufficient convergence conditions. b) Tighter error bounds on the distances
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involved. c) At least as precise information on location of the solution. Local
case - d) Large convergence ball. e) Tighter error bounds. These advantages
were obtained under the same computational cost. Only in special cases, gen-
eralized equations in infinite dimensional spaces can be solved analytically.
Discretized generalized equations are usually used to approximate solutions
of original equations using (GNM). For operator equations Allgower et al.
[9] have provided relations between the original and the discretized equations.
Moreover, they showed that if certain consistency and stability conditions are
satisfied then the local behavior of the discretized (GNM) iterations is asymp-
totically the same as that for the original equation. The mesh independence
principle was extended in [14] to generalized equations. Further, Argyros et
al. improved the results in [8, 9].

In this study, we improve the results in [14]. We show as in the case of
nonlinear equations and under the same computational cost that the advan-
tages (a)-(e) hold. Moreover, the number of iterations required to have the
same error tolerance between (GNM) and discretized (GNM) iterations can
be reduced.

The rest of the paper is organized as follows. The local convergence of
(GNM) is given in the Section 2. The mesh independence principle, for the
generalized equations, is shown in Section 3.

2. Newton’s method for generalized equations

Let Y be a normed space, Z be a Banach space, D be an open subset of Z.
Furthermore, let F : D → Y be a mapping and T : D → Y be a multi-valued
mapping. Then we consider the problem

Find z ∈ D such that F(x) ∈ T(z). (2.1)

Given that the mapping F is Fréchet differentiable onD then Newton’s method
for operator equations can be extended to the generalized equation (2.1) as
follows.

(GNM):. Select an initial point z0 ∈ D, zk+1 is computed as the solution of
the generalized equation

F(zk) + F ′(zk)(z − zk) ∈ T(z). (2.2)

For (GNM), we prove local convergence and semi-local convergence theorems.
These theorems generalize the well-known Newton-Kantorovich theorem [8].
In the next section, these convergence results are employed to analyze dis-
cretization of (GNM). Following the ideas presented in [14, 33, 35], the lin-
earized equations (2.2) are considered as perturbations of the equation (2.1).
Let w ∈ Z then a family of perturbed generalized equations, depending on the
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parameter w, is given as

F(w) + F ′(w)(z − w) ∈ T(z). (2.3)

During the kth iteration of (GNM), the above equation is solved for w =
zk. To perform convergence analysis of (GNM), a somewhat generalized
version of an implicit-function theorem due to Robinson [28] is used. The
implicit-function theorem, due to Robinson [28], requires the concept of strong
regularity and which generalizes the assumption of invertibility of F ′(z?) in
cases of operator equations.

Definition 2.1. Let the mapping F be Fréchet differentiable on D. We say
that (2.1) is strongly regular at z? ∈ D if there exist rY (z?) > 0 and lL(z?) > 0
such that for all y ∈ UY (0Y , rY (z?)) the linearized system

F(z?) + F ′(z?)(z − z?) + y ∈ T(z), (2.4)

has a unique solution SL(z?, y) and the mapping SL(z?, ·) : UY (0Y , rY (z?))→
Z is Lipschitz continuous with modulus lL(z?).

Particularly, strong regularity of (2.1) at z? requires that z? is the unique
solution of (2.4) for y = 0Y . Extensions of this concept and applications to
optimal control can be found in Hager et al. [15] and Dontchev et al. [9, 10].
We need the following assumptions for Lipschitz continuity of F ′.

A. Let z? ∈ D. There exist parameters r1(z
?) > 0 and lF (z?) > 0 such

that Uz(z
?, r1(z

?)) ⊆ D. If F : D ⊆ Z → Y is Fréchet differentiable
then

‖F ′(u)−F ′(v)‖Z→Y ≤ lF (z?)‖u− v‖Z (2.5)

for all u, v ∈ Uz(z?, r1(z?)). The multi-valued mapping T has closed
graph.

A′. It follows from hypotheses (A) that there exists αF(z?) ∈ (0, 1] such
that

‖F ′(u)−F ′(z?)‖Z→Y ≤ αF(z?)lF (z?)‖u− z?‖Z (2.6)

for all u ∈ Uz(z?, r1(z?)). Note that (A′) is not an additional hypoth-
esis to (A).

For some z? ∈ D, we define mapping l(z?; ·) : D ×D → Y by

l(z?; z, w) = F(w) + F ′(w)(z − w)−F(z?)−F ′(z?) (2.7)

(see [25]-[28]). We need the following results on the local convergence of
(GNM).

Lemma 2.2. Under the hypotheses (A) the following assertions hold
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1. For all z, w ∈ Uz(z?, r1(z?))

‖l(z?; z, w)‖ ≤ lF(z?)
[
‖w − z?‖Z

z
+ αF(z?)‖z − z?‖Z

]
‖w − z?‖. (2.8)

2. For fixed rY > 0 and

φF (z?) =
1 + 2αF (z?)

3
(2.9)

define

r2(z
?) = min

{
r1(z

?),

√
2rY

3φF (z?)lF (z?)

}
. (2.10)

Then, for all z, w ∈ Uz(z?, r1(z?))
‖l(z?; z, w)‖Y ≤ rY . (2.11)

3. For fixed l? > 0, define

r3(z
?) = min

{
r1(z

?),
2

3αF (z?)lF (z?)l?

}
. (2.12)

Then for all u, v ∈ Uz(z?, r1(z?)) and for all w ∈ Uz(z?, r3(z?))

‖l(z?;u,w)− l(z?; v, w)‖Y ≤
2

3l?
‖u− v‖Z . (2.13)

Proof.

1. Mapping l can be written as

l(z?; z, w) =
[
F(w)−F(z?)−F ′(w)(w − z?)

]
+ (F ′(w)−F ′(z?))(z − z?)

=

∫ 1

0

[
F ′(z? + θ(w − z?))−F ′(w)

]
(w − z?) dθ

+ (F ′(w)−F ′(z?))(z − z?) (2.14)

Using (2.5) in the first term and (2.6) in the second term we get (2.8).
2. It follows from (2.8) that its right hand side is bounded from above by

lF (z?)

2
r21(z?) + φF (z?)lF (z?)r21(z?) ≤ rY (2.15)

which is true by the choice of r2(z
?) and φ.

3. Using (2.7), we get

L(z?;u,w)− L(z?; v, w) = (F ′(w)−F ′(z?))(u− v) (2.16)

The result now follows from (2.6) and (2.16). That completes the proof
of the Lemma.

�
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Assume z̃ is a solution of the generalized equation (2.1). Next we provide
sufficient conditions for the quadratic convergence of (GNM) to z̃.

Lemma 2.3. Suppose

A1. There exists a solution z̃ of generalized equation (2.1) and
A2. Hypotheses (A1) is satisfied for z? = z̃.

Then for all w ∈ Uz(z̃, r1(z̃)) the following assertions hold

‖l(z̃; z̃, w)‖Y ≤
lF (z̃)

2
‖w − z̃‖2Z (2.17)

and

‖l(z̃; z̃, w)‖Y ≤
3αF (z?)lF (z̃)

2
‖w − z̃‖2F . (2.18)

Proof. Set z? = z̃ = z in (2.8) to obtain (2.17). From (2.7), we also have

l(z; z̃, w) = F(w)−F(z̃)−F ′(w)(w − z̃)

=

∫ 1

0

[
F ′(z̃ + θ(w − z̃))−F ′(z̃)

]
(w − z̃) dθ

+ (F ′(z̃)−F ′(w))(w − z̃). (2.19)

Estimate (2.18) follows from (2.6) for z̃ = z? and (2.19). That completes the
proof of the Lemma. �

Remark 2.4. If (A2) is satisfied and problem (2.1) is strongly regular at z̃
then in view of Lemma 2.2 (i) mapping SL(z̃, l(z̃; z, w)) is well defined for all
z, w ∈ Uz(z̃, r2(z̃)). Therefore for each w ∈ Uz(z̃, r2(z̃)) we define a mapping

Sw : Uz(z̃, r2(z̃) −→ Z,
Z → SL(z̃, L(z̃; z, w)).

(2.20)

It follows from L(z̃; z, w) = OX that Sz̃(z̃) = SL(z̃, OY). That is if (2.1) is
strongly regular at z̃ then z̃ = SL(z̃, OY ) which means that z̃ is a fixed point
of Sz̃. Moreover, zw is a fixed point of Sw iff zw is a solution of (2.3). It also
follows that zk+1 is a fixed point of Szk .

We show the following local result for quadratic convergence of (GNM).

Theorem 2.5. Suppose that hypotheses (A1), (A2) are satisfied and general-
ized equation (2.1) is strongly regular at z̃. Define

ρ = ρ(z̃) =


m1 if αF (z̃) <

1

3
,

m2 if αF (z̃) ≥ 1

3

(2.21)
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where,

m1 = min

{
r1(z̃),

√
2ry(z̃)

3φF (z̃)lF (z̃)
,

2

3lF (z̃)lL(z̃)

}
, (2.22)

m2 = min

{
r1(z̃),

√
2ry(z̃)

3φF (z̃)lF (z̃)
,

2

9αF (z̃)lF (z̃)lL(z̃)

}
. (2.23)

Then, there exists a single valued mapping S : Uz(z̃, ρ)→ Uz(z̃, ρ) such that for
each w ∈ Uz(z̃, ρ), ρ(w) is the unique solution in Uz(z̃, ρ) of (2.3). Moreover,
the following assertions hold

‖S(w)− z̃‖Z ≤ 3lL(z̃)‖l(z̃; z̃, w)‖Y ≤
3

2
lL(z̃)lF (z̃)‖w − z̃‖2Z (2.24)

and

‖S(w)− z̃‖ ≤ 3lL(z̃)‖l(z̃; z̃, w)‖Y ≤
9α

2
lL(z̃)lF (z̃)‖w − z̃‖2Z (2.25)

In the special case when αF (z̃) = 1 (i.e. φF (z̃) = 1), the proof of (2.24) was
given in [10] [Theorem 2.4] and in the Appendix of [14]. The proof of (2.25)
follows from (2.24) and (2.18).

Next we state another local result for (GNM).

Theorem 2.6. Suppose that the hypotheses (A2), (A3) are satisfied and gen-
eralized equation (2.1) is strongly regular at z̃. Let ρ(z̃) be given by (2.21).
Define

ρ̃(z̃) =


3

8
lF (z̃)lL(z̃)ρ2(z̃),

9αF (z̃)

8
lF (z̃)lL(z̃)ρ2(z̃) if α <

1

3
,

(2.26)

δ =


3

4
lF (z̃)lL(z̃)ρ(z̃),

9αF (z̃)

4
lF (z̃)lL(z̃)ρ(z̃) if α <

1

3
.

(2.27)

Then, sequence {zn} generated by (GNM) for z0 ∈ Uz(z̃, ρ̃(z̃)) converges to
z̃. Moreover, the following assertions hold

‖zk+1 − z̃‖Z ≤
3

2
lF (z̃)lL(z̃)‖zk − z̃‖2Z ≤

1

2
ρ̃(z̃)δ2

k+1−1, (2.28)

‖zk+1 − z̃‖Z ≤
9αF (z̃)

2
lF (z̃)lL(z̃)‖zk − z̃‖2Z ≤

1

2
ρ̃(z̃)δ2

k+1−1, (2.29)

‖zk+1 − z̃‖Z ≤
3

2
lF (z̃)lL(z̃)‖zk − z̃‖2Z ≤

1

2
‖zk − z̃‖Z (2.30)
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and

‖zk+1 − z̃‖Z ≤
9αF (z̃)

2
lF (z̃)lL(z̃)‖zk − z̃‖2Z ≤

1

2
‖zk − z̃‖Z . (2.31)

The (2.28) is proved in [14][Theorem 3.3 and Theorem 2.6] for φF (z̃) = 1 by
using (2.24). The proof of (2.29) is given in an analogous way but by using
(2.25). Finally estimates (2.30) and (2.31) are obtained from the definitions
of ρ̃(z̃), y(z̃) and (2.29), (2.30), respectively.

Remark 2.7. If αF (z̃) = 1, all the preceding results reduce to the correspond-
ing ones in [14]. Otherwise (i.e. if α ∈ (0, 1)), they constitute an improvement
since the convergence balls are at least as large and error estimates are tighter.
Note also that if α ∈ (0, 1/3), estimates (2.25) and (2.29) are tighter than
(2.24) and (2.28), respectively.

In many problems, the solution z̃ of the generalized equation (2.1) and
the corresponding iterates {zk} have better smoothness properties than the
elements of Z. It encourages us to consider a subset ZR ⊂ Z such that

z̃ ∈ ZR, zk ∈ ZR, zk − z̃ ∈ ZR, zk+1 − zk ∈ ZR, k = 0, 1, . . . . (2.32)

To show that {zk}k∈N ⊂ ZR if z0, z̃ ∈ ZR, we consider the assumptions

A31. Let there be closed and convex subsets Z̃R ⊂ ZR with z̃ ∈ Z̃R, YR ⊂ Y
with OY ∈ YR and constants rY(z̃) > 0 and lL(z̃) > 0, such that for
all y ∈ YR ∩ UY(0Y, rY(z̃)) the linearized system

F(z̃) + F ′(z − z̃) + y ∈ T(z), (2.33)

has a unique solution SL(z̃, y) ∈ Z̃R and the mapping SL(z̃, ·) : YR ∩
UY(OY, rY)→ Z̃R is Lipschitz continuous with modulus lL(z̃).

A32. There exists rR > 0 such that l(z̃, z, w) ∈ YR ∩ UY(0Y, rY(z̃)) for all

z, w ∈ Z̃R ∩BZ(z̃, rR).

The preceding assumptions reflect strong regularity. The assumptions (A3)
have long been familiar in stability and sensitivity analysis of optimal control
problems (cf. [20, 21]). From Theorem 2.6, we obtain

Corollary 2.8. Let us presume that Assumptions (A1)-(A3) are satisfied
and let ρ̃(z̃) be defined by (2.26) and (2.27). Then for any starting point

z0 ∈ Z̃R ∩ UZ(z̃, r̃) with r̃ = min{ρ̃(z̃, rR)} the (GNM) generates a unique

sequence {zk} ⊂ Z̃R convergent to z̃ ∈ Z̃R satisfying (2.29) for k ≥ 1.

Proof. It can be easily seen from the proof of Theorem 2.5 that (A3) implies

S(z) ∈ Z̃R for z ∈ Z̃R ∩ UZ(z̃, r̃). Thus, if {zk} is the sequence defined by

(GNM) and z0 ∈ Z̃R ∩ UZ(z̃, r̃) then {zk} ⊂ Z̃R. �
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Remark 2.9. Let the hypothesis of Corollary 2.8 be satisfied and ZR ⊂ Z be
any set with the property ZR ⊃ Z̃R − Z̃R. Then

zk − z̃k ∈ ZR, zk+1 − zk ∈ ZR, k = 0, 1, . . . ,

that is (2.32) is satisfied. Later, in Section 4, we will use this fact and apply
the abstract theory to optimal control problems.

Next we derive a result on semi-local convergence of (GNM) which gen-
eralizes the well-known Newton-Kantorvich theorem [8]. Similar results have
been obtained [19][Theorem 7.1], [26][Theorem 5.1] (see also [17]). For the
starting point z0 of (GNM), we assume that the following assumptions hold :

B1. z0 ∈ D.
B2. Assumption (A) is satisfied with z? = z0.

Suppose that the generalized equation (2.1) is strongly regular at z0. Then
for all y ∈ UY(0Y, rY(z0)) the linear generalized equation

F(z0) + F ′(z0)(z − z0) + y ∈ T(z), (2.34)

has a unique solution SL(z0, y) ∈ Z. For y = 0Y, let us denote the unique
solution of (2.34) by z1 = SL(z0, 0Y ). Since z0 is the initial point for (GNM)
and z1 is the first iterate. It follows from the definition (2.5) of l that
l(z0; z1, z0) = 0Y and hence

z1 = SL(z0, 0Y) = SL(z0, l(z0; z1, z0)). (2.35)

By Lemma 2.2(b), SL(z0, l(z0; z, w) is well-defined for all z, w ∈ UZ(z0, r2(z0))
where r2(z0) is defined by (2.10). Hence for w ∈ UZ(z0, r2(z0)) we can define
a mapping

Sw : UZ(z0, r2(z0)) −→ Z, z 7→ SL(z0, l(z0; z, w).

For w = z0 we obtain from (2.14)

Sz0(z1) = SL(z0, l(z0; z1, z0) = SL(z0, OY) = z1,

that is z1 is a fixed point of the mapping Sz0 . Analogous to Theorem 2.5
one can show that Sw has a unique fixed point provided that ‖z1 − z0‖Z is
sufficiently small (see [14][Theorem 2.4]).

Theorem 2.10. Let the assumptions (B1)-(B2) hold and let

ρ = ρ(z0) = min

{
1

2
r2(z0),

2

9lF (z0)lL(z0)

}
. (2.36)

Furthermore assume that z1 ∈ UZ(z0, ρ). Then there exists a single valued
function S : UZ(z0, ρ) → UZ(z1, ρ) such that for each w ∈ UZ(z0, ρ), S(w) is
the unique fixed point in UZ(z1, ρ) of Sw and

‖S(w)− S(v)‖Z ≤ 3lL(z0)‖l(z0;S(v), w)− l(z0;S(v), v)‖Y (2.37)
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for all v, w ∈ UZ(z0, ρ).

Remark 2.11. Let {zk} be the sequence defined by (GNM). It follows from
the definition of l that zk+1 is the solution of

F(z0) + F ′(z0)(z − z0) + l(z0; zk+1, zk) ∈ T(z).

If l(z0; zk+1, zk) ∈ UY(0Y, rY(z0)) this implies that

zk+1 = SL(z0, l(z0; zk+1, zk))⇔ zk+1 = Szk(zk+1).

that is zk+1 is a fixed point of Szk and hence zk+1 = S(zk). This fact will be
used in the proof of Theorem 2.14.

We need some results to find upper bounds on the right hand side of estimate
(2.37).

Lemma 2.12. Suppose assumptions (B1)-(B2) are satisfied. Then the follow-
ing assertions hold

‖l(z0;w,w)− l(z0;w, v)‖Y ≤
lF (z0)

2
‖w − v‖2Z

for all w, v ∈ UZ(z0, r1(z0)) and

‖l(z0;w,w)− l(z0;w, z0)‖Y ≤
αF (z0)lZ(z0)

2
‖w − z0‖2Z

for all w ∈ UZ(z0, r1(z0)).

Proof. By the definition of l we have

l(z0;w,w)− l(z0;w, v) = F(w)−F(v)−F ′(v)(w − v).

The first assertion holds from assumption (B2) (i.e. (A)) where as the second
assertion holds from (B2) but using (A′) and v = z0. That completes the
proof of the Lemma. �

Remark 2.13. If z̃ ∈ Uz(z0, ρ(z0)) then by Lemma 2.2(b)

l(z0; z̃, z̃) = F(z̃)−F(z0)−F ′(z0)(z̃ − z0) ∈ UY(0Y, rY(z0)).

Hence, z̃ is a fixed point of S iff

z̃ = Sz̃(z̃)⇔ z̃ = SL(z0, l(z0; z̃, z̃)),

⇔ F(z0) + F ′(z0)(z − z0) + l(z0; z̃, z̃) ∈ T(z),

⇔ F(z̃) ∈ T(z̃).

That is z̃ is a solution of the generalized equation (2.1). We need the following
result on majorizing sequences for (GNM). The proof is obtained from the
[9][Section 1.1] by simply setting L0 = αL, α ∈ (0, 1].
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Lemma 2.14. Let l > 0, η > 0 and α ∈ (0, 1] be given parameters. Define
function γα : (0, 1]→ (0, 1] by

γα(t) =
1

8

(
4t+

√
t+
√
t+ 8t2

)
.

Let us denote

γ = γα(α).

Suppose

hα = γlη ≤ 1

2
. (2.38)

Define function gα : (0, 1]→ (0,+∞) by

gα(t) =


1 +

(1 +
√

1 + 8α)2

16α

t

1− t
, α 6= 1

2

1 +
√

1− 2t
, α = 1.

Then, scalar sequence {tαn} (n ≥ 0) given by

tα0 = 0, tα1 = η, tα2 = η +
αlη2

2(1− αlη)
, tαn+2 = tαn+1 +

l(tαn+1 − tαn)2

2(1− αltαn+1)
(2.39)

is well defined, increasing, bounded from above by

tα? = gα(αlη)η (2.40)

and converges to its unique least upper bound tα∞ satisfying

tα∞ ≤ tα? . (2.41)

Moreover, the following assertions hold

hα ≤ h1, (2.42)

tαn ≤ t1n (2.43)

tαn+1 − tαn ≤ t1n+1 − t1n (2.44)

tα∞ ≤ t1∞ = g1(lη)η =
2η

1 +
√

1− 2lη
≤ 2η, (2.45)

tα? ≤ λαη ≤
1

αl
(2.46)

and

0 < r?α = r? := tα∞ − η ≤ tα? − η = r?1 = r?1(α) (2.47)
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where,

λ = λα =


gα(αlη0) = gα(

α

2γ
)

=

√
α

α
(
√
α+
√

1 + 8α− 1) ∈ (l, 3) for α 6= 1

2, if α = 1

(2.48)

and

η0 =
1

2γl
.

Furthermore, estimates (2.42)-(2.44) hold as strict inequalities if α ∈ (0, 1)
and n ≥ 2 for (2.43), n ≥ 1 for (2.44). It follows from (2.48) that λα < λ1 = 2
for α ∈ (0, 0.81]. In particular, if α = 0.81, λα = 1.99697662. That is tα? < t1?
for α ∈ (0, 0.8).

Remark 2.15. Iteration {t1n} was used in [14] as a majorizing sequence for
{zn}. However, if α ∈ (0, 1) then {tαn} is a tighter majorizing sequence for
{tn} than {t1n}.

Let us define

lG = 3lF (z0)lZ(z0) (2.49)

and assume that

(B3) : ‖z1 − z0‖Z ≤ η ≤
3

2
lF (z0)lL(z0)ρ(z0)

Then, we have

η ≤ 2

9lG
<

1

2γlG
(2.50)

which implies that hα < 1/2 where l = lG and α = αF (z0). For simplicity we
shall still use the same notation for {tαn}.

We can show the following result for the semilocal convergence of (GNM).

Theorem 2.16. Suppose

1. assumptions (B1) - (B3) are satisfied and
2. generalized equation (2.1) is strongly regular at z0 where ρ(z0) is de-

fined by (2.36).

Then the sequence {zk} generated by (GNM) is well-defined, remains in
UZ(r1, r

?) for all k ≥ 0 and converges to a solution z̃ ∈ UZ(z1, r
?) of the

generalized equation (2.1) where r? is given in the Lemma 2.14. Moreover, the
solution z̃ is unique in Uz(z0, ρ(z0)) and

‖z̃ − z0‖Z ≤ λ‖z1 − z0‖Z (2.51)

where λ is given in the Lemma 2.14.
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Proof. Let ρ = ρ(z0) and set δ = 3/2lF (z0)lL(z0)ρ. Then, we have δ ≤ 1/3
and η ≤ δρ ≤ 1/3ρ. We shall show by induction that

‖zk+1 − zk‖Z ≤ ρδ2
k+1−1, ‖zk+1 − z0‖ ≤

2

3
ρ

‖zk+1 − zk‖Z ≤ tαk+1 − tαk , ‖zk − z1‖ ≤ r?
(2.52)

for all k = 1, 2, . . . . It follows from assumption (B3) that ‖z1 − z0‖Z ≤ δρ.
Then by Theorem 2.11 and Remark 2.12 z2 = S(z1) ∈ UZ(z0, ρ) exists and

‖z2 − z1‖Z = ‖S(z1)− S(z0)‖Z
≤ 3lL(z0)‖l(z0;S(z0), z1)− l(z0;S(z0), z0)‖Y
= 3lL(z0)‖l(z0; z1, z1)− l(z0; z1, z0)‖Y.

Using the second assertion in Lemma 2.13 and the definition of δ, we get in
turn

‖z2 − z1‖Z ≤
3

2
αF (z0)lF (z0)lL(z0)‖z1 − z0‖2Z (2.53)

and

‖z2 − z1‖Z ≤
3

2
lF (z0)lL(z0)(δρ)2 = ρδ3 < δρ ≤ 1

3
ρ. (2.54)

Then we deduce that

‖z2 − z0‖Z ≤ ‖z2 − z1‖+ ‖z1 − z0‖Z ≤
2

3
ρ.

We also have by (2.53) and the definition of lG that

‖z2 − z1‖Z ≤
1

2
αF (z0)lG‖z1 − z0‖2Z

≤
αF (z0)lG‖z1 − z0‖2Z
2(1− αF (z0)lGtα1 )

≤ αF (z0)lG(t1 − t0)2

2(1− αF (z0)lGtα1 )
= tα2 − tα1 ≤ tα? − tα1 = r?,

since 0 ≤ αF (z0)lGt
α
n < 1 and ‖z1 − z0‖Z ≤ η = tα1−tα0 . This shows that (2.52)

holds for k = 2. We also have ‖z2 − z1‖Z ≤ δρ. Hence, z3 = S(z2) ∈ U(z0, ρ)
exists and

‖z3 − z2‖Z = ‖S(z2)− S(z1)‖Z
≤ lF (z0)‖l(z1;S(z1), z2)− l(z1;S(z1), z1)‖Y
= 3lF (z0)‖l(z1; z2, z2)− l(z1; z2, z1)‖Y.
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It then follows from the assertion 1 of Lemma 2.12 that

‖z3 − z2‖Z ≤
3

2
lF (z0)lL(z0)‖z1 − z0‖2Z

≤ 3

2
lF (z0)lF (z0)(δρ)3

< δρ ≤ 1

3
ρ.

Thus, we get

‖z3 − z0‖Z ≤ ‖z3 − z2‖Z + ‖z2 − z1‖Z ≤
2

3
ρ.

It follows from (2.52) and the definition of lG that

‖z3 − z2‖Z ≤
1

2
lG‖z2 − z1‖2Z

≤ lG(t2 − t1)2

2(1− lGt2)
= tα3 − tα2

and

‖z3 − z1‖Z ≤ ‖z3 − z2‖Z + ‖z2 − z1‖Z
≤ tα3 − tα2 + tα2 − tα1 = tα3 − tα1
≤ tα? − tα1 = r?α = r?.

This shows that (2.52) holds for k = 3. Suppose that (2.52) holds for k ≤ n.
Then, for k = n

‖zn − z1‖Z ≤
n∑
j=2

‖zj − zj−1‖Z

≤
n∑
j=2

(tαj − tαj−1) = tαn − tα1 ≤ tα? − tα1 = tα? − η = r?.

We have zn ∈ UZ(z0, 2/3ρ), thus zn+1 = S(zn) exists and

‖zn+1 − zn‖Z = ‖S(zn)− S(zn−1)‖Z
≤ 3lL(z0)‖l(z0;S(zn−1), zn)− l(z0;S(zn−1), zn−1)‖

≤ 3

2
lF (z0)lL(z0)‖zn − zn−1‖2Z .

As for k = 3, we show that (2.52) holds for k = n + 1. It follows from the
Lemma 2.14 that sequence {tαn} is a complete sequence. By (2.52) {zk} is a
complete sequence too in a Banach space and as such it converges to some
z̃ ∈ Uz(z1, r?). By the definition of (GNM)

F(zk) + F ′(zk)(zk+1 − zk) ∈ T(zk+1)
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and by assumption (A), T has a closed graph. Hence, we get

F(z̃) ∈ T(z̃) as k →∞.
We also have z̃ ∈ U(z0, ρ) by (2.52). To show uniqueness let ỹ ∈ UZ(z0, ρ) be
a solution of generalized equation (2.1). We get in turn

‖ỹ − z̃‖Z = ‖S(ỹ)− S(z̃)‖Z
≤ 3lL(z0)‖l(z0;S(ỹ), z̃)− l(z0;S(ỹ), ỹ)‖Y
= 3lL(z0)‖l(z0; ỹ, z̃)− l(z0; ỹ, ỹ)‖Y

We also have

‖ỹ − z̃‖Z ≤ ‖ỹ − z0‖Z + ‖z0 − z̃‖Z

≤ 2ρ ≤ 4

9lF (z0)lL(z0)
,

so

‖ỹ − z̃‖Z ≤
3

2
lF (z0)lL(z0)‖ỹ − z̃‖2Z

≤ 2

3
‖ỹ − z̃‖Z

which implies ỹ = z̃. We have

‖z̃ − z0‖Z ≤ ‖z̃ − z1‖Z + ‖z1 − z0‖Z
≤ tα? − tα1 + tα1 = tα? .

Estimate (2.51) has been shown in the Lemma 2.14. That completes the proof
of the Theorem. �

Remark 2.17.

C1. If α = 1, our Theorem 2.16 reduces to 2.14 in [14]. Otherwise (i.e. if
α ∈ (0, 1)) according to Remark 2.15 it is an improvement under the
same hypotheses and computational cost.

C2. Similar improvements can be found if α < 1/3 and the corresponding
estimates are used in the proof.

3. Mesh Independence

The (GNM) can rarely be solved in infinite-dimensional spaces thus for
practical purposes (2.1) is replaced by a family of discretized equations

z ∈ DN , FN (z) ∈ TN (z), (3.1)

where N ∈ N, N ≥ Ñ for some Ñ ∈ N. Here, ZN , YN are finite-dimensional
spaces, DN is an open subset of ZN , F : DN → YN is a mapping and TN :
DN → YN a multi-valued mapping. Analogous to the discretization methods
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for operator equations examined by Allgower et al. [9] and Argyros et al.
[1]-[8], we also consider the discretization methods in the following form

(FN ,TN , hN ,∆N , ∆̃N ), N ≥ Ñ , (3.2)

where {hN} is a sequence of mesh sizes with

lim
N→∞

hN = 0, (3.3)

and ∆N : Z → ZN , ∆̃ : Y → YN are bounded linear discretization operators.
Applying (GNM) to the discrete generalized equations (3.1), we obtain the
discrete process

3.1. (GNM)N : Select a starting point x0, N ∈ DN . After computing zk, N ,
we compute zk+1, N as the solution of the following generalized equation

FN (zk, N) + F ′N (zk, N)(z − zk, N) ∈ TN (z). (3.4)

We shall examine convergence of these discrete processes and their relations
to the infinite ones (GNM). Let ZR ⊂ Z and YR ⊂ Y (compare Assump-
tion (A3)). We use the following assumptions for the discretized generalized
equations. Similar assumptions were used in [1].

D1. The mappings FN are Fréchet differentiable on DN , the multi-valued
mappings TN have closed graph and there exists r0 > 0 such that

∆N (UZ(z̃, r0) ∩ ZR) ⊂ DN , N ≥ Ñ .

D2. The discretization (3.2) is Lipschitz uniform. That is there exist con-
stants r1 > 0 and lF > 0 such that

UZN
(∆N (z̃, r1)) ⊂ DN , N ≥ Ñ ,

and

‖F ′N (z1)−F ′N (z2)‖ZN→YN
≤ lF‖z1 − z2‖ZN

for all z1, z2 ∈ UZN
(∆N (z̃), r1) and for all N ≥ Ñ .

D3. The discretization (3.2) is bounded. That is there exist lB > 0 such
that

‖∆Nz‖ZN
≤ lB‖z‖

for all z ∈ ZR and for all N ≥ Ñ .
D4. The discretization (3.2) is stable. That is the generalized equation

(3.1), N ≥ Ñ , are uniformly strongly regular at ∆N z̃ which requires

that for N ≥ Ñ the following holds with the constants rY and lL from
(D1): For each y ∈ UYN

(0, rY) the linearized system

FN (∆N z̃) + F ′N (∆N z̃)(z −∆N z̃) + y ∈ TN (z).
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has a unique solution SL,N (∆N z̃) and SL,N (∆N z̃, ·) : UYN
(0, rY) →

ZN is Lipschitz continuous with modulus lL.
D5. The discretization (3.2) is consistent of order p. That is there are

constants c0, c1 > 0 such that

‖∆̃NF(z)−FN (∆Nz)‖YN
≤ c0hpN

for all z ∈ ZR ∩ UZ(z̃, r1), N ≥ Ñ and

‖∆̃N (F ′(u)v)−F ′N (∆Nu)(∆Nv)‖YN
≤ c1hpN‖v‖Z

for all u ∈ ZR ∩ UZ(z̃, r1), v ∈ ZR, N ≥ Ñ .

Remark 3.1. For operator equations, stability requires that the linearized
equation in (D4) has a unique solution for any y ∈ YN . In the more general
context considered here this property is required only for y ∈ UYN

(0, rY ),
where rY is independent of N . However, in some applications, we can choose
rY →∞. (D5) is the usual definition of consistency for operator equations (see
[1]-[9]). For generalized equations, we need the additional assumption (D6)
which is stated below. And which is always satisfied for stable and consistent
operator equations.

D6. There exist constants c2, c3 > 0 such that the following holds: If y ∈
YR ∩ UY(0, rY) and z̃ ∈ ZR is the solution of the linear generalized

equation (2.12) the for each N ≥ Ñ there exist zN ∈ ZN and yN ∈ YN

such that

‖zN −∆N z̃‖ZN
≤ c2hpN , ‖yN − ∆̃Ny‖YN

≤ c3hpN ,

and zN is the solution of the linear generalized equation

FN (∆N z̃) + F ′N (∆N z̃)(z −∆N z̃) + yN ∈ TN (z). (3.5)

Using Theorem 2.14 on semilocal convergence of (GNM), we first
prove existence of solutions of the discretized generalized equations
(3.1) and error estimates for the stable and consistent discretizations.

Theorem 3.2. Let z̃ ∈ ZR ⊂ Z be a solution of (2.1) and let a discretization
be defined by (3.2) which satisfies Assumptions (D1), (D2), (D4) and (D6)

with YR = {0Y}. Then there exists N1 ≥ Ñ such that for all N ≥ N1 the
generalized equation (3.1) has a locally unique solution z̃N and

‖z̃N −∆N z̃‖ZN
≤ λ(c2 + lLc3)h

p
N , (3.6)

where λ = λα and is given in the Lemma 2.14.
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Proof. Let N ≥ Ñ . We apply Theorem 2.16 to (3.1) with the starting point
z0,N = ∆N z̃. The sequence generated by (GNM) is denoted by {zk, N}.
By (D1) and (D2) Assumptions (B1) and (B2) are satisfied. By Assumption
(D4), (3.1) is strongly regular at z0,N . Since z̃ is the solution of the linear
generalized equation

F(z̃) + F ′(z̃)(z − z̃) + 0Y ∈ T(z),

and ∆̃N0 = 0, (D6) with YR = {0Y} implies that there exist zN ∈ ZN and
yN ∈ YN such that

‖zN −∆Nz‖ZN
≤ c2hpN , ‖yN‖YN

≤ c3hpN , (3.7)

and zN is the solution of the linear generalized equation

FN (∆N z̃) + F ′N (∆N z̃)(z −∆N z̃) + yN ∈ TN (z).

Since by the definition of (GNM), z1,N is the solution of

FN (∆N z̃) + F ′N (∆N z̃)(z −∆N z̃) + 0 ∈ TN (z).

It follows by (D4) and (3.7) that if c3h
p
N ≤ rY then

‖z1,N − zN‖ZN
= ‖SL,N (∆N z̃; 0)− SL,N (∆N z̃; yN )‖ZN

≤ lL‖y‖YN
≤ lLc3hpN .

By (3.7) we further obtain

‖z1,N −∆N z̃‖ZN
≤ ‖z1,N − zN‖ZN

+ ‖z1 −∆N z̃‖ZN
≤ (c2 + lLc3)h

p
N . (3.8)

In order to satisfy Assumption (B3) we must have

bN = ‖z1,N −∆N z̃‖ZN
≤ 3

2
lF lLρ

2

where

ρ = min

{
1

2
r1,

1

2

√
2rY

φF (z̃)lF
,

2

9lF lL

}
.

Hence, by (3.8), (B3), is satisfied if

hpN ≤
3lF lLρ

2

2(c2 + lLc3)
, c3h

p
N ≤ rY. (3.9)

By (3.9) there exists N1 ≥ Ñ such that for N ≥ N1, (3.9) holds. Therefore if
N ≥ N1, Theorem 2.16 implies the existence of a solution z̃N of (3.1). This
solution is unique on UZN

(∆N z̃, ρ) and

‖z̃N −∆N z̃‖ZN
≤ λ‖z1,N −∆N z̃‖ZN

.

Together with (3.8) this implies (3.6). �
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Based on the local convergence result of (GNM), stated in Theorem 2.6, we
now investigate relations between the infinite process (GNM) and the discrete
processes (GNM)N . For stable and consistent discretizations, we show that
the local behavior of the discrete Newton iterations is asymptotically the same
as that for the original iteration.

Theorem 3.3. Let the hypotheses of Theorem 2.6 be satisfied. And, let ZR ⊂
Z be such that (2.32) is satisfied for z0 ∈ UZ(z̃, ρ̃(z̃)) and YR ⊂ Y such
that (A3) is satisfied. Further let a discretization be defined by (3.2) which
satisfies Assumptions (D1)-(D6). Then there exists N2 ≥ N1, ρ2 > 0 such
that the sequence {zN,k}k∈N generated by (GNM)N with starting point ∆Nz0
converges to z̃N and that

‖z̃N −∆N z̃‖ZN
≤ c̃1 hpN , k = 0, 1, 2, . . . , (3.10)

for all N ≥ N2 and all z0 ∈ ZR ∩ UZ(z̃, ρ2).

Proof. Without loss of generality, we may assume that r1(z̃) = r1, lF (z̃) = lF ,
lL(z̃) = lL, φF (z̃) = φF and rY(z̃) = rY. Let N ≥ N1. By Theorem 3.2 the
generalized equation (3.1) has a locally unique solution z̃N . We define

ρ = min

{
r1,

√
2rY

3φF lF
,

2

3lLlF

}
, ρ̃ =

3

8
lF lLρ

2, ρ1 = min

{
ρ̃

2
,
ρ̃

2lB

}
.

By Theorem 2.6 the sequence {zN,k}k∈N generated by (GNM)N with starting
point ∆Nz0 converges to z̃N , if

‖∆Nz0 − z̃N‖Z ≤ ρ̃. (3.11)

By (3.3) there exists M1 ≥ N1 such that

λ(c2 + lLc3)h
p
N ≤ ρ1 for all N ≥M1.

Then by (D3) and Theorem 3.2 we obtain

‖∆Nz0 − z̃N‖Z ≤ ‖∆Nz0 −∆N z̃‖Z + ‖∆N z̃ − z̃N‖Z
≤ lB‖z0 − z̃‖Z + λ(c2 + lLc3)h

p
N ≤ ρ̃.

Therefore, (3.11) is satisfied, if z0 ∈ UZ(z̃, ρ1) and if N ≥ M1. In order to
prove (3.10), we define

ρ2 = min

{
ρ1,

1

18lF lLlB

}
(3.12)

and

c̃1 = 24lL(c0 + c1ρ2) + 2λ(c2 + lLc3). (3.13)

Further, we choose N2 ≥M1 such that

lF c̃1h
p
N ≤

1

6lL
for N ≥ N2. (3.14)
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Now let N ≥ N2 and z0 ∈ UZ(z̃, ρ2) be given. For k = 0 we have z0,N =
∆N (z0). Hence (3.10) is satisfied. Suppose that (3.10) holds for k = 0, 1, . . . , n.
By the definition of (GNM)N , zn+1,N is the solution of

FN (∆N z̃) + F ′N (∆N z̃)(z −∆N z̃) + vN ∈ TN (z), (3.15)

where

vN =FN (zn,N )+F ′N (zn,N )(zn+1,N−zn,N )−FN (∆N z̃)−F ′N (∆N z̃)(zn+1,N−∆N z̃).

By the definition of (GNM), zn+1 is the solution of

F(z̃) + F ′(z̃)(z − z̃) + y ∈ T(z),

where

y = F(zn)+F ′(zn)(zn+1−zn)−F(z̃)−F ′(z̃)(zn+1− z̃) = l(z̃; zn+1, zn) ∈ YR.

By Assumption (D6) there exist wN ∈ ZN and yN ∈ YN such that

‖wN −∆Nzn+1‖ZN
≤ c2hpN , ‖yN − ∆̃Ny‖YN

≤ c3hpN ,

and wN is the solution of

FN (∆N z̃) + F ′N (∆N z̃)(z −∆N z̃) + yN ∈ TN (z). (3.16)

Thus we obtain

‖zn+1,N −∆Nzn+1‖ZN
≤ ‖zn+1,N − wN‖ZN

+ ‖wN −∆Nzn+1‖ZN

≤ ‖zn+1,N − wN‖ZN
+ c2h

p
N .

Since zn+1,N is the solution of (3.15) and wN is the solution of (3.16), it follows
from Assumption (D4) that

‖zn+1,N − wN‖ZN
≤ lL‖vN − yN‖YN

≤ lL‖vN − ∆̃Ny‖YN
+ lL‖∆̃Ny − yN‖YN

≤ lL‖vN − ∆̃Ny‖YN
+ lLc3h

p
N .

Therefore, we have

‖zn+1,N −∆Nzn+1‖ZN
≤ lL‖vN − ∆̃Ny‖YN

+ (c2 + lLc3)h
p
N . (3.17)

A simple calculation shows that

vN − ∆̃Ny = E1 + E2 + E3 + E4. (3.18)

where

E1 = FN (zn,N ) + F ′N (zn,N )(∆Nzn − zn,N )−FN (∆Nzn),
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E2 = FN (∆Nzn)− ∆̃NFN (zn)−FN (∆N z̃)

+ ∆̃NFN (z̃) + F ′N (∆Nzn)(∆Nzn+1 −∆Nzn)

− ∆̃NF ′(zn)(zn+1 − zn)−F ′N (∆N z̃)(∆Nzn+1 −∆N z̃)

+ ∆̃NF ′(z̃)(zn+1 − z̃),

E3 =
[
F ′N (zn,N )−F ′N (∆Nzn)

]
(∆Nzn+1 −∆Nzn),

E4 =
[
F ′N (zn,N )−F ′N (∆N z̃)

]
(zn+1,N −∆Nzn+1).

From this and Assumptions (D1), (D2) we obtain the estimate

‖E1‖YN
≤ 1

2
lF‖∆Nzn − zn,N‖2ZN

.

By the induction assumption and (3.14) it follows then that

‖E1‖YN
≤ lF

2
(c̃1h

p
N )2 ≤ 1

12lL
c̃1h

p
N .

By Assumption (D5) we have

‖E2‖YN
≤ 2c0h

p
N + c1h

p
N‖zn+1 − zn‖Z + c1h

p
N‖zn+1 − z̃‖Z .

Since by (2.30)

‖zn+1 − z̃‖Z ≤
1

2
‖z0 − z̃‖Z ≤

1

2
ρ2,

and

‖zn+1 − zn‖Z ≤ ‖zn+1 − z̃‖Z + ‖zn − z̃‖Z ≤
3

2
‖z0 − z̃‖Z ≤

3

2
ρ2 (3.19)

we obtain
‖E2‖YN

≤ 2(c0 + c1ρ2)h
p
N .

By (3.13) this implies that

‖E2‖YN
≤ 1

12lL
c̃1h

p
N .

By Assumptions (D1), (D2) we have

‖E3‖YN
≤ lF ‖zn,N −∆Nzn‖ZN

‖∆Nzn+1 −∆Nzn‖ZN
.

Using the induction assumption and (D3) we obtain

‖E3‖YN
≤ lF c̃1hpN lB‖zn+1 − zn‖Z .

By (3.19) and (3.12) this implies that

‖E3‖YN
≤ 3

2
lF c̃1h

p
N lBρ2 ≤

1

12lL
c̃1h

p
N .

By Assumptions (D1) , (D2) we have

‖E4‖YN
≤ lF ‖zn,N −∆N z̃‖ZN

‖zn+1,N −∆Nzn+1‖ZN
.
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Using the induction assumption, (D3) and (2.30) (compare (3.19)) we obtain

‖zn,N −∆N z̃‖ZN
≤ ‖zn,N −∆Nzn‖ZN

+ ‖∆Nzn −∆N z̃‖ZN

≤ c̃1hpN + lB‖zn − z̃‖Z ≤ c̃1hpN + lBρ2.
(3.20)

Hence, E4 can be estimated by

‖E4‖YN
≤ lF (c̃1h

p
N + lBρ2)‖zn+1,N −∆Nzn+1‖ZN

.

By (3.12) and (3.14) this implies that

‖E4‖YN
≤
(

1

6lL
+

1

18lL

)
‖zn+1,N −∆Nzn+1‖ZN

≤ 1

2lL
‖zn+1,N −∆Nzn+1‖ZN

.

From (3.17), (3.18) and from the estimates for Ei, i = 1, . . . , 4, we finally
obtain

‖zn+1,N −∆Nzn+1‖ZN
≤ lL(‖E1‖+ ‖E2‖+ ‖E3‖+ ‖E4‖) +

λ

2
(c2 + lLc3)h

p
N

≤ 1

4
c̃1h

p
N +

1

2
‖zn+1,N −∆Nzn+1‖ZN

+
λ

2
(c2 + lLc3)h

p
N ,

which implies

‖zn+1,N −∆Nzn+1‖ZN
≤ 1

2
c̃1h

p
N + λ(c2 + lLc3)h

p
N .

This complete the induction. �

In view of the mesh-independence principle we need some additional esti-
mates which are easily obtained from Theorem 3.3.

Corollary 3.4. Let the hypothesis of Theorem 3.3 be satisfied. Then there are
constants c̃2, c̃3 such that

‖FN (zk,N )− ˜DeltaNF(zk)‖YN
≤ c̃2hpN , k = 0, 1, . . . , (3.21)

and

‖zk,N − z̃N −∆N (zk − z̃)‖ZN
≤ c̃3hpN , k = 0, 1, . . . , (3.22)

for all N ≥ N2 and for all z0 ∈ ZR ∩ UZ(z̃, ρ2).

Proof. By Assumptions (D2) there exists l̃F such that

‖F ′(z)‖Zn→YN
≤ l̃F for all z ∈ UZN

(∆N z̃, r1).
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Together with (D5) we obtain

‖FN (zk, N)− ∆̃NF(zk)‖YN

≤ ‖FN (zk, N)−FN (∆Nzk)‖YN
+ ‖FN (∆Nzk)− ∆̃NF(zk)‖YN

≤ l̃F‖zk,N −∆Nzk‖ZN
+ c0h

p
N .

By Theorem 3.3 this implies (3.21). Since

‖zk,N − z̃N −∆N (zk − z̃)‖ZN
≤ ‖zk,N −∆Nzk‖ZN

+ ‖z̃N −∆N z̃‖ZN

inequality (3.22) follows from Theorem 3.3 and Theorem 3.2. �

As a consequence of the preceding results we can now prove a mesh-indepen-
dence principles, which states that for sufficiently large N there is at most a
difference of one between the number of iteration steps required by the two
processes (GNM) and (GNM)N to converge to within a given tolerance ε > 0.
The proof is a slight modification of the proof in [1][Corollary 1] or [9][Corollary
1].

Theorem 3.5. Suppose that the hypotheses of Theorem 3.3 hold and that there
is a constant lD > 0 for which

lim
N≥N1

inf ‖∆Nz‖ ≥ 2lD‖z‖Z for each z ∈ ZR. (3.23)

Then for some ρ3 ∈]0, ρ2] and for any fixed ε > 0 and z0 ∈ UZ(z̃, ρ3) there is
a N3 = N3(z0, ε) such that

|min{k ≥ 0, ‖zk − z̃‖Z < ε} −min{k ≥ 0, ‖zk,N − z̃N‖ N < ε}| ≤ 1 (3.24)

for all N ≥ N3.

Proof. Let i be the unique integer defined by

‖zi+1 − z̃‖Z < ε ≤ ‖zi − z̃‖Z (3.25)

(compare Remark 2.7). By (3.23) there exists M ≥ N2 such that

‖∆N (zi − z̃)‖ ≥ lD‖zi − z̃‖Z (3.26)

for N ≥M . We choose N3 ≥M such that

max{c̃2, 2c̃3}hpN ≤ lBε, max

{
3lF lLlB c̃1,

3lF lLc̃1
2lD

}
hpN ≤

1

4
(3.27)

for n ≥ N3 and 0 < ρ2 ≤ ρ2

max

{
3lF lLl

2
B,

3lF lLlB
2lD

}
ρ3 ≤

1

4
. (3.28)

By (3.22), Assumption (D3) and (3.27)

‖zi+1,N − z̃N‖ ≤ ‖∆N (zi+1 − z̃)‖ZN
+ c̃3h

p
N ≤ lBε+ c̃3h

p
N ≤ 2lBε.
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By Theorem 2.6 and (3.20) it then follows that

‖zi+2,N − z̃N‖ ≤
3

2
lF lL‖zi+1,N − z̃N‖2ZN

≤ 3

2
lF lL(c̃1h

p
N + lBρ2)2lBε,

and from (3.27), (3.28) we obtain

‖zi+2,N − z̃N‖ZN
≤ 1

2
ε < ε. (3.29)

Because of (3.25) and (3.22) we have

ε ≤ ‖zi − z̃‖Z ≤
1

lD
‖∆N (zi − z̃)‖ZN

≤ 1

lD
‖zi,N − z̃N‖ZN

+ c̃3h
p
N ,

or using (3.27)

‖zi,N − z̃N‖ZN
≥ lDε− c̃3hpN ≥ lDε−

lD
2
ε =

lD
2
ε. (3.30)

If ‖zi−1,N − z̃N‖ZN
< ε then by (3.27) and (3.28) we obtain analogously to

(3.29)

‖zi,N − z̃N‖ZN
≤ lD

2
ε,

which contradicts (3.20). Therefore, we must have

‖zi,N − z̃N‖ZN
≥ ε, (3.31)

and it is easily seen that (3.25), (3.29) and (3.31) imply (3.24).
As in the case of operator equations, condition (3.23) is an immediate con-

sequence of the convergence condition

lim
N→∞

‖∆Nz‖ZN
= ‖z‖Z for each z ∈ ZR.

Moreover, for some discretization we have

lim
N→∞

‖∆Nz‖ZN
= ‖z‖Z uniformly for z ∈ ZR. (3.32)

In such cases the following stronger formulation of the mesh-independence
principle applies, where N3 is independent of the starting point (compare
Argyros [1]-[8] or Allgower et al. [9] and Corollary 2). �

Corollary 3.6. Suppose that the hypothesis of Theorem 3.5 is satisfied and
that (3.32) holds. Then there exists a constant ρ3 ∈]0, ρ2] and for any fixed
ε > 0 there exists some N3 = N3(ε) such that (3.24) holds for all N ≥ N3 and
all starting points z0 ∈ UZ(z̃, ρ3).

Remark 3.7. The results of the Section 3 reduce to the corresponding ones
in [14] for α = 1. Otherwise (i.e. if α 6= 1) they constitute an improvement
(see also Remark 2.17). Numerical examples where assumptions (A1) - (A3)
and (D1) - (D5) are verified can be found in Hager et al. [22] and Dontcher
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et al. [16]. Finally examples where (A), (A′) verified and α < 1 can be found
in [1]-[8].
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