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Abstract. Let X be a Banach space and SX = {x ∈ X : ‖x‖ = 1} be the unit sphere of X.
The parameter

V ∗
X(ε) = sup{1− ‖x + y‖

2
: x, y ∈ SX and 〈x− y, f〉 ≤ ε for some f ∈ ∇x},

where 0 ≤ ε ≤ 2 and ∇x ⊆ SX∗ is the set of norm 1 supporting functionals f at x, is

introduced and investigated. The main result is that if V ∗
X(ε) < ε

2
for some 0 < ε < 2, then

X is uniformly nonsquare and has a uniform normal structure.

1. Introduction

Let X be a Banach space with the unit sphere SX = {x ∈ X : ‖x‖ = 1}
and the closed unit ball BX = {x ∈ X : ‖x‖ ≤ 1}. For x ∈ SX , let ∇x ⊆ SX∗

be the set of norm 1 supporting functionals of SX at x.
In [4], Gao introduced the parameter, the modulus of U -convexity defined

by:

UX(ε) = inf{1− ‖x + y‖
2

: x, y ∈ SX , 〈x− y, f〉 ≥ ε for some f ∈ ∇x},
where 0 ≤ ε ≤ 2, to measure a certain type of geometric property of the
unit sphere SX of X. It was also proved that if there exists δ > 0 such that
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UX(1
2 − δ) > 0, then X has a uniform normal structure (the definition is given

in the next section).
In [8], Garćıa-Falset introduced the parameter

R(X) = sup{lim inf
n→∞ ‖xn + x‖}

where the supremum is taken over all weakly null sequences {xn} in BX and
all x in SX . It was proved that a reflexive Banach space X with R(X) < 2
enjoys the fixed point property, that is, for every bounded closed convex subset
C of X and for every nonexpansive mapping T : C → C, it follows that T has
a fixed point.

In [10], Mazcunan-Navarro proved a relationship between two of above men-
tioned parameters. Namely, if there exists δ > 0 such that UX(1 − δ) > 0,
then R(X) < 2. So, every Banach space X with UX(1 − δ) > 0 enjoys the
fixed point property.

In [11], Saejung proved that if a Banach space X is superreflexive, then the
moduli of U -convexity of the ultrapower XU of X and X itself coincide. By
using ultrapower method he showed that a Banach space X and its dual X∗
has uniform normal structure whenever UX(1) > 0. He also gave an example
showing that such a condition is sharp.

In this paper, the new parameter V ∗
X(ε) is introduced and the properties

of this parameter are investigated. More precisely, sufficient condition for
uniform nonsquareness and uniform normal structure is given in terms of this
parameter.

2. Preliminary

Definition 2.1 ([2]). A nonempty bounded and convex subset K of a Banach
space X is said to have a normal structure if for every convex subset H of K
that contains more than one point there is a point x0 ∈ H such that

sup{‖x0 − y‖ : y ∈ H} < diamH,

where diamH = sup{‖x − y‖ : x, y ∈ H} denotes the diameter of H. A
Banach space X is said to have normal structure if every bounded convex
subset of X has normal structure. A Banach space X is said to have weak
normal structure if for each weakly compact convex set K of X that contains
more than one point has normal structure. X is said to have uniform normal
structure if there exists 0 < c < 1 such that for any subset K as above, there
exists x0 ∈ K such that

sup{‖x0 − y‖ : y ∈ K} < c · diamK.

For a reflexive Banach space, normal structure and weak normal structure
coincide.
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Lemma 2.2 ([7]). Suppose that x, y ∈ SX and 0 < ε < 1 such that ‖x+y‖
2 >

1 − ε. If z = cx + (1 − c)y ∈ co({x, y}) = [x, y] for some 0 ≤ c ≤ 1, then
‖z‖ > 1− 2ε. That is, every point in the line segment connecting x and y has
norm bigger than 1− 2ε.

The following lemma is a geometric property of a Banach space without
weak normal structure.

Lemma 2.3 ([7]). Let X be a Banach space without weak normal structure.
Then for any 0 < ε < 1, there exist x1, y2, y3 in S(X) satisfying

(i) y2 − y3 = ax1 with |a− 1| < ε;
(ii) |‖x1 − y2‖ − 1|, |‖y3 − (−x1)‖ − 1| < ε; and
(iii) ‖x1+y2

2 ‖, ‖y3+(−x1)
2 ‖ > 1− ε.

Definition 2.4 ([5]). Let X be a Banach space. A hexagon H in X is called
a normal hexagon if the length of each side is 1 and each pair of two opposite
sides are parallel.

Remark 2.5. The concept of normal hexagon is different from the concept of
regular hexagon in Euclidean spaces. We may consider the normal hexagon
as an image of a regular hexagon under a bounded linear mapping from an
Euclidean space to a Banach space.

Lemma 2.3 can be refined for having an inscribed normal hexagon in SX ,

Lemma 2.6 ([5]). Let X be a Banach space without weak normal structure.
Then for any 0 < δ < 1, there are x1, x2, x3 in SX satisfying

(i) x2 − x3 = x1;
(ii) ‖x1+x2

2 ‖ > 1− δ; and
(iii) ‖x3+(−x1)

2 ‖ > 1− δ.

The geometric meaning of the lemma is that if a Banach space X fails to
have weak normal structure then there are infinitely many inscribed normal
hexagons which four sides are arbitrarily closed to the unit sphere SX .

Proof. For δ > 0, let x1, y2, y3,−x1,−y2, and −y3 ∈ SX satisfying the three
conditions in Lemma 2.3 for ε = δ

3 . And let, x2, x3 ∈ SX and x2 − x3 = x1.
Then, the hexagon H with vertices x1, y2, y3,−x1,−y2, and −y3 is a normal
hexagon. Let

z =
x1 + x2

2
+ αx1 ∈ [x1, y2].

From Lemma 2.2, ‖z‖ ≥ 1− 2δ
3 . And, it is easy to see that

|α| ≤ |a− 1|.



20 Ji Gao and Satit Saejung

Therefore,

‖x1 + x2

2
‖ = ‖z − αx1‖ ≥ ‖z‖ − |α| ≥ 1− 2δ

3
− δ

3
= 1− δ.

Similarly, we have

‖x3 + (−x1)
2

‖ ≥ 1− δ.

This normal hexagon H satisfies the three conditions of this lemma. ¤

3. Main results

Definition 3.1. For a Banach space X, the function V ∗
X : [0, 2] → [0, 1]

defined by

V ∗
X(ε) = sup

{
1− ‖x + y‖

2
: x, y ∈ SX , 〈x− y, f〉 ≤ ε for some f ∈ ∇x

}
,

is called the modulus of V ∗-convexity of X.

Definition 3.2. [6]. For a normed linear space X, CX(ε) = sup{1 − ‖x+y
2 ‖:

for any x, y ∈ SX with ‖x− y‖ ≤ ε, 0 ≤ ε ≤ 2}.
Definition 3.3. [3]. For a normed linear space X, δX(ε) = inf{1 − ‖x+y

2 ‖:
for any x, y ∈ SX with ‖x − y‖ ≥ ε, 0 ≤ ε ≤ 2}, is called the modulus of
convexity of X.

The proofs of the following three remarks are part of, what is commonly
referred as “standard argument”:

Remark 3.4. In the above definitions of δX(ε), CX(ε), V ∗
X(ε) and UX(ε), the

condition “≥ ε” in “‖x − y‖ ≥ ε” and “〈x − y, f〉 ≥ ε” may be replaced by
“> ε” or replaced by “= ε”. Similarly, the condition “≤ ε” in “‖x− y‖ ≤ ε”
and “〈x− y, f〉 ≤ ε” may be replaced by “< ε” or replaced by “= ε” too.

Remark 3.5. Suppose that X is a Banach space and 0 < ε ≤ 2. Then

V ∗
X(ε) = sup

{
1− 1

2
‖x + y‖ : x, y ∈ SX and 〈x− y, f〉 ≤ ε for some f ∈ ∇x

}

= sup
{

1− 1
2
‖x + y‖ : x, y ∈ SX and 〈x− y, f〉 = ε for some f ∈ ∇x

}

= sup
{

1− 1
2
‖x + y‖ : x, y ∈ SX and 〈x− y, f〉 < ε for some f ∈ ∇x

}
.

Remark 3.6. Suppose that X is a Banach space.
(i) V ∗

X(ε) is an increasing function of ε for 0 ≤ ε ≤ 2.
(ii) δX(ε) ≤ CX(ε) ≤ V ∗

X(ε) ≤ ε
2 .

(iii) δX(ε) ≤ UX(ε) ≤ V ∗
X(ε) ≤ ε

2 .
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It is easy to see that the moduli of V ∗-convexity and U -convexity of a
Hilbert space H satisfy the following:

V ∗
H(ε) = UH(ε) = 1−

√
1− ε

2
for all 0 ≤ ε ≤ 2.

Definition 3.7 ([9]). A Banach space X is said to be uniformly nonsquare if
there exists a δ > 0 such that either 1

2‖x + y‖ ≤ 1− δ or 1
2‖x− y‖ ≤ 1− δ for

any x, y ∈ SX .

Theorem 3.8. For a Banach space X if V ∗
X(ε) < ε

2 for some 0 < ε < 2, then
X is uniformly nonsquare.

Proof. If X is not uniformly nonsquare, choose δ > 0 and 0 ≤ c ≤ 1 such that

2δ <
√

δ and 1− c−
√

δ > 0.

Then, there exist x, y ∈ SX such that both

‖x + y

2
‖ and ‖x− y

2
‖ > 1− δ.

Let

z1 = cy + (1− c)x, z =
z1

‖z1‖ ∈ SX ,

t1 =
√

δx + (1−
√

δ)(−y), t =
t1
‖t1‖ ∈ SX

and ft be a norm 1 supporting functional of SX at t. Then

‖z1‖ ≥ 1− 2δ and ‖t1‖ ≥ 1− 2δ.

We have

1− 2δ ≤ ‖t1‖ = 〈
√

δx + (1−
√

δ)(−y), ft〉
= 〈

√
δx, ft〉+ 〈(1−

√
δ)(−y), ft〉 ≤ 1.

So,
√

δ〈x, ft〉 ≥ 1− 2δ − (1−
√

δ)〈−y, ft〉
≥ 1− 2δ − (1−

√
δ) =

√
δ − 2δ,

therefore,

〈x, ft〉 ≥ 1− 2
√

δ.
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For any norm 1 supporting functional ft of SX at t,

〈t− z, ft〉 = 1− 〈z, ft〉
= 1− 〈z1, ft〉 − 〈z − z1, ft〉
≤ 1− 〈cy + (1− c)x, ft〉+ 2δ

= 1 + c〈−y, ft〉 − (1− c)〈x, ft〉+ 2δ

≤ 1 + c− (1− c)(1− 2
√

δ) + 2δ

= 1 + c− 1 + c + 2
√

δ − 2c
√

δ + 2δ

= 2c + 2
√

δ − 2c
√

δ + 2δ.

But

‖t + z‖ ≤ ‖t1 + z1‖+ ‖z − z1‖+ ‖t1 − t‖
≤ ‖(1− c +

√
δ)x + (1− c−

√
δ)(−y)‖+ 4δ

= (2− 2c)‖(1− c +
√

δ)x + (1− c−
√

δ)(−y)
2− 2c

‖+ 4δ

≤ 2− 2c + 4δ.

So,

1− ‖t + z‖
2

≥ 1− (1− c + 2δ) = c− 2δ.

We have

V ∗
X(2c + 2

√
δ − 2c

√
δ + 2δ)

= sup{1− ‖x + y‖
2

: x, y ∈ SX , 〈x− y, fx〉 ≤ 2c + 2
√

δ − 2c
√

δ + 2δ, fx ∈ ∇x}
≥ c− 2δ.

Since δ can be arbitrarily closed to 0, we have

V ∗
X(2c+) = lim

ε→2c+
V ∗

X(ε) ≥ c for 0 ≤ c < 1.

Since V ∗
X(ε) ≤ ε

2 is a non-decreasing function, we have

lim
ε→2c+

V ∗
X(ε) = c.

If there is α ∈ [0, 2] such that V ∗
X(α) = a < α

2 , then there exists b ∈ (2a, α)
with V ∗

X(b) ≤ a. So, limε→b+ V ∗
X(ε) ≤ V ∗

X(α) = a < b
2 . Therefore

V ∗
X(ε) =

ε

2
for any ε ∈ (0, 2).

¤
Theorem 3.9. For a Banach space X if V ∗

X(ε) < ε
2 for some 0 < ε < 2, then

X has a normal structure.
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Proof. X satisfies this condition implies X is uniform nonsquare and hence
reflexive. In particular, weak normal structure and normal structure coincide.
Suppose that X does not have a normal structure, for a fixed c, where 0 ≤ c ≤ 1
and any 0 < δ < 1, let x1, x2, x3 be in SX satisfying the conditions in Lemma
2.6.

First of all, let

u1 = cx3 + (1− c)(−x1), u =
u1

‖u1‖ ∈ SX ,

w1 =
√

δx2 + (1−
√

δ)x1, w =
w1

‖w1‖ ∈ SX ,

and fw be a norm 1 supporting functional of SX at w. Then

‖w1‖ ≥ 1− 2δ and ‖u1‖ ≥ 1− 2δ.

We have

1− 2δ ≤ ‖w1‖ = 〈w1, fw〉 = 〈
√

δx2 + (1−
√

δ)x1, fw〉
= 〈

√
δx2, fw〉+ 〈(1−

√
δ)x1, fw〉 ≤ 1.

So,

√
δ〈x2, fw〉 ≥ 1− 2δ − (1−

√
δ)〈x1, fw〉

≥ 1− 2δ − (1−
√

δ)

=
√

δ − 2δ,

then

〈x2, fw〉 ≥ 1− 2
√

δ.

For any norm 1 supporting functional fw of SX at w,

〈w − u, fw〉 = 〈w − w1, fw〉+ 〈w1 − u1, fw〉+ 〈u1 − u, fw〉
≤ 2δ + 〈(1−

√
δ + c + 1− c)x1 + (

√
δ − c)x2, fw〉+ 2δ

= 〈(2−
√

δ)x1, fw〉 − 〈(c−
√

δ)x2, fw〉+ 4δ

≤ 2−
√

δ − (c−
√

δ)(1− 2
√

δ) + 2δ

= 2− c + 2c
√

δ.
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But

‖w + u‖ ≤ ‖w1 + u1‖+ ‖w − w1‖+ ‖u− u1‖
≤ ‖c(x2 − x1) + (1− c)(−x1) +

√
δx2 + (1−

√
δ)x1‖+ 4δ

= ‖(−c + c− 1 + 1−
√

δ)x1 + (c +
√

δ)x2‖+ 4δ

= ‖ −
√

δx1 + (c +
√

δ)x2‖+ 4δ

≤ (c +
√

δ)‖x2‖+ ‖
√

δx1‖+ 4δ

= c + 6
√

δ.

So,

1− ‖w + u‖
2

≥ 1− c + 6
√

δ

2
=

2− c

2
− 3

√
δ.

We have

V ∗
X(2− c + 2c

√
δ)

= sup{1− ‖x + y‖
2

: x, y ∈ SX , 〈x− y, fx〉 ≤ 2− c + 2c
√

δ, fx ∈ ∇x}

≥ 2− c

2
− 3

√
δ.

Since δ can be arbitrarily close to 0, we have

V ∗
X((2− c)+) ≥ 2− c

2
, for 0 < c ≤ 1. (3.1)

Secondly, let

v1 = t(−x3) + (1− t)x1, v =
v1

‖v1‖ ∈ SX , where 0 ≤ t ≤ 1,

w1 =
√

δx1 + (1−
√

δ)x2, w =
w1

‖w1‖ ∈ SX ,

and fw be a norm 1 supporting functional of SX at w. Then

‖w1‖ ≥ 1− 2δ, and ‖v1‖ ≥ 1− 2δ.

Similarly we have

〈x1, fw〉 ≥ 1− 2
√

δ this time, and

〈x3, fw〉 = 〈x2, fw〉 − 〈x1, fw〉 ≤ 1− (1− 2
√

δ) = 2
√

δ.
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Then,

〈w − v, fw〉 = 1− 〈v − v1, fw〉 − 〈v1, fw〉
≤ 1 + 2δ − t〈−x3, fw〉 − (1− t)〈x1, fw〉
≤ 1 + 2t

√
δ − (1− t)(1− 2

√
δ) + 2δ

= 1− 1 + t + 2t
√

δ + 2(1− t)
√

δ + 2δ

= t + 2
√

δ + 2δ.

But,

‖w + v‖ ≤ ‖w − w1‖+ ‖w1 − x2‖+ ‖x2 + v1‖+ ‖v − v1‖
≤ 2δ +

√
δ‖x1 − x2‖+ ‖x2 + t(−x3) + (1− t)x1‖+ 2δ

≤ ‖x1 + (1− t)x2‖+ 6
√

δ

= (2− t)‖x1 + (1− t)x2

2− t
‖+ 6

√
δ

≤ 2− t + 6
√

δ.

So,

1− ‖w + v‖
2

≥ 1− (1− t

2
)− 3

√
δ =

t

2
− 3

√
δ.

We have

V ∗
X(t + 2

√
δ + 2δ)

= sup{1− ‖x + y‖
2

: x, y ∈ SX , 〈x− y, fx〉 ≤ t + 2
√

δ + 2δ, fx ∈ ∇x}

≥ t

2
− 3

√
δ.

Since δ can be arbitrarily close to 0, we have

V ∗(t+) ≥ t

2
, for 0 ≤ t < 1. (3.2)

Combining (3.1) and (3.2), if X does not have normal structure, V ∗(ε+) ≥ ε
2

for all 0 < ε < 2. Similar to the last part of proof of Theorem 3.8, we have
V ∗(ε) = ε

2 , for all 0 < ε < 2. ¤

4. The Parameter V ∗(ε) and Ultraproduct

Let U be an ultrafilter on index set N, the set of natural numbers, and let
Xi = X, i ∈ N for some Banach space X. For the ultrafilter U on N, we use
XU to denote the ultraproduct.
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Lemma 4.1 ([13]). Suppose U is an ultrafilter on N and X is a Banach space,
then (X∗)U = (XU )∗ if and only if X is superreflexive; and in this case, the
mapping J defined by

〈(xi)U , J((fi)U )〉 = lim
U
〈xi, fi〉 for all (xi)U ∈ XU ,

is the canonical isometric isomorphism from (X∗)U onto (XU )∗.

Lemma 4.2 (Bishop-Phelps-Bollobás [1]). Let X be a Banach space, and let
0 < ε < 1. Then, for z ∈ BX and h ∈ SX∗ with h(z) > 1 − ε2/4, there exist
y ∈ SX and g ∈ ∇y such that ‖y − z‖ < ε and ‖g − h‖ < ε.

Theorem 4.3. Let XU be the Banach space ultrapower of a Banach space X
with respect to a nontrivial ultrafilter U over N. Then, for all 0 < ε < 2,

V ∗
XU (ε) = V ∗

X(ε).

Proof. Since X can be isometrically embedded into XU ,

V ∗
X(ε) ≤ V ∗

XU (ε).

Moreover, if X is not super-reflexive, then
ε

2
= V ∗

X(ε) ≤ V ∗
XU (ε) ≤ ε

2
.

From now on we may assume that X is super-reflexive. Let η > 0 be given.
There are elements x̃ = (xn)U , ỹ = (yn)U in SXU and f̃ = (fn)U in SX∗

U such
that

1− 1
2
‖x̃ + ỹ‖ > V ∗

XU (ε)− η, 〈x̃, f̃〉 = 1, and 〈ỹ, f̃〉 > 1− ε.

Consequently,

lim
U
‖xn‖ = lim

U
‖yn‖ = lim

U
‖fn‖ = lim

U
〈xn, fn〉 = 1,

1− 1
2

lim
U
‖xn + yn‖ > ũ1(ε)− η, and lim

U
〈xn, fn〉 > 1− ε.

We now put

x′n :=
xn

‖xn‖ , y′n :=
yn

‖yn‖ , and f ′n :=
fn

‖fn‖ .

By Bishop–Phelphs–Bollobás’ theorem, there are sequences {x′′n} in SX and
{f ′′n} in SX∗ such that

〈x′′n, f ′′n〉 = 1 for all natural number n,

‖x′′n − x′n‖ → 0 and ‖f ′′n − f ′n‖ → 0.
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Clearly, limU 〈x′′n, f ′′n〉 = limU 〈xn, fn〉 > 1− ε. Consequently,

V ∗
XU (ε)− η < 1− 1

2
lim
U
‖xn + yn‖

= 1− 1
2

lim
U
‖x′n + y′n‖

= 1− 1
2

lim
U
‖x′′n + y′n‖

≤ V ∗
X(ε).

¤

Remark 4.4. We can prove that the moduli of W ∗-convexity (and of U -
convexity, resp.) of the space and its corresponding ultrapower are the same
without assuming super-reflexivity as was the case in [12, Theorem 4] ([11,
Theorem 3.1], resp.).

Theorem 4.5. For a Banach space X if V ∗
X(ε) < ε

2 for some 0 < ε < 2, then
X has a uniform normal structure.
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