HYBRID METHOD FOR A FAMILY OF MAPPINGS WITH APPLICATIONS IN ZERO OF MAXIMAL MONOTONE OPERATORS

Mohsen Alimohammady ${ }^{1}$, Vahid Dadashi ${ }^{2}$, Mehdi Roohi ${ }^{3}$ and Masood Salehi ${ }^{4}$
${ }^{1}$ Department of Mathematics, Faculty of Basic Sciences University of Mazandaran, Babolsar 47416-1468, Iran, e-mail: m.alimohammady@gmail.com
${ }^{2}$ Department of Mathematics, Islamic Azad University-Sari Branch, Sari, Iran
e-mail: vahid.dadashi@iausari.ac.ir
${ }^{3}$ Department of Mathematics, Faculty of Siences Golestan University P.O. Box 155, Gorgan, Iran,
e-mail: mehdi.roohi@gmail.com
${ }^{4}$ Department of Mathematics, Islamic Azad University-Savadkouh Branch, Savadkouh, Iran
e-mail: msalehi76@yahoo.com

Abstract

In this paper, we construct some algorithms for finding common fixed point of a family of mappings with some sufficient condition. In fact, let C be a nonempty closed convex subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and let $\left\{T_{n}\right\}$ be a family of self-mappings on C such that the set of all common fixed points of $\left\{T_{n}\right\}$ is nonempty. We construct a sequence $\left\{x_{n}\right\}$ generated by the hybrid method in mathematical programming and also we give the conditions of $\left\{T_{n}\right\}$ under which $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $\left\{T_{n}\right\}$. Finally, we apply our results to zero of maximal monotone operators.

1. Introduction and preliminaries

Throughout this paper, let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and let X be a real Banach space with dual space X^{*}. For a set-valued mapping $T: X \multimap Y$, the domain of

[^0]T is $\operatorname{Dom}(T)=\{x \in X: T(x) \neq \emptyset\}$, range of T is $R(T)=\{y \in Y: \exists x \in$ $X,(x, y) \in T\}$ and the inverse T^{-1} of T is $\{(y, x):(x, y) \in T\}$. For a real number c, let $c T=\{(x, c y):(x, y) \in T\}$. If S and T are any set-valued mappings, we define $S+T=\{(x, y+z):(x, y) \in S,(x, z) \in T\}$. Set
$G=\{g:[0,+\infty) \rightarrow[0,+\infty) \quad \mid \quad g(0)=0, g$ is continuous, strictly increasing and convex\}.

Lemma 1.1. [3] Let C be a nonempty closed convex subset of a uniformly convex Banach space X and let $x \in X$. Then, there exists a unique element $x_{0} \in C$ such that $\left\|x_{0}-x\right\|=\inf _{y \in C}\|y-x\|$. Putting $x_{0}=P_{C}(x)$, we call P_{C} the metric projection onto C.

Lemma 1.2. [10] Let C be a nonempty closed convex subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and let $x \in X$. Then $y=P_{C}(x)$ if and only if $\langle y-z, J(x-y)\rangle \geq 0$ for all $z \in C$.
Lemma 1.3. [10] Suppose X has a Gateaux differentiable norm. Then the duality mapping J is single-valued and $\|x\|^{2}-\|y\|^{2} \geq 2\langle x-y, J y\rangle$ for all $x, y \in X$.
Lemma 1.4. [11] The Banach space X is uniformly convex if and only if for every bounded subset B of X, there exists $g_{B} \in G$ such that

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2} \leq \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda) g_{B}(\|x-y\|) \tag{1.2}
\end{equation*}
$$

for all $x, y \in B$ and all $\lambda \in[0,1]$.
Let $\left\{T_{n}\right\}_{n=0}^{+\infty}$ be a family of mappings of a real Hilbert space \mathcal{H} into itself and let $F\left(T_{n}\right)$ be the set of all fixed points of T_{n}. By the assumption that $\bigcap_{n=0}^{+\infty} F\left(T_{n}\right) \neq \emptyset$, Haugazeau [4] introduced a sequence $\left\{x_{n}\right\}$ generated by the hybrid method, as following

$$
\left\{\begin{array}{l}
x_{0} \in \mathcal{H} \\
y_{n}=T_{n}\left(x_{n}\right) \\
C_{n}=\left\{z \in \mathcal{H}:\left\langle x_{n}-y_{n}, y_{n}-z\right\rangle \geq 0\right\} \\
Q_{n}=\left\{z \in \mathcal{H}:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right) .
\end{array}\right.
$$

In case that C_{i} is a closed convex subset of \mathcal{H} for $i=1, \ldots, m, \bigcap_{i=1}^{m} C_{i} \neq \emptyset$ and $T_{n}=P_{C_{n(\bmod m+1)}}$, he proved a strong convergence theorem. Recently, Solodov and Svaiter [9], Bauschke and Combettes [2], Atsushiba and Takahashi [1], Nakajo and Takahashi [8], Iiduka, Takahashi and Toyoda [5], Nakajo, Shimoji and Takahashi [7], studied the hybrid method in a Hilbert spaces and
also Nakajo, Shimoji and Takahashi [6] considered this method for families of mappings in Banach spaces.

Motivated and inspired by the mentioned results, in this paper we construct some algorithms for finding common fixed point of a family of mappings with generalized Takahashi's condition. Then we apply our results to zero of maximal monotone operators.

2. Convergence theorems

Let $\left\{x_{n}\right\}$ be a sequence, $w_{w}\left(x_{n}\right)$ will denote the set of all weak cluster points of $\left\{x_{n}\right\}$. Let $\left\{T_{n}\right\}$ be a family of self-mappings of C with $F:=\bigcap_{n=0}^{+\infty} F\left(T_{n}\right) \neq \emptyset$ which satisfies the following condition, in the sequel we call it generalized Takahashi's condition, denoted by (GTC).
$\exists x_{0} \in C \exists\left\{a_{n}\right\} \subseteq(0,+\infty)$ with $\liminf _{n} a_{n}>0 \exists\left\{\alpha_{n}\right\} \subseteq[0,1], \exists\left\{\beta_{n}\right\} \subseteq[0,1]$ such that

$$
\begin{equation*}
\left\langle v_{n}-z, J\left(v_{n}-w_{n}\right)\right\rangle \geq a_{n}\left\|v_{n}-w_{n}\right\|^{2} \tag{2.1}
\end{equation*}
$$

for all $x \in C, z \in F\left(T_{n}\right)$, where $v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x$ and $w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+$ $\left(1-\beta_{n}\right) T_{n}\left(v_{n}\right)$.
Algorithm 2.1. Let $\left\{T_{n}\right\}$ be a family of self-mappings of C with $F \neq \emptyset$ which satisfies (GTC). Let $\left\{x_{n}\right\}_{n=1}^{+\infty}$ be a sequence generated by the following algorithm.

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x_{n} \tag{2.2}\\
z_{0}=T_{0}\left(x_{0}\right) \\
z_{n}=\beta_{n} z_{0}+\left(1-\beta_{n}\right) T_{n}\left(y_{n}\right)(n \geq 1) \\
C_{n}=\left\{z \in C:\left\langle y_{n}-z, J\left(y_{n}-z_{n}\right)\right\rangle \geq a_{n}\left\|y_{n}-z_{n}\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J\left(x_{0}-x_{n}\right)\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right) .
\end{array}\right.
$$

Theorem 2.2. Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and $\left\{T_{n}\right\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies (GTC). Assume that
(*) for every bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty} g\left(\left\|u_{n+1}-u_{n}\right\|\right)<+\infty$ and $\sum_{n=0}^{+\infty} g\left(a\left\|v_{n}-w_{n}\right\|-\alpha_{n}\left\|x_{0}-u_{n}\right\|\right)<+\infty$ for some $g \in G$ and $a>0$, where $v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) u_{n}$ and $w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+\left(1-\beta_{n}\right) T_{n}\left(v_{n}\right)$, imply that $w_{w}\left(u_{n}\right) \subseteq F$.
Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 2.1 converges strongly to $P_{F}\left(x_{0}\right)$.

Proof. We split the proof into six steps.
Step 1. $\left\{x_{n}\right\}$ is well defined.
Notice that C_{n} and Q_{n} are closed and convex sets for all $n \in \mathbb{N} \cup\{0\}$. On the other hand, condition (2.1) and the definition of C_{n} in Algorithm 2.1 imply that $F\left(T_{n}\right) \subseteq C_{n}$ for all $n \in \mathbb{N} \cup\{0\}$. Hence $F \subseteq C_{n}$ for all $n \in \mathbb{N} \cup\{0\}$. Since $J(0)=0$, it follows from the definition of Q_{n} in Algorithm 2.1 that $Q_{0}=C$ which implies that $F \subseteq C_{0} \cap Q_{0}$. Lemma 1.1 guarantees that there exists a unique element $x_{1}=P_{C_{0} \cap Q_{0}}\left(x_{0}\right)$. By Lemma 1.2,

$$
\left\langle x_{1}-z, J\left(x_{0}-x_{1}\right)\right\rangle \geq 0
$$

for all $z \in C_{0} \cap Q_{0}$ and hence by $F \subseteq C_{0} \cap Q_{0}$ we get

$$
\left\langle x_{1}-z, J\left(x_{0}-x_{1}\right)\right\rangle \geq 0
$$

for all $z \in F$. Therefore, $F \subseteq Q_{1}$ and so apply the fact that $F \subseteq C_{n}$ for all $n \in \mathbb{N} \cup\{0\}$ we have $F \subseteq C_{1} \cap Q_{1}$. Again, Lemma 1.1 guarantees that there exists a unique element $x_{2}=P_{C_{1} \cap Q_{1}}\left(x_{0}\right)$. Inductively, we find that $\left\{x_{n}\right\}$ is well defined.

Step 2. $\left\{x_{n}\right\}$ is a bounded sequence.
From $x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)$ and $F \subseteq C_{n} \cap Q_{n}$ for all $n \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
\left\|x_{n+1}-x_{0}\right\| \leq\left\|x_{0}-P_{F}\left(x_{0}\right)\right\| \tag{2.3}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$, which implies that $\left\{x_{n}\right\}$ is a bounded sequence.
Step 3. $\lim _{n}\left\|x_{n}-x_{0}\right\|$ exists.
Replace terms $x_{n+1}-x_{0}$ and $x_{n}-x_{o}$ respectively with x and y in Lemma 1.3 , then we get

$$
\left\|x_{n}-x_{0}\right\|^{2} \leq\left\|x_{n+1}-x_{0}\right\|^{2}-2\left\langle x_{n+1}-x_{n}, J\left(x_{n}-x_{0}\right)\right\rangle
$$

and hence $x_{n+1} \in Q_{n}$ implies that $\left\|x_{n}-x_{0}\right\|^{2} \leq\left\|x_{n+1}-x_{0}\right\|^{2}$ for all $n \in \mathbb{N}_{0}$; i.e., $\left\|x_{n}-x_{0}\right\|$ is an increasing sequence and so by Step 2 we find that $\lim _{n}\left\|x_{n}-x_{o}\right\|$ exists.

Step 4. $\sum_{n=0}^{+\infty} g\left(\left\|x_{n+1}-x_{n}\right\|\right)<+\infty$ for some $g \in G$.
It follows from Lemma 1.4 that there exists $g \in G$ such that

$$
\begin{equation*}
\left\|\frac{x_{n}+x_{n+1}}{2}-x_{0}\right\|^{2} \leq \frac{1}{2}\left\|x_{n}-x_{0}\right\|^{2}+\frac{1}{2}\left\|x_{n+1}-x_{0}\right\|^{2}-\frac{1}{4} g\left(\left\|x_{n+1}-x_{n}\right\|\right) \tag{2.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
g\left(\left\|x_{n+1}-x_{n}\right\|\right) \leq 2\left\|x_{n}-x_{0}\right\|^{2}+2\left\|x_{n+1}-x_{0}\right\|^{2}-4\left\|\frac{x_{n}+x_{n+1}}{2}-x_{0}\right\|^{2} \tag{2.5}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$. On the other hand, it follows from Lemma 1.2 and the definition of Q_{n} that $x_{n}=P_{Q_{n}} x_{0}$ and so by $x_{n+1} \in Q_{n}$ and convexity of Q_{n} we get
$\frac{x_{n}+x_{n+1}}{2} \in Q_{n}$. Again, by $x_{n}=P_{Q_{n}} x_{0}$,

$$
\begin{equation*}
\left\|\frac{x_{n}+x_{n+1}}{2}-x_{0}\right\|^{2} \geq\left\|x_{n}-x_{0}\right\|^{2} . \tag{2.6}
\end{equation*}
$$

It follows from inequalities (2.5) and (2.6) that

$$
\begin{equation*}
g\left(\left\|x_{n+1}-x_{n}\right\|\right) \leq 2\left\|x_{n+1}-x_{0}\right\|^{2}-2\left\|x_{n}-x_{0}\right\|^{2} \text { for all } n \in \mathbb{N}_{0} . \tag{2.7}
\end{equation*}
$$

That $\sum_{n=0}^{+\infty} g\left(\left\|x_{n+1}-x_{n}\right\|\right)<+\infty$ follows from (2.7), Step 1 and Step 3.
Step 5. $\sum_{n=0}^{+\infty} g\left(a\left\|y_{n}-z_{n}\right\|-\alpha_{n}\left\|x_{n}-x_{0}\right\|\right)<+\infty$ for some $g \in G$ and $a>0$.
Since $a_{n}>0$ for all $n \in \mathbb{N}_{0}$ and $\liminf _{n} a_{n}>0$, there exists $a>0$ for which $a_{n} \geq a$ for all $n \geq k \in \mathbb{N}_{0}$. Now, $x_{n+1}^{n} \in C_{n}$ guarantees that

$$
\left\|y_{n}-x_{n+1}\right\|\left\|y_{n}-z_{n}\right\| \geq\left\langle y_{n}-x_{n+1}, J\left(y_{n}-z_{n}\right)\right\rangle \geq a_{n}\left\|y_{n}-z_{n}\right\|^{2}
$$

and thus

$$
a\left\|y_{n}-z_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\| \leq \alpha_{n}\left\|x_{n}-x_{0}\right\|+\left\|x_{n+1}-x_{n}\right\|
$$

and hence

$$
\begin{equation*}
a\left\|y_{n}-z_{n}\right\|-\alpha_{n}\left\|x_{n}-x_{0}\right\| \leq\left\|x_{n+1}-x_{n}\right\| \tag{2.8}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$. That $\sum_{n=0}^{+\infty} g\left(a\left\|y_{n}-x_{n}\right\|-\alpha_{n}\left\|x_{n}-x_{0}\right\|\right)<+\infty$ follows from (2.8), (1.1) and Step 4.

Step 6. $\left\{x_{n}\right\} \rightarrow P_{F}\left(x_{0}\right)$
It follows from ($*$), Step 4 and Step 5 that $w_{w}\left(x_{n}\right) \subseteq F$. Let the subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ converges weakly to $w \in F$. Therefore, weak lower semicontinuity of the norm and (2.3) imply that

$$
\left\|P_{F}\left(x_{0}\right)-x_{0}\right\| \leq\left\|w-x_{0}\right\| \leq \lim _{i \rightarrow+\infty}\left\|x_{n_{i}}-x_{0}\right\| \leq\left\|P_{F}\left(x_{0}\right)-x_{0}\right\|
$$

and hence $x_{n_{i}} \rightarrow w=P_{F}\left(x_{0}\right)$.
Corollary 2.3. Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X and $\left\{T_{n}\right\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.
(a) $\exists x_{0} \in C \exists\left\{a_{n}\right\} \subseteq(0,+\infty)$ with $\operatorname{limin}_{n} \inf a_{n}>0 \exists\left\{\alpha_{n}\right\} \subseteq[0,1]$ such that

$$
\begin{equation*}
\left.\left\langle v_{n}-z, J\left(v_{n}-T_{n}\left(v_{n}\right)\right)\right\rangle \geq a_{n} \| v_{n}-T_{n}\left(v_{n}\right)\right) \|^{2} \tag{2.9}
\end{equation*}
$$

for all $x \in C, z \in F\left(T_{n}\right)$, where, $v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x$;
(b) for every bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty} g\left(\left\|u_{n+1}-u_{n}\right\|\right)<+\infty$ and $\left.\sum_{n=0}^{+\infty} g\left(a \| v_{n}-T_{n}\left(v_{n}\right)\right)\left\|-\alpha_{n}\right\| x_{0}-u_{n} \|\right)<+\infty$ for some $g \in G, v_{n}=\alpha_{n} x_{0}+$ $\left(1-\alpha_{n}\right) u_{n}$ and $a>0$ imply that $w_{w}\left(u_{n}\right) \subseteq F$.
Then $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $P_{F}\left(x_{0}\right)$.

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x_{n} \tag{2.10}\\
z_{n}=T_{n}\left(y_{n}\right) \\
C_{n}=\left\{z \in C:\left\langle y_{n}-z, J\left(y_{n}-z_{n}\right)\right\rangle \geq a_{n}\left\|y_{n}-z_{n}\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J\left(x_{0}-x_{n}\right)\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

Corollary 2.4. Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X and $\left\{T_{n}\right\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.
(a) $\exists x_{0} \in C \exists\left\{a_{n}\right\} \subseteq(0,+\infty)$ with $\liminf _{n} a_{n}>0 \exists\left\{\beta_{n}\right\} \subseteq[0,1]$ such that

$$
\begin{equation*}
\left\langle x-z, J\left(x-w_{n}\right)\right\rangle \geq a_{n}\left\|x-w_{n}\right\|^{2} \tag{2.11}
\end{equation*}
$$

for all $x \in C, z \in F\left(T_{n}\right)$, and $w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+\left(1-\beta_{n}\right) T_{n}(x)$;
(b) for every bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty} g\left(\left\|u_{n+1}-u_{n}\right\|\right)<+\infty$ and $\sum_{n=0}^{+\infty} g\left(a\left\|u_{n}-w_{n}\right\|\right)<+\infty$ for some $g \in G$, $w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+\left(1-\beta_{n}\right) T_{n}\left(u_{n}\right)$, and $a>0$ imply that $w_{w}\left(u_{n}\right) \subseteq F$.
Then $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $P_{F}\left(x_{0}\right)$.

$$
\left\{\begin{array}{l}
z_{0}=T_{0}\left(x_{0}\right) \tag{2.12}\\
z_{n}=\beta_{n} z_{0}+\left(1-\beta_{n}\right) T_{n}\left(x_{n}\right)(n \geq 1) \\
C_{n}=\left\{z \in C:\left\langle x_{n}-z, J\left(x_{n}-z_{n}\right)\right\rangle \geq a_{n}\left\|x_{n}-z_{n}\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J\left(x_{0}-x_{n}\right)\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

Corollary 2.5. [6] Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X and $\left\{T_{n}\right\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.
(a) $\exists\left\{a_{n}\right\} \subseteq(0,+\infty)$ with $\lim _{n} \inf a_{n}>0$ such that

$$
\begin{equation*}
\left\langle x-z, J\left(x-T_{n}(x)\right)\right\rangle \geq a_{n}\left\|x-T_{n}(x)\right\|^{2} \tag{2.13}
\end{equation*}
$$

for all $x \in C$ and $z \in F\left(T_{n}\right)$;
(b) for every bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty} g\left(\left\|u_{n+1}-u_{n}\right\|\right)<+\infty$ and $\sum_{n=0}^{+\infty} g\left(a\left\|u_{n}-T_{n}\left(u_{n}\right)\right\|\right)<+\infty$ for some $g \in G$ and $a>0$ imply that $w_{w}\left(u_{n}\right) \subseteq$ F.
Then $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $P_{F}\left(x_{0}\right)$.

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{2.14}\\
y_{n}=T_{n}\left(x_{n}\right) \\
C_{n}=\left\{z \in C:\left\langle x_{n}-z, J\left(x_{n}-y_{n}\right)\right\rangle \geq a_{n}\left\|x_{n}-y_{n}\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J\left(x_{0}-x_{n}\right)\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

Corollary 2.6. Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\left\{T_{n}\right\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.
(a) $\exists x_{0} \in C \exists\left\{b_{n}\right\} \subseteq(-1,+\infty)$ with $\liminf _{n} b_{n}>-1$ and $\exists\left\{\alpha_{n}\right\} \subseteq[0,1]$, $\exists\left\{\beta_{n}\right\} \subseteq[0,1]$ such that

$$
\begin{equation*}
\left\|w_{n}-z\right\|^{2} \leq\left\|v_{n}-z\right\|^{2}-b_{n}\left\|v_{n}-w_{n}\right\|^{2} \tag{2.15}
\end{equation*}
$$

for all $x \in C, z \in F\left(T_{n}\right)$, where, $v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x$ and $w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+$ $\left(1-\beta_{n}\right) T_{n}\left(v_{n}\right)$;
(b) for every bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty}\left\|u_{n+1}-u_{n}\right\|^{2}<+\infty$ and

$$
\begin{aligned}
& \sum_{n=0}^{+\infty}\left(a\left\|w_{n}-u_{n}\right\|-\alpha_{n}\left\|x_{0}-u_{n}\right\|\right)^{2}<+\infty, \text { where } \\
& w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+\left(1-\beta_{n}\right) T_{n}\left(\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) u_{n}\right)
\end{aligned}
$$

and $a>0$ imply that $w_{w}\left(u_{n}\right) \subseteq F$.
Then $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $P_{F}\left(x_{0}\right)$.

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x_{n} \tag{2.16}\\
z_{0}=T_{0}\left(x_{0}\right) \\
z_{n}=\beta_{n} z_{0}+\left(1-\beta_{n}\right) T_{n}\left(y_{n}\right)(n \geq 1) \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|y_{n}-z\right\|^{2}-b_{n}\left\|y_{n}-z_{n}\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

Proof. First we note that, for $x \in C, z \in F\left(T_{n}\right), v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x$ and $w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+\left(1-\beta_{n}\right) T_{n}\left(v_{n}\right)$, by (2.15) we have $\left\|w_{n}-z\right\|^{2} \leq\left\|v_{n}-z\right\|^{2}-$ $b_{n}\left\|v_{n}-w_{n}\right\|^{2}$, if and only if

$$
\left\|w_{n}-v_{n}\right\|^{2}+2\left\langle w_{n}-v_{n}, v_{n}-z\right\rangle+\left\|v_{n}-z\right\|^{2} \leq\left\|v_{n}-z\right\|^{2}-b_{n}\left\|v_{n}-w_{n}\right\|^{2}
$$

if and only if $\left\langle v_{n}-z, v_{n}-w_{n}\right\rangle \geq \frac{1+b_{n}}{2}\left\|v_{n}-w_{n}\right\|^{2}$. Then condition (2.1) satisfies for $a_{n}=\frac{1+b_{n}}{2}$. In a real Hilbert space H, we have

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in[0,1]$, so, we can consider $g_{B}(t)=t^{2}$ for each bounded subset B of H in Lemma 1.4 and hence $(*)$ holds. Then all conditions of Theorem 2.2 hold which it implies that $\left\{x_{n}\right\}$ converges strongly to $P_{F}\left(x_{0}\right)$.

Corollary 2.7. Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\left\{T_{n}\right\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.
(a) $\exists x_{0} \in C \exists\left\{b_{n}\right\} \subseteq(-1,+\infty)$ with $\liminf _{n} b_{n}>-1$ and $\exists\left\{\alpha_{n}\right\} \subseteq[0,1]$ such that

$$
\begin{equation*}
\left\|T_{n}\left(v_{n}\right)-z\right\|^{2} \leq\left\|v_{n}-z\right\|^{2}-b_{n}\left\|v_{n}-T_{n}\left(v_{n}\right)\right\|^{2} \tag{2.17}
\end{equation*}
$$

for all $x \in C, z \in F\left(T_{n}\right)$, where, $v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x$;
(b) for every bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty}\left\|u_{n+1}-u_{n}\right\|^{2}<+\infty$ and $\sum_{n=0}^{+\infty}\left(a\left\|T_{n}\left(v_{n}\right)-u_{n}\right\|-\alpha_{n}\left\|x_{0}-u_{n}\right\|\right)^{2}<+\infty$, where $v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) u_{n}$ and $a>0$ imply that $w_{w}\left(u_{n}\right) \subseteq F$.
Then $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $P_{F}\left(x_{0}\right)$.

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x_{n} \tag{2.18}\\
z_{n}=T_{n}\left(y_{n}\right) \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|y_{n}-z\right\|^{2}-b_{n}\left\|y_{n}-z_{n}\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

Corollary 2.8. Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\left\{T_{n}\right\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.
(a) $\exists x_{0} \in C \exists\left\{b_{n}\right\} \subseteq(-1,+\infty)$ with $\liminf _{n} b_{n}>-1$ and $\exists\left\{\beta_{n}\right\} \subseteq[0,1]$ such that

$$
\begin{equation*}
\left\|w_{n}-z\right\|^{2} \leq\|x-z\|^{2}-b_{n}\left\|x-w_{n}\right\|^{2} \tag{2.19}
\end{equation*}
$$

for all $x \in C, z \in F\left(T_{n}\right)$, where $w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+\left(1-\beta_{n}\right) T_{n}(x)$;
(b) for every bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty}\left\|u_{n+1}-u_{n}\right\|^{2}<+\infty$ and $\sum_{n=0}^{+\infty}\left(a\left\|w_{n}-u_{n}\right\|\right)^{2}<+\infty$, where $w_{n}=\beta_{n} T_{0}\left(x_{0}\right)+\left(1-\beta_{n}\right) T_{n}\left(u_{n}\right)$ and $a>0$
imply that $w_{w}\left(u_{n}\right) \subseteq F$.
Then $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $P_{F}\left(x_{0}\right)$.

$$
\left\{\begin{array}{l}
z_{0}=T_{0}\left(x_{0}\right) \tag{2.20}\\
z_{n}=\beta_{n} z_{0}+\left(1-\beta_{n}\right) T_{n}\left(x_{n}\right)(n \geq 1) \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-b_{n}\left\|x_{n}-z_{n}\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right) .
\end{array}\right.
$$

By putting $\alpha_{n}=\beta_{n}=0$, we get the following result of K. Nakajo, K. Shimoji and W. Takahashi.

Corollary 2.9. [6] Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\left\{T_{n}\right\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.
(a) $\exists\left\{b_{n}\right\} \subseteq(-1,+\infty)$ with $\liminf _{n} b_{n}>-1$ such that

$$
\begin{equation*}
\left\|T_{n}(x)-z\right\|^{2} \leq\|x-z\|^{2}-b_{n}\left\|x-T_{n}(x)\right\|^{2} \tag{2.21}
\end{equation*}
$$

for all $x \in C, z \in F\left(T_{n}\right)$;
(b) for every bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty}\left\|u_{n+1}-u_{n}\right\|^{2}<+\infty$ and $\sum_{n=0}^{+\infty}\left\|u_{n}-T_{n} u_{n}\right\|^{2}<+\infty$ imply that $w_{w}\left(u_{n}\right) \subseteq F$.
Then $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $P_{F}\left(x_{0}\right)$.

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{2.22}\\
z_{n}=T_{n}\left(x_{n}\right) \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-b_{n}\left\|x_{n}-z_{n}\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

3. Applications to zero of maximal monotone operators

An operator $A: X \multimap X^{*}$ is said to be monotone if $\left\langle x^{*}-y^{*}, x-y\right\rangle \geq 0$ for every $\left(x, x^{*}\right),\left(y, y^{*}\right) \in G p h(A)$. A monotone operator $A: X \multimap X^{*}$ is called maximal if $G p h(A)$ is not properly contained in the graph of any other monotone operator. It is known that a monotone operator $A: X \multimap X^{*}$ is maximal if and only if for $\left(y, y^{*}\right) \in X \times X^{*}$, we have $\left\langle x^{*}-y^{*}, x-y\right\rangle \geq 0$ for every $\left(x, x^{*}\right) \in X \times X^{*}$ implies $\left(y, y^{*}\right) \in G p h(A)$. We remark the following facts.

Fact 1: Let X be a uniformly convex Banach space whose norm is Gteaux differentiable and let $A: X \multimap X^{*}$ be a monotone operator. Then, A is maximal if and only if $R(J+r A)=X^{*}$ for all $r>0$.

Fact 2: Let X be a uniformly convex Banach space whose norm is Gteaux differentiable and A be a maximal monotone operator of X into X^{*}, for any $x \in X$ and $r>0$, there exists a unique element $x_{r} \in \operatorname{Dom}(A)$ such that $0 \in J\left(x_{r}-x\right)+r A\left(x_{r}\right)$.

Using Fact 2 , we can define $J_{r}: X \rightarrow X$ by $J_{r}(x)=x_{r}$ for every $x \in X$ and $r>0$ and such J_{r} is called the resolvent of A, for more details see [10].

Theorem 3.1. Let X be a uniformly convex Banach space with a Gateaux differentiable norm and let T be a maximal monotone operator from X to X^{*} such that $T^{-1}(0) \neq \emptyset$. Suppose $\left\{x_{n}\right\}$ is a sequence generated by the following algorithm and $\liminf \inf _{n}>0$. If $\lim _{n} \alpha_{n}=0$, then $\left\{x_{n}\right\}$ converges strongly to $P_{T^{-1}(0)}\left(x_{0}\right)$ as $n \xrightarrow{n}$.

$$
\left\{\begin{array}{l}
x_{0} \in X \tag{3.1}\\
y_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x_{n} \\
z_{n}=J_{r_{n}}\left(y_{n}\right) \\
C_{n}=\left\{z \in X:\left\langle y_{n}-z, J\left(x_{n}-z_{n}\right)\right\rangle \geq 0\right\} \\
Q_{n}=\left\{z \in X:\left\langle x_{n}-z, J\left(x_{0}-x_{n}\right)\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

Proof. Let $T_{n}=J_{r_{n}}$ for all $n \in \mathbb{N}_{0}$. It follows from Fact 2 that T_{n} is a mapping from X into $\operatorname{Dom}(T)$ and $F\left(T_{n}\right)=T^{-1}(0) \neq \emptyset$ for all $n \in \mathbb{N}_{0}$. Fix $n \in \mathbb{N}_{0}$, $x \in C$ and $z \in F\left(T_{n}\right)$. Set $v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x$. By Fact 2 we have $\frac{1}{r_{n}} J\left(v_{n}-T_{n}\left(v_{n}\right)\right) \in T\left(T_{n}\left(v_{n}\right)\right)$ and since T is monotone, one can deduce that $\left\langle T_{n}\left(v_{n}\right)-z, J\left(v_{n}-T_{n}\left(v_{n}\right)\right)\right\rangle \geq 0$. Therefore,

$$
\begin{aligned}
\left\langle v_{n}-z, J\left(v_{n}-T_{n}\left(v_{n}\right)\right)\right\rangle & =\left\langle v_{n}-T_{n}\left(v_{n}\right)+T_{n}\left(v_{n}\right)-z, J\left(v_{n}-T_{n}\left(v_{n}\right)\right)\right\rangle \\
& \geq\left\langle v_{n}-T_{n}\left(v_{n}\right), J\left(v_{n}-T_{n}\left(v_{n}\right)\right)\right\rangle \\
& =\left\|v_{n}-T_{n}\left(v_{n}\right)\right\|^{2} .
\end{aligned}
$$

Consequently, condition (2.9) satisfies with $a_{n}=1$. Now, let for a bounded sequence $\left\{u_{n}\right\}$ in $C, \sum_{n=0}^{+\infty} g\left(\left\|u_{n+1}-u_{n}\right\|\right)<+\infty$ and $\sum_{n=0}^{+\infty} g\left(a \| v_{n}-T_{n}\left(v_{n}\right)\right) \|-$ $\left.\alpha_{n}\left\|x_{0}-u_{n}\right\|\right)<+\infty$ for some $g \in G$ where $v_{n}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) u_{n}$ and $a>0$. Then $\left.\lim _{n}\left\|u_{n+1}-u_{n}\right\|=\lim _{n} \| v_{n}-T_{n}\left(v_{n}\right)\right) \|=0$. Let $\left(y, y^{*}\right) \in G p h(T)$ and

$$
\begin{aligned}
u_{n} \stackrel{w}{\rightarrow} & u, \text { so } \\
0 \leq & \left\langle T_{n}\left(v_{n}\right)-y, \frac{1}{r_{n}} J\left(v_{n}-T_{n}\left(v_{n}\right)\right)-y^{*}\right\rangle \\
= & \left\langle T_{n}\left(v_{n}\right)-v_{n}, \frac{1}{r_{n}} J\left(v_{n}-T_{n}\left(v_{n}\right)\right)-y^{*}\right\rangle+\left\langle v_{n}-y, \frac{1}{r_{n}} J\left(v_{n}-T_{n}\left(v_{n}\right)\right)-y^{*}\right\rangle \\
= & -\frac{1}{r_{n}}\left\|T_{n}\left(v_{n}\right)-v_{n}\right\|^{2}+\left\langle T_{n}\left(v_{n}\right)-v_{n},-y^{*}\right\rangle+\left\langle v_{n}-y, \frac{1}{r_{n}} J\left(v_{n}-T_{n}\left(v_{n}\right)\right)\right\rangle \\
& +\left\langle v_{n}-y,-y^{*}\right\rangle \\
\leq & \left\|T_{n}\left(v_{n}\right)-v_{n}\right\|\left\|y^{*}\right\|+\frac{1}{r_{n}}\left\|v_{n}-y\right\|\left\|v_{n}-T_{n}\left(v_{n}\right)\right\|+\left\langle v_{n}-y,-y^{*}\right\rangle .
\end{aligned}
$$

Then $\left\langle u-y,-y^{*}\right\rangle \geq 0$ and from maximality of T we get $0 \in T(u)$; i.e., $u \in T^{-1}(0)=F$ and hence $w_{w}\left(u_{n}\right) \subseteq F$. That $\left\{x_{n}\right\}$ converges strongly to $P_{T^{-1}}(0)$ follows from Corollary 2.3.
Corollary 3.2. [6] Let X be a uniformly convex Banach space with a Gateaux differentiable norm and let T be a maximal monotone operator from X to X^{*} such that $T^{-1}(0) \neq \emptyset$. Suppose $\left\{x_{n}\right\}$ is a sequence generated by the following algorithm and $\liminf _{n} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{T^{-1}(0)}\left(x_{0}\right)$.

$$
\left\{\begin{array}{l}
x_{0} \in X \tag{3.2}\\
y_{n}=J_{r_{n}}\left(x_{n}\right) \\
C_{n}=\left\{z \in X:\left\langle y_{n}-z, J\left(x_{n}-y_{n}\right)\right\rangle \geq 0\right\} \\
Q_{n}=\left\{z \in X:\left\langle x_{n}-z, J\left(x_{0}-x_{n}\right)\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

4. Acknowledgment

Masood Salehi is supported by the Islamic Azad University-Savadkouh Branch and Vahid Dadashi is supported by the Islamic Azad University-Sari Branch.

References

[1] S. Atsushiba and W. Takahashi, Strong convergence theorems for nonexpansive semigroups by a hybrid method, J. Nonlinear Convex Anal. 3 (2002), 231-242.
[2] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for fejermonotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), 248-264.
[3] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Pure and Applied Math. 83, Marcel Dekker, New York, 1984.
[4] Y. Haugazeau, Sur les inquations variationnelles et la minimisation de fonctionnelles convexes, These, Universite de Paris, Paris, France, 1968.
[5] H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Panamer. Math. J. 14 (2004), 49-61.
[6] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems by the hybrid method for families of mappings in Banach spaces, Nonlinear Anal. 71 (3-4)(2009), 812-818.
[7] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math. 10 (2006), 339-360.
[8] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379.
[9] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. Ser. A 87 (2000), 189-202.
[10] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[11] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138.

[^0]: ${ }^{0}$ Received December 12, 2009. Revised April 11, 2010.
 ${ }^{0} 2000$ Mathematics Subject Classification: 47H05, 49M05.
 ${ }^{0}$ Keywords: Hybrid method, common fixed point, iterative algorithm, zero set, uniformly convex Banach space.

