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Abstract. In this paper, we construct some algorithms for finding common fixed point of a

family of mappings with some sufficient condition. In fact, let C be a nonempty closed convex

subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and let

{Tn} be a family of self-mappings on C such that the set of all common fixed points of {Tn} is

nonempty. We construct a sequence {xn} generated by the hybrid method in mathematical

programming and also we give the conditions of {Tn} under which {xn} converges strongly

to a common fixed point of {Tn}. Finally, we apply our results to zero of maximal monotone

operators.

1. Introduction and preliminaries

Throughout this paper, let N0 = N∪ {0} and let X be a real Banach space
with dual space X∗. For a set-valued mapping T : X ( Y , the domain of

0Received December 12, 2009. Revised April 11, 2010.
02000 Mathematics Subject Classification: 47H05, 49M05.
0Keywords: Hybrid method, common fixed point, iterative algorithm, zero set, uniformly

convex Banach space.



30 M. Alimohammady, V. Dadashi, M. Roohi and M. Salehi

T is Dom(T ) = {x ∈ X : T (x) 6= ∅}, range of T is R(T ) = {y ∈ Y : ∃x ∈
X, (x, y) ∈ T} and the inverse T−1 of T is {(y, x) : (x, y) ∈ T}. For a real
number c, let cT = {(x, cy) : (x, y) ∈ T}. If S and T are any set-valued
mappings, we define S + T = {(x, y + z) : (x, y) ∈ S, (x, z) ∈ T}. Set

G = {g : [0, +∞) → [0, +∞) | g(0) = 0, g is continuous, strictly increasing
and convex}. (1.1)

Lemma 1.1. [3] Let C be a nonempty closed convex subset of a uniformly
convex Banach space X and let x ∈ X. Then, there exists a unique element
x0 ∈ C such that ‖x0− x‖ = inf

y∈C
‖y− x‖. Putting x0 = PC(x), we call PC the

metric projection onto C.

Lemma 1.2. [10] Let C be a nonempty closed convex subset of a uniformly
convex Banach space X whose norm is Gateaux differentiable and let x ∈ X.
Then y = PC(x) if and only if 〈y − z, J(x− y)〉 ≥ 0 for all z ∈ C.

Lemma 1.3. [10] Suppose X has a Gateaux differentiable norm. Then the
duality mapping J is single-valued and ‖x‖2 − ‖y‖2 ≥ 2〈x − y, Jy〉 for all
x, y ∈ X.

Lemma 1.4. [11] The Banach space X is uniformly convex if and only if for
every bounded subset B of X, there exists gB ∈ G such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)gB(‖x− y‖) (1.2)

for all x, y ∈ B and all λ ∈ [0, 1].

Let {Tn}+∞
n=0 be a family of mappings of a real Hilbert space H into itself

and let F (Tn) be the set of all fixed points of Tn. By the assumption that
+∞⋂
n=0

F (Tn) 6= ∅, Haugazeau [4] introduced a sequence {xn} generated by the

hybrid method, as following



x0 ∈ H
yn = Tn(xn)
Cn = {z ∈ H : 〈xn − yn, yn − z〉 ≥ 0}
Qn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

In case that Ci is a closed convex subset of H for i = 1, . . . , m,
m⋂

i=1
Ci 6= ∅

and Tn = PCn(mod m+1)
, he proved a strong convergence theorem. Recently,

Solodov and Svaiter [9], Bauschke and Combettes [2], Atsushiba and Takahashi
[1], Nakajo and Takahashi [8], Iiduka, Takahashi and Toyoda [5], Nakajo,
Shimoji and Takahashi [7], studied the hybrid method in a Hilbert spaces and
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also Nakajo, Shimoji and Takahashi [6] considered this method for families of
mappings in Banach spaces.

Motivated and inspired by the mentioned results, in this paper we construct
some algorithms for finding common fixed point of a family of mappings with
generalized Takahashi’s condition. Then we apply our results to zero of max-
imal monotone operators.

2. Convergence theorems

Let {xn} be a sequence, ww(xn) will denote the set of all weak cluster points

of {xn}. Let {Tn} be a family of self-mappings of C with F :=
+∞⋂
n=0

F (Tn) 6= ∅
which satisfies the following condition, in the sequel we call it generalized
Takahashi’s condition, denoted by (GTC).
∃x0 ∈ C ∃{an} ⊆ (0, +∞) with lim inf

n
an > 0 ∃{αn} ⊆ [0, 1], ∃{βn} ⊆ [0, 1]

such that

〈vn − z, J(vn − wn)〉 ≥ an‖vn − wn‖2 (2.1)

for all x ∈ C, z ∈ F (Tn), where vn = αnx0 + (1− αn)x and wn = βnT0(x0) +
(1− βn)Tn(vn).

Algorithm 2.1. Let {Tn} be a family of self-mappings of C with F 6= ∅
which satisfies (GTC). Let {xn}+∞

n=1 be a sequence generated by the following
algorithm. 




yn = αnx0 + (1− αn)xn

z0 = T0(x0)
zn = βnz0 + (1− βn)Tn(yn) (n ≥ 1)
Cn = {z ∈ C : 〈yn − z, J(yn − zn)〉 ≥ an‖yn − zn‖2}
Qn = {z ∈ C : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

(2.2)

Theorem 2.2. Suppose C is a nonempty closed convex subset of a uniformly
convex Banach space X whose norm is Gateaux differentiable and {Tn} is a
family of self-mappings of C with F 6= ∅ which satisfies (GTC). Assume that

(∗) for every bounded sequence {un} in C,
+∞∑
n=0

g(‖un+1 − un‖) < +∞ and

+∞∑
n=0

g(a‖vn − wn‖ − αn‖x0 − un‖) < +∞ for some g ∈ G and a > 0, where

vn = αnx0 + (1 − αn)un and wn = βnT0(x0) + (1 − βn)Tn(vn), imply that
ww(un) ⊆ F .
Then the sequence {xn} generated by Algorithm 2.1 converges strongly to
PF (x0).
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Proof. We split the proof into six steps.
Step 1. {xn} is well defined.
Notice that Cn and Qn are closed and convex sets for all n ∈ N ∪ {0}. On

the other hand, condition (2.1) and the definition of Cn in Algorithm 2.1 imply
that F (Tn) ⊆ Cn for all n ∈ N∪{0}. Hence F ⊆ Cn for all n ∈ N∪{0}. Since
J(0) = 0, it follows from the definition of Qn in Algorithm 2.1 that Q0 = C
which implies that F ⊆ C0 ∩ Q0. Lemma 1.1 guarantees that there exists a
unique element x1 = PC0∩Q0(x0). By Lemma 1.2,

〈x1 − z, J(x0 − x1)〉 ≥ 0

for all z ∈ C0 ∩Q0 and hence by F ⊆ C0 ∩Q0 we get

〈x1 − z, J(x0 − x1)〉 ≥ 0

for all z ∈ F . Therefore, F ⊆ Q1 and so apply the fact that F ⊆ Cn for all
n ∈ N ∪ {0} we have F ⊆ C1 ∩Q1. Again, Lemma 1.1 guarantees that there
exists a unique element x2 = PC1∩Q1(x0). Inductively, we find that {xn} is
well defined.

Step 2. {xn} is a bounded sequence.
From xn+1 = PCn∩Qn(x0) and F ⊆ Cn ∩Qn for all n ∈ N0 we have

‖xn+1 − x0‖ ≤ ‖x0 − PF (x0)‖ (2.3)

for all n ∈ N0, which implies that {xn} is a bounded sequence.
Step 3. lim

n
‖xn − x0‖ exists.

Replace terms xn+1 − x0 and xn − xo respectively with x and y in Lemma
1.3, then we get

‖xn − x0‖2 ≤ ‖xn+1 − x0‖2 − 2〈xn+1 − xn, J(xn − x0)〉
and hence xn+1 ∈ Qn implies that ‖xn−x0‖2 ≤ ‖xn+1−x0‖2 for all n ∈ N0; i.e.,
‖xn−x0‖ is an increasing sequence and so by Step 2 we find that lim

n
‖xn−xo‖

exists.

Step 4.
+∞∑
n=0

g(‖xn+1 − xn‖) < +∞ for some g ∈ G.

It follows from Lemma 1.4 that there exists g ∈ G such that

‖xn + xn+1

2
− x0‖2 ≤ 1

2
‖xn − x0‖2 +

1
2
‖xn+1 − x0‖2 − 1

4
g(‖xn+1 − xn‖)(2.4)

and hence

g(‖xn+1 − xn‖) ≤ 2‖xn − x0‖2 + 2‖xn+1 − x0‖2 − 4‖xn + xn+1

2
− x0‖2 (2.5)

for all n ∈ N0. On the other hand, it follows from Lemma 1.2 and the definition
of Qn that xn = PQnx0 and so by xn+1 ∈ Qn and convexity of Qn we get
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xn+xn+1

2 ∈ Qn. Again, by xn = PQnx0,

‖xn + xn+1

2
− x0‖2 ≥ ‖xn − x0‖2. (2.6)

It follows from inequalities (2.5) and (2.6) that

g(‖xn+1 − xn‖) ≤ 2‖xn+1 − x0‖2 − 2‖xn − x0‖2 for all n ∈ N0. (2.7)

That
+∞∑
n=0

g(‖xn+1 − xn‖) < +∞ follows from (2.7), Step 1 and Step 3.

Step 5.
+∞∑
n=0

g(a‖yn− zn‖−αn‖xn−x0‖) < +∞ for some g ∈ G and a > 0.

Since an > 0 for all n ∈ N0 and lim inf
n

an > 0, there exists a > 0 for which
an ≥ a for all n ≥ k ∈ N0. Now, xn+1 ∈ Cn guarantees that

‖yn − xn+1‖‖yn − zn‖ ≥ 〈yn − xn+1, J(yn − zn)〉 ≥ an‖yn − zn‖2

and thus

a‖yn − zn‖ ≤ ‖yn − xn+1‖ ≤ αn‖xn − x0‖+ ‖xn+1 − xn‖
and hence

a‖yn − zn‖ − αn‖xn − x0‖ ≤ ‖xn+1 − xn‖ (2.8)

for all n ∈ N0. That
+∞∑
n=0

g(a‖yn − xn‖ − αn‖xn − x0‖) < +∞ follows from

(2.8), (1.1) and Step 4.
Step 6. {xn} → PF (x0)
It follows from (∗), Step 4 and Step 5 that ww(xn) ⊆ F . Let the sub-

sequence {xni} of {xn} converges weakly to w ∈ F . Therefore, weak lower
semicontinuity of the norm and (2.3) imply that

‖PF (x0)− x0‖ ≤ ‖w − x0‖ ≤ lim
i→+∞

‖xni − x0‖ ≤ ‖PF (x0)− x0‖

and hence xni → w = PF (x0). ¤

Corollary 2.3. Suppose C is a nonempty closed convex subset of a uniformly
convex Banach space X and {Tn} is a family of self-mappings of C with F 6= ∅
which satisfies the following conditions.

(a) ∃x0 ∈ C ∃{an} ⊆ (0, +∞) with lim inf
n

an > 0 ∃{αn} ⊆ [0, 1] such that

〈vn − z, J(vn − Tn(vn))〉 ≥ an‖vn − Tn(vn))‖2 (2.9)

for all x ∈ C, z ∈ F (Tn), where, vn = αnx0 + (1− αn)x;
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(b) for every bounded sequence {un} in C,
+∞∑
n=0

g(‖un+1 − un‖) < +∞ and

+∞∑
n=0

g(a‖vn − Tn(vn))‖ − αn‖x0 − un‖) < +∞ for some g ∈ G, vn = αnx0 +

(1− αn)un and a > 0 imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).





yn = αnx0 + (1− αn)xn

zn = Tn(yn)
Cn = {z ∈ C : 〈yn − z, J(yn − zn)〉 ≥ an‖yn − zn‖2}
Qn = {z ∈ C : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

(2.10)

Corollary 2.4. Suppose C is a nonempty closed convex subset of a uniformly
convex Banach space X and {Tn} is a family of self-mappings of C with F 6= ∅
which satisfies the following conditions.

(a) ∃x0 ∈ C ∃{an} ⊆ (0, +∞) with lim inf
n

an > 0 ∃{βn} ⊆ [0, 1] such that

〈x− z, J(x− wn)〉 ≥ an‖x− wn‖2 (2.11)

for all x ∈ C, z ∈ F (Tn), and wn = βnT0(x0) + (1− βn)Tn(x);

(b) for every bounded sequence {un} in C,
+∞∑
n=0

g(‖un+1 − un‖) < +∞ and

+∞∑
n=0

g(a‖un − wn‖) < +∞ for some g ∈ G, wn = βnT0(x0) + (1 − βn)Tn(un),

and a > 0 imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).





z0 = T0(x0)
zn = βnz0 + (1− βn)Tn(xn) (n ≥ 1)
Cn = {z ∈ C : 〈xn − z, J(xn − zn)〉 ≥ an‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

(2.12)

Corollary 2.5. [6] Suppose C is a nonempty closed convex subset of a uni-
formly convex Banach space X and {Tn} is a family of self-mappings of C
with F 6= ∅ which satisfies the following conditions.

(a) ∃{an} ⊆ (0, +∞) with lim inf
n

an > 0 such that

〈x− z, J(x− Tn(x))〉 ≥ an‖x− Tn(x)‖2 (2.13)

for all x ∈ C and z ∈ F (Tn);
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(b) for every bounded sequence {un} in C,
+∞∑
n=0

g(‖un+1 − un‖) < +∞ and

+∞∑
n=0

g(a‖un − Tn(un)‖) < +∞ for some g ∈ G and a > 0 imply that ww(un) ⊆
F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).




x0 ∈ C
yn = Tn(xn)
Cn = {z ∈ C : 〈xn − z, J(xn − yn)〉 ≥ an‖xn − yn‖2}
Qn = {z ∈ C : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

(2.14)

Corollary 2.6. Suppose C is a nonempty closed convex subset of a real Hilbert
space H and {Tn} is a family of self-mappings of C with F 6= ∅ which satisfies
the following conditions.

(a) ∃x0 ∈ C ∃{bn} ⊆ (−1,+∞) with lim inf
n

bn > −1 and ∃{αn} ⊆ [0, 1],

∃{βn} ⊆ [0, 1] such that

‖wn − z‖2 ≤ ‖vn − z‖2 − bn‖vn − wn‖2 (2.15)

for all x ∈ C, z ∈ F (Tn), where, vn = αnx0 + (1−αn)x and wn = βnT0(x0) +
(1− βn)Tn(vn);

(b) for every bounded sequence {un} in C,
+∞∑
n=0

‖un+1 − un‖2 < +∞ and

+∞∑
n=0

(a‖wn − un‖ − αn‖x0 − un‖)2 < +∞, where

wn = βnT0(x0) + (1− βn)Tn(αnx0 + (1− αn)un)

and a > 0 imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).




yn = αnx0 + (1− αn)xn

z0 = T0(x0)
zn = βnz0 + (1− βn)Tn(yn) (n ≥ 1)
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖yn − z‖2 − bn‖yn − zn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

(2.16)

Proof. First we note that, for x ∈ C, z ∈ F (Tn), vn = αnx0 + (1 − αn)x and
wn = βnT0(x0) + (1− βn)Tn(vn), by (2.15) we have ‖wn − z‖2 ≤ ‖vn − z‖2 −
bn‖vn − wn‖2, if and only if

‖wn − vn‖2 + 2〈wn − vn, vn − z〉+ ‖vn − z‖2 ≤ ‖vn − z‖2 − bn‖vn − wn‖2



36 M. Alimohammady, V. Dadashi, M. Roohi and M. Salehi

if and only if 〈vn−z, vn−wn〉 ≥ 1+bn
2 ‖vn−wn‖2. Then condition (2.1) satisfies

for an = 1+bn
2 . In a real Hilbert space H, we have

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1], so, we can consider gB(t) = t2 for each bounded
subset B of H in Lemma 1.4 and hence (∗) holds. Then all conditions of
Theorem 2.2 hold which it implies that {xn} converges strongly to PF (x0). ¤

Corollary 2.7. Suppose C is a nonempty closed convex subset of a real Hilbert
space H and {Tn} is a family of self-mappings of C with F 6= ∅ which satisfies
the following conditions.

(a) ∃x0 ∈ C ∃{bn} ⊆ (−1, +∞) with lim inf
n

bn > −1 and ∃{αn} ⊆ [0, 1]
such that

‖Tn(vn)− z‖2 ≤ ‖vn − z‖2 − bn‖vn − Tn(vn)‖2 (2.17)

for all x ∈ C, z ∈ F (Tn), where, vn = αnx0 + (1− αn)x;

(b) for every bounded sequence {un} in C,
+∞∑
n=0

‖un+1 − un‖2 < +∞ and

+∞∑
n=0

(a‖Tn(vn) − un‖ − αn‖x0 − un‖)2 < +∞, where vn = αnx0 + (1 − αn)un

and a > 0 imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).




yn = αnx0 + (1− αn)xn

zn = Tn(yn)
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖yn − z‖2 − bn‖yn − zn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

(2.18)

Corollary 2.8. Suppose C is a nonempty closed convex subset of a real Hilbert
space H and {Tn} is a family of self-mappings of C with F 6= ∅ which satisfies
the following conditions.

(a) ∃x0 ∈ C ∃{bn} ⊆ (−1, +∞) with lim inf
n

bn > −1 and ∃{βn} ⊆ [0, 1]
such that

‖wn − z‖2 ≤ ‖x− z‖2 − bn‖x− wn‖2 (2.19)

for all x ∈ C, z ∈ F (Tn), where wn = βnT0(x0) + (1− βn)Tn(x);

(b) for every bounded sequence {un} in C,
+∞∑
n=0

‖un+1 − un‖2 < +∞ and

+∞∑
n=0

(a‖wn − un‖)2 < +∞, where wn = βnT0(x0) + (1 − βn)Tn(un) and a > 0
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imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).




z0 = T0(x0)
zn = βnz0 + (1− βn)Tn(xn) (n ≥ 1)
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − bn‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

(2.20)

By putting αn = βn = 0, we get the following result of K. Nakajo, K.
Shimoji and W. Takahashi.

Corollary 2.9. [6] Suppose C is a nonempty closed convex subset of a real
Hilbert space H and {Tn} is a family of self-mappings of C with F 6= ∅ which
satisfies the following conditions.

(a) ∃{bn} ⊆ (−1, +∞) with lim inf
n

bn > −1 such that

‖Tn(x)− z‖2 ≤ ‖x− z‖2 − bn‖x− Tn(x)‖2 (2.21)

for all x ∈ C, z ∈ F (Tn);

(b) for every bounded sequence {un} in C,
+∞∑
n=0

‖un+1 − un‖2 < +∞ and

+∞∑
n=0

‖un − Tnun‖2 < +∞ imply that ww(un) ⊆ F .

Then {xn} generated by the following algorithm converges strongly to PF (x0).



x0 ∈ C
zn = Tn(xn)
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − bn‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn(x0)

(2.22)

3. Applications to zero of maximal monotone operators

An operator A : X ( X∗ is said to be monotone if 〈x∗ − y∗, x − y〉 ≥ 0
for every (x, x∗), (y, y∗) ∈ Gph(A). A monotone operator A : X ( X∗ is
called maximal if Gph(A) is not properly contained in the graph of any other
monotone operator. It is known that a monotone operator A : X ( X∗ is
maximal if and only if for (y, y∗) ∈ X ×X∗, we have 〈x∗ − y∗, x− y〉 ≥ 0 for
every (x, x∗) ∈ X × X∗ implies (y, y∗) ∈ Gph(A). We remark the following
facts.

Fact 1: Let X be a uniformly convex Banach space whose norm is Gteaux
differentiable and let A : X ( X∗ be a monotone operator. Then, A is
maximal if and only if R(J + rA) = X∗ for all r > 0.
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Fact 2: Let X be a uniformly convex Banach space whose norm is Gteaux
differentiable and A be a maximal monotone operator of X into X∗, for any
x ∈ X and r > 0, there exists a unique element xr ∈ Dom(A) such that
0 ∈ J(xr − x) + rA(xr).

Using Fact 2, we can define Jr : X → X by Jr(x) = xr for every x ∈ X and
r > 0 and such Jr is called the resolvent of A, for more details see [10].

Theorem 3.1. Let X be a uniformly convex Banach space with a Gateaux
differentiable norm and let T be a maximal monotone operator from X to X∗
such that T−1(0) 6= ∅. Suppose {xn} is a sequence generated by the following
algorithm and lim inf

n
rn > 0. If lim

n
αn = 0, then {xn} converges strongly to

PT−1(0)(x0) as n →∞.





x0 ∈ X
yn = αnx0 + (1− αn)xn

zn = Jrn(yn)
Cn = {z ∈ X : 〈yn − z, J(xn − zn)〉 ≥ 0}
Qn = {z ∈ X : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn(x0)

(3.1)

Proof. Let Tn = Jrn for all n ∈ N0. It follows from Fact 2 that Tn is a mapping
from X into Dom(T ) and F (Tn) = T−1(0) 6= ∅ for all n ∈ N0. Fix n ∈ N0,
x ∈ C and z ∈ F (Tn). Set vn = αnx0 + (1 − αn)x. By Fact 2 we have
1
rn

J(vn − Tn(vn)) ∈ T (Tn(vn)) and since T is monotone, one can deduce that
〈Tn(vn)− z, J(vn − Tn(vn))〉 ≥ 0. Therefore,

〈vn − z, J(vn − Tn(vn))〉 = 〈vn − Tn(vn) + Tn(vn)− z, J(vn − Tn(vn))〉
≥ 〈vn − Tn(vn), J(vn − Tn(vn))〉
= ‖vn − Tn(vn)‖2.

Consequently, condition (2.9) satisfies with an = 1. Now, let for a bounded

sequence {un} in C,
+∞∑
n=0

g(‖un+1 − un‖) < +∞ and
+∞∑
n=0

g(a‖vn − Tn(vn))‖ −
αn‖x0−un‖) < +∞ for some g ∈ G where vn = αnx0 +(1−αn)un and a > 0.
Then lim

n
‖un+1 − un‖ = lim

n
‖vn − Tn(vn))‖ = 0. Let (y, y∗) ∈ Gph(T ) and
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un
w→ u, so

0 ≤ 〈Tn(vn)− y,
1
rn

J(vn − Tn(vn))− y∗〉

= 〈Tn(vn)− vn,
1
rn

J(vn − Tn(vn))− y∗〉+ 〈vn − y,
1
rn

J(vn − Tn(vn))− y∗〉

= − 1
rn
‖Tn(vn)− vn‖2 + 〈Tn(vn)− vn,−y∗〉+ 〈vn − y,

1
rn

J(vn − Tn(vn))〉
+〈vn − y,−y∗〉

≤ ‖Tn(vn)− vn‖‖y∗‖+
1
rn
‖vn − y‖‖vn − Tn(vn)‖+ 〈vn − y,−y∗〉.

Then 〈u − y,−y∗〉 ≥ 0 and from maximality of T we get 0 ∈ T (u); i.e.,
u ∈ T−1(0) = F and hence ww(un) ⊆ F . That {xn} converges strongly to
PT−1(0) follows from Corollary 2.3. ¤
Corollary 3.2. [6] Let X be a uniformly convex Banach space with a Gateaux
differentiable norm and let T be a maximal monotone operator from X to X∗
such that T−1(0) 6= ∅. Suppose {xn} is a sequence generated by the following
algorithm and lim inf

n
rn > 0. Then {xn} converges strongly to PT−1(0)(x0).





x0 ∈ X
yn = Jrn(xn)
Cn = {z ∈ X : 〈yn − z, J(xn − yn)〉 ≥ 0}
Qn = {z ∈ X : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn(x0).

(3.2)
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