Nonlinear Functional Analysis and Applications Vol. 16, No. 1 (2011), pp. 29-40

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2011 Kyungnam University Press

HYBRID METHOD FOR A FAMILY OF MAPPINGS WITH APPLICATIONS IN ZERO OF MAXIMAL MONOTONE OPERATORS

Mohsen Alimohammady¹, Vahid Dadashi², Mehdi Roohi³ and Masood Salehi⁴

¹Department of Mathematics, Faculty of Basic Sciences University of Mazandaran, Babolsar 47416-1468, Iran, e-mail: m.alimohammady@gmail.com

²Department of Mathematics, Islamic Azad University-Sari Branch, Sari, Iran e-mail: vahid.dadashi@iausari.ac.ir

³Department of Mathematics, Faculty of Siences Golestan University P.O. Box 155, Gorgan, Iran, e-mail: mehdi.roohi@gmail.com

⁴Department of Mathematics, Islamic Azad University-Savadkouh Branch, Savadkouh, Iran e-mail: msalehi76@yahoo.com

Abstract. In this paper, we construct some algorithms for finding common fixed point of a family of mappings with some sufficient condition. In fact, let C be a nonempty closed convex subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and let $\{T_n\}$ be a family of self-mappings on C such that the set of all common fixed points of $\{T_n\}$ is nonempty. We construct a sequence $\{x_n\}$ generated by the hybrid method in mathematical programming and also we give the conditions of $\{T_n\}$ under which $\{x_n\}$ converges strongly to a common fixed point of $\{T_n\}$. Finally, we apply our results to zero of maximal monotone operators.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and let X be a real Banach space with dual space X^* . For a set-valued mapping $T : X \multimap Y$, the *domain* of

 $^{^0\}mathrm{Received}$ December 12, 2009. Revised April 11, 2010.

 $^{^02000}$ Mathematics Subject Classification: 47H05, 49M05.

 $^{^0{\}rm Keywords}:$ Hybrid method, common fixed point, iterative algorithm, zero set, uniformly convex Banach space.

 $T \text{ is } Dom(T) = \{x \in X : T(x) \neq \emptyset\}, \text{ range of } T \text{ is } R(T) = \{y \in Y : \exists x \in X, (x, y) \in T\} \text{ and the inverse } T^{-1} \text{ of } T \text{ is } \{(y, x) : (x, y) \in T\}.$ For a real number c, let $cT = \{(x, cy) : (x, y) \in T\}$. If S and T are any set-valued mappings, we define $S + T = \{(x, y + z) : (x, y) \in S, (x, z) \in T\}.$ Set

 $G = \{g : [0, +\infty) \to [0, +\infty) \mid g(0) = 0, g \text{ is continuous, strictly increasing} \\ \text{and convex}\}.$ (1.1)

Lemma 1.1. [3] Let C be a nonempty closed convex subset of a uniformly convex Banach space X and let $x \in X$. Then, there exists a unique element $x_0 \in C$ such that $||x_0 - x|| = \inf_{y \in C} ||y - x||$. Putting $x_0 = P_C(x)$, we call P_C the metric projection onto C.

Lemma 1.2. [10] Let C be a nonempty closed convex subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and let $x \in X$. Then $y = P_C(x)$ if and only if $\langle y - z, J(x - y) \rangle \ge 0$ for all $z \in C$.

Lemma 1.3. [10] Suppose X has a Gateaux differentiable norm. Then the duality mapping J is single-valued and $||x||^2 - ||y||^2 \ge 2\langle x - y, Jy \rangle$ for all $x, y \in X$.

Lemma 1.4. [11] The Banach space X is uniformly convex if and only if for every bounded subset B of X, there exists $g_B \in G$ such that

 $\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)g_B(\|x-y\|)$ (1.2) for all $x, y \in B$ and all $\lambda \in [0, 1]$.

Let $\{T_n\}_{n=0}^{+\infty}$ be a family of mappings of a real Hilbert space \mathcal{H} into itself and let $F(T_n)$ be the set of all fixed points of T_n . By the assumption that $\bigcap_{n=0}^{+\infty} F(T_n) \neq \emptyset$, Haugazeau [4] introduced a sequence $\{x_n\}$ generated by the hybrid method, as following

hybrid method, as following

$$\begin{cases} x_0 \in \mathcal{H} \\ y_n = T_n(x_n) \\ C_n = \{ z \in \mathcal{H} : \langle x_n - y_n, y_n - z \rangle \ge 0 \} \\ Q_n = \{ z \in \mathcal{H} : \langle x_n - z, x_0 - x_n \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n}(x_0). \end{cases}$$

In case that C_i is a closed convex subset of \mathcal{H} for $i = 1, \ldots, m$, $\bigcap_{i=1}^{m} C_i \neq \emptyset$ and $T_n = P_{C_{n(\text{mod } m+1)}}$, he proved a strong convergence theorem. Recently, Solodov and Svaiter [9], Bauschke and Combettes [2], Atsushiba and Takahashi [1], Nakajo and Takahashi [8], Iiduka, Takahashi and Toyoda [5], Nakajo, Shimoji and Takahashi [7], studied the hybrid method in a Hilbert spaces and also Nakajo, Shimoji and Takahashi [6] considered this method for families of mappings in Banach spaces.

Motivated and inspired by the mentioned results, in this paper we construct some algorithms for finding common fixed point of a family of mappings with generalized Takahashi's condition. Then we apply our results to zero of maximal monotone operators.

2. Convergence theorems

Let $\{x_n\}$ be a sequence, $w_w(x_n)$ will denote the set of all weak cluster points of $\{x_n\}$. Let $\{T_n\}$ be a family of self-mappings of C with $F := \bigcap_{n=0}^{+\infty} F(T_n) \neq \emptyset$ which satisfies the following condition, in the sequel we call it generalized Takahashi's condition, denoted by (GTC).

 $\exists x_0 \in C \ \exists \{a_n\} \subseteq (0, +\infty) \text{ with } \liminf_n a_n > 0 \ \exists \{\alpha_n\} \subseteq [0, 1], \ \exists \{\beta_n\} \subseteq [0, 1]$ such that

$$\langle v_n - z, J(v_n - w_n) \rangle \ge a_n \|v_n - w_n\|^2$$
 (2.1)

for all $x \in C$, $z \in F(T_n)$, where $v_n = \alpha_n x_0 + (1 - \alpha_n)x$ and $w_n = \beta_n T_0(x_0) + \beta_n T_0(x_0) + \beta_n T_0(x_0)$ $(1-\beta_n)T_n(v_n).$

Algorithm 2.1. Let $\{T_n\}$ be a family of self-mappings of C with $F \neq \emptyset$ which satisfies (GTC). Let $\{x_n\}_{n=1}^{+\infty}$ be a sequence generated by the following algorithm.

$$\begin{cases}
y_n = \alpha_n x_0 + (1 - \alpha_n) x_n \\
z_0 = T_0(x_0) \\
z_n = \beta_n z_0 + (1 - \beta_n) T_n(y_n) \quad (n \ge 1) \\
C_n = \{z \in C : \langle y_n - z, J(y_n - z_n) \rangle \ge a_n \| y_n - z_n \|^2 \} \\
Q_n = \{z \in C : \langle x_n - z, J(x_0 - x_n) \rangle \ge 0 \} \\
x_{n+1} = P_{C_n \cap Q_n}(x_0).
\end{cases}$$
(2.2)

Theorem 2.2. Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies (GTC). Assume that

(*) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} g(\|u_{n+1} - u_n\|) < +\infty$ and $\sum_{n=0}^{+\infty} g(a\|v_n - w_n\| - \alpha_n\|x_0 - u_n\|) < +\infty$ for some $g \in G$ and a > 0, where $v_n = \alpha_n x_0 + (1 - \alpha_n)u_n$ and $w_n = \beta_n T_0(x_0) + (1 - \beta_n)T_n(v_n)$, imply that $w_w(u_n) \subseteq F.$

Then the sequence $\{x_n\}$ generated by Algorithm 2.1 converges strongly to $P_{F}(x_{0}).$

Proof. We split the proof into six steps.

Step 1. $\{x_n\}$ is well defined.

Notice that C_n and Q_n are closed and convex sets for all $n \in \mathbb{N} \cup \{0\}$. On the other hand, condition (2.1) and the definition of C_n in Algorithm 2.1 imply that $F(T_n) \subseteq C_n$ for all $n \in \mathbb{N} \cup \{0\}$. Hence $F \subseteq C_n$ for all $n \in \mathbb{N} \cup \{0\}$. Since J(0) = 0, it follows from the definition of Q_n in Algorithm 2.1 that $Q_0 = C$ which implies that $F \subseteq C_0 \cap Q_0$. Lemma 1.1 guarantees that there exists a unique element $x_1 = P_{C_0 \cap Q_0}(x_0)$. By Lemma 1.2,

$$\langle x_1 - z, J(x_0 - x_1) \rangle \ge 0$$

for all $z \in C_0 \cap Q_0$ and hence by $F \subseteq C_0 \cap Q_0$ we get

$$\langle x_1 - z, J(x_0 - x_1) \rangle \ge 0$$

for all $z \in F$. Therefore, $F \subseteq Q_1$ and so apply the fact that $F \subseteq C_n$ for all $n \in \mathbb{N} \cup \{0\}$ we have $F \subseteq C_1 \cap Q_1$. Again, Lemma 1.1 guarantees that there exists a unique element $x_2 = P_{C_1 \cap Q_1}(x_0)$. Inductively, we find that $\{x_n\}$ is well defined.

Step 2. $\{x_n\}$ is a bounded sequence.

From $x_{n+1} = P_{C_n \cap Q_n}(x_0)$ and $F \subseteq C_n \cap Q_n$ for all $n \in \mathbb{N}_0$ we have

$$||x_{n+1} - x_0|| \le ||x_0 - P_F(x_0)||$$
(2.3)

for all $n \in \mathbb{N}_0$, which implies that $\{x_n\}$ is a bounded sequence.

Step 3. $\lim ||x_n - x_0||$ exists.

Replace terms $x_{n+1} - x_0$ and $x_n - x_o$ respectively with x and y in Lemma 1.3, then we get

$$||x_n - x_0||^2 \le ||x_{n+1} - x_0||^2 - 2\langle x_{n+1} - x_n, J(x_n - x_0) \rangle$$

and hence $x_{n+1} \in Q_n$ implies that $||x_n - x_0||^2 \le ||x_{n+1} - x_0||^2$ for all $n \in \mathbb{N}_0$; i.e., $||x_n - x_0||$ is an increasing sequence and so by Step 2 we find that $\lim_n ||x_n - x_o||$ exists.

Step 4.
$$\sum_{n=0}^{+\infty} g(||x_{n+1} - x_n||) < +\infty$$
 for some $g \in G$.

It follows from Lemma 1.4 that there exists $g \in G$ such that

$$\left\|\frac{x_n + x_{n+1}}{2} - x_0\right\|^2 \le \frac{1}{2} \|x_n - x_0\|^2 + \frac{1}{2} \|x_{n+1} - x_0\|^2 - \frac{1}{4}g(\|x_{n+1} - x_n\|)(2.4)$$

and hence

$$g(\|x_{n+1} - x_n\|) \le 2\|x_n - x_0\|^2 + 2\|x_{n+1} - x_0\|^2 - 4\|\frac{x_n + x_{n+1}}{2} - x_0\|^2$$
(2.5)

for all $n \in \mathbb{N}_0$. On the other hand, it follows from Lemma 1.2 and the definition of Q_n that $x_n = P_{Q_n} x_0$ and so by $x_{n+1} \in Q_n$ and convexity of Q_n we get

Hybrid method for a family of mappings with applications

$$\frac{x_n + x_{n+1}}{2} \in Q_n. \text{ Again, by } x_n = P_{Q_n} x_0,$$
$$\|\frac{x_n + x_{n+1}}{2} - x_0\|^2 \ge \|x_n - x_0\|^2. \tag{2.6}$$

It follows from inequalities (2.5) and (2.6) that

$$g(\|x_{n+1} - x_n\|) \le 2\|x_{n+1} - x_0\|^2 - 2\|x_n - x_0\|^2 \text{ for all } n \in \mathbb{N}_0.$$
 (2.7)

That $\sum_{n=0}^{+\infty} g(\|x_{n+1} - x_n\|) < +\infty$ follows from (2.7), Step 1 and Step 3. **Step 5.** $\sum_{n=0}^{+\infty} g(a\|y_n - z_n\| - \alpha_n\|x_n - x_0\|) < +\infty$ for some $g \in G$ and a > 0. Since $a_n > 0$ for all $n \in \mathbb{N}_0$ and $\liminf_n a_n > 0$, there exists a > 0 for which $a_n \ge a$ for all $n \ge k \in \mathbb{N}_0$. Now, $x_{n+1} \in C_n$ guarantees that

$$||y_n - x_{n+1}|| ||y_n - z_n|| \ge \langle y_n - x_{n+1}, J(y_n - z_n) \rangle \ge a_n ||y_n - z_n||^2$$

and thus

$$a||y_n - z_n|| \le ||y_n - x_{n+1}|| \le \alpha_n ||x_n - x_0|| + ||x_{n+1} - x_n||$$

and hence

and h

$$a||y_n - z_n|| - \alpha_n ||x_n - x_0|| \le ||x_{n+1} - x_n||$$
(2.8)

for all $n \in \mathbb{N}_0$. That $\sum_{n=0}^{+\infty} g(a||y_n - x_n|| - \alpha_n ||x_n - x_0||) < +\infty$ follows from (2.8), (1.1) and Step 4.

Step 6. $\{x_n\} \to P_F(x_0)$

It follows from (*), Step 4 and Step 5 that $w_w(x_n) \subseteq F$. Let the subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges weakly to $w \in F$. Therefore, weak lower semicontinuity of the norm and (2.3) imply that

$$\|P_F(x_0) - x_0\| \le \|w - x_0\| \le \lim_{i \to +\infty} \|x_{n_i} - x_0\| \le \|P_F(x_0) - x_0\|$$

ence $x_{n_i} \to w = P_F(x_0).$

Corollary 2.3. Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists x_0 \in C \ \exists \{a_n\} \subseteq (0, +\infty)$ with $\liminf_n a_n > 0 \ \exists \{\alpha_n\} \subseteq [0, 1]$ such that

$$\langle v_n - z, J(v_n - T_n(v_n)) \rangle \ge a_n ||v_n - T_n(v_n))||^2$$
 (2.9)

for all $x \in C$, $z \in F(T_n)$, where, $v_n = \alpha_n x_0 + (1 - \alpha_n)x$;

M. Alimohammady, V. Dadashi, M. Roohi and M. Salehi

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} g(||u_{n+1} - u_n||) < +\infty$ and $\sum_{n=0}^{+\infty} g(a||v_n - T_n(v_n))|| - \alpha_n ||x_0 - u_n||) < +\infty$ for some $g \in G$, $v_n = \alpha_n x_0 + (1 - \alpha_n)u_n$ and a > 0 imply that $w_w(u_n) \subseteq F$. Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

$$\begin{cases} y_n = \alpha_n x_0 + (1 - \alpha_n) x_n \\ z_n = T_n(y_n) \\ C_n = \{ z \in C : \langle y_n - z, J(y_n - z_n) \rangle \ge a_n \| y_n - z_n \|^2 \} \\ Q_n = \{ z \in C : \langle x_n - z, J(x_0 - x_n) \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n}(x_0). \end{cases}$$
(2.10)

Corollary 2.4. Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists x_0 \in C \exists \{a_n\} \subseteq (0, +\infty)$ with $\liminf_n a_n > 0 \exists \{\beta_n\} \subseteq [0, 1]$ such that

$$\langle x - z, J(x - w_n) \rangle \ge a_n \|x - w_n\|^2$$
 (2.11)

for all $x \in C$, $z \in F(T_n)$, and $w_n = \beta_n T_0(x_0) + (1 - \beta_n)T_n(x)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} g(||u_{n+1} - u_n||) < +\infty$ and

 $\sum_{n=0}^{+\infty} g(a||u_n - w_n||) < +\infty \text{ for some } g \in G, w_n = \beta_n T_0(x_0) + (1 - \beta_n) T_n(u_n),$ and a > 0 imply that $w_w(u_n) \subseteq F$.

Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

$$\begin{cases} z_0 = T_0(x_0) \\ z_n = \beta_n z_0 + (1 - \beta_n) T_n(x_n) \ (n \ge 1) \\ C_n = \{ z \in C : \langle x_n - z, J(x_n - z_n) \rangle \ge a_n \| x_n - z_n \|^2 \} \\ Q_n = \{ z \in C : \langle x_n - z, J(x_0 - x_n) \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n}(x_0). \end{cases}$$

$$(2.12)$$

Corollary 2.5. [6] Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists \{a_n\} \subseteq (0, +\infty)$ with $\liminf_n a_n > 0$ such that

$$\langle x - z, J(x - T_n(x)) \rangle \ge a_n \|x - T_n(x)\|^2$$
 (2.13)

for all $x \in C$ and $z \in F(T_n)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} g(||u_{n+1} - u_n||) < +\infty$ and $+\infty$

$$\sum_{n=0}^{\infty} g(a||u_n - T_n(u_n)||) < +\infty \text{ for some } g \in G \text{ and } a > 0 \text{ imply that } w_w(u_n) \subseteq F.$$

Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

$$\begin{cases} x_0 \in C \\ y_n = T_n(x_n) \\ C_n = \{ z \in C : \langle x_n - z, J(x_n - y_n) \rangle \ge a_n \| x_n - y_n \|^2 \} \\ Q_n = \{ z \in C : \langle x_n - z, J(x_0 - x_n) \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n}(x_0). \end{cases}$$
(2.14)

Corollary 2.6. Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists x_0 \in C \ \exists \{b_n\} \subseteq (-1, +\infty)$ with $\liminf_n b_n > -1$ and $\exists \{\alpha_n\} \subseteq [0, 1]$, $\exists \{\beta_n\} \subseteq [0, 1]$ such that

$$||w_n - z||^2 \le ||v_n - z||^2 - b_n ||v_n - w_n||^2$$
(2.15)

for all $x \in C$, $z \in F(T_n)$, where, $v_n = \alpha_n x_0 + (1 - \alpha_n)x$ and $w_n = \beta_n T_0(x_0) + (1 - \beta_n)T_n(v_n)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} ||u_{n+1} - u_n||^2 < +\infty$ and $\sum_{n=0}^{+\infty} (a||w_n - u_n|| - \alpha_n ||x_0 - u_n||)^2 < +\infty$, where

$$w_n = \beta_n T_0(x_0) + (1 - \beta_n) T_n(\alpha_n x_0 + (1 - \alpha_n) u_n)$$

and a > 0 imply that $w_w(u_n) \subseteq F$. Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

$$\begin{cases} y_n = \alpha_n x_0 + (1 - \alpha_n) x_n \\ z_0 = T_0(x_0) \\ z_n = \beta_n z_0 + (1 - \beta_n) T_n(y_n) \ (n \ge 1) \\ C_n = \{z \in C : \|z_n - z\|^2 \le \|y_n - z\|^2 - b_n \|y_n - z_n\|^2\} \\ Q_n = \{z \in C : \langle x_n - z, x_0 - x_n \rangle \ge 0\} \\ x_{n+1} = P_{C_n \cap Q_n}(x_0). \end{cases}$$

$$(2.16)$$

Proof. First we note that, for $x \in C$, $z \in F(T_n)$, $v_n = \alpha_n x_0 + (1 - \alpha_n)x$ and $w_n = \beta_n T_0(x_0) + (1 - \beta_n) T_n(v_n)$, by (2.15) we have $||w_n - z||^2 \le ||v_n - z||^2 - b_n ||v_n - w_n||^2$, if and only if

$$||w_n - v_n||^2 + 2\langle w_n - v_n, v_n - z \rangle + ||v_n - z||^2 \le ||v_n - z||^2 - b_n ||v_n - w_n||^2$$

if and only if $\langle v_n - z, v_n - w_n \rangle \ge \frac{1+b_n}{2} ||v_n - w_n||^2$. Then condition (2.1) satisfies for $a_n = \frac{1+b_n}{2}$. In a real Hilbert space H, we have

$$\|\lambda x + (1-\lambda)y\|^{2} = \lambda \|x\|^{2} + (1-\lambda)\|y\|^{2} - \lambda(1-\lambda)\|x-y\|^{2}$$

for all $x, y \in H$ and $\lambda \in [0, 1]$, so, we can consider $g_B(t) = t^2$ for each bounded subset B of H in Lemma 1.4 and hence (*) holds. Then all conditions of Theorem 2.2 hold which it implies that $\{x_n\}$ converges strongly to $P_F(x_0)$. \Box

Corollary 2.7. Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists x_0 \in C \ \exists \{b_n\} \subseteq (-1, +\infty) \ with \liminf_n b_n > -1 \ and \ \exists \{\alpha_n\} \subseteq [0, 1]$ such that

$$||T_n(v_n) - z||^2 \le ||v_n - z||^2 - b_n ||v_n - T_n(v_n)||^2$$
(2.17)

for all $x \in C$, $z \in F(T_n)$, where, $v_n = \alpha_n x_0 + (1 - \alpha_n)x$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} ||u_{n+1} - u_n||^2 < +\infty$ and

 $\sum_{n=0}^{+\infty} (a \|T_n(v_n) - u_n\| - \alpha_n \|x_0 - u_n\|)^2 < +\infty, \text{ where } v_n = \alpha_n x_0 + (1 - \alpha_n) u_n$ and a > 0 imply that $w_w(u_n) \subseteq F$.

Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

$$\begin{cases} y_n = \alpha_n x_0 + (1 - \alpha_n) x_n \\ z_n = T_n(y_n) \\ C_n = \{ z \in C : \|z_n - z\|^2 \le \|y_n - z\|^2 - b_n \|y_n - z_n\|^2 \} \\ Q_n = \{ z \in C : \langle x_n - z, x_0 - x_n \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n}(x_0). \end{cases}$$

$$(2.18)$$

Corollary 2.8. Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists x_0 \in C \ \exists \{b_n\} \subseteq (-1, +\infty) \ with \liminf_n b_n > -1 \ and \ \exists \{\beta_n\} \subseteq [0, 1]$ such that

$$||w_n - z||^2 \le ||x - z||^2 - b_n ||x - w_n||^2$$
(2.19)

for all $x \in C$, $z \in F(T_n)$, where $w_n = \beta_n T_0(x_0) + (1 - \beta_n)T_n(x)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} ||u_{n+1} - u_n||^2 < +\infty$ and $\sum_{n=0}^{+\infty} (a||w_n - u_n||)^2 < +\infty$, where $w_n = \beta_n T_0(x_0) + (1 - \beta_n) T_n(u_n)$ and a > 0

imply that $w_w(u_n) \subseteq F$. Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

$$\begin{cases}
z_0 = T_0(x_0) \\
z_n = \beta_n z_0 + (1 - \beta_n) T_n(x_n) \quad (n \ge 1) \\
C_n = \{z \in C : ||z_n - z||^2 \le ||x_n - z||^2 - b_n ||x_n - z_n||^2\} \\
Q_n = \{z \in C : \langle x_n - z, x_0 - x_n \rangle \ge 0\} \\
x_{n+1} = P_{C_n \cap Q_n}(x_0).
\end{cases}$$
(2.20)

By putting $\alpha_n = \beta_n = 0$, we get the following result of K. Nakajo, K. Shimoji and W. Takahashi.

Corollary 2.9. [6] Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists \{b_n\} \subseteq (-1, +\infty)$ with $\liminf_n b_n > -1$ such that

$$||T_n(x) - z||^2 \le ||x - z||^2 - b_n ||x - T_n(x)||^2$$
(2.21)

for all $x \in C$, $z \in F(T_n)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} ||u_{n+1} - u_n||^2 < +\infty$ and $+\infty$

$$\sum_{n=0}^{+\infty} \|u_n - T_n u_n\|^2 < +\infty \text{ imply that } w_w(u_n) \subseteq F.$$

Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$

$$\begin{cases} x_0 \in C \\ z_n = T_n(x_n) \\ C_n = \{z \in C : \|z_n - z\|^2 \le \|x_n - z\|^2 - b_n \|x_n - z_n\|^2 \} \\ Q_n = \{z \in C : \langle x_n - z, x_0 - x_n \rangle \ge 0 \} \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$
(2.22)

3. Applications to zero of maximal monotone operators

An operator $A: X \multimap X^*$ is said to be *monotone* if $\langle x^* - y^*, x - y \rangle \ge 0$ for every $(x, x^*), (y, y^*) \in Gph(A)$. A monotone operator $A: X \multimap X^*$ is called *maximal* if Gph(A) is not properly contained in the graph of any other monotone operator. It is known that a monotone operator $A: X \multimap X^*$ is maximal if and only if for $(y, y^*) \in X \times X^*$, we have $\langle x^* - y^*, x - y \rangle \ge 0$ for every $(x, x^*) \in X \times X^*$ implies $(y, y^*) \in Gph(A)$. We remark the following facts.

Fact 1: Let X be a uniformly convex Banach space whose norm is Gteaux differentiable and let $A : X \multimap X^*$ be a monotone operator. Then, A is maximal if and only if $R(J + rA) = X^*$ for all r > 0.

Fact 2: Let X be a uniformly convex Banach space whose norm is Gteaux differentiable and A be a maximal monotone operator of X into X^* , for any $x \in X$ and r > 0, there exists a unique element $x_r \in Dom(A)$ such that $0 \in J(x_r - x) + rA(x_r)$.

Using Fact 2, we can define $J_r : X \to X$ by $J_r(x) = x_r$ for every $x \in X$ and r > 0 and such J_r is called *the resolvent of* A, for more details see [10].

Theorem 3.1. Let X be a uniformly convex Banach space with a Gateaux differentiable norm and let T be a maximal monotone operator from X to X^* such that $T^{-1}(0) \neq \emptyset$. Suppose $\{x_n\}$ is a sequence generated by the following algorithm and $\liminf_n r_n > 0$. If $\lim_n \alpha_n = 0$, then $\{x_n\}$ converges strongly to $P_{T^{-1}(0)}(x_0)$ as $n \to \infty$.

$$\begin{cases} x_{0} \in X \\ y_{n} = \alpha_{n} x_{0} + (1 - \alpha_{n}) x_{n} \\ z_{n} = J_{r_{n}}(y_{n}) \\ C_{n} = \{z \in X : \langle y_{n} - z, J(x_{n} - z_{n}) \rangle \ge 0\} \\ Q_{n} = \{z \in X : \langle x_{n} - z, J(x_{0} - x_{n}) \rangle \ge 0\} \\ x_{n+1} = P_{C_{n} \cap Q_{n}}(x_{0}) \end{cases}$$
(3.1)

Proof. Let $T_n = J_{r_n}$ for all $n \in \mathbb{N}_0$. It follows from Fact 2 that T_n is a mapping from X into Dom(T) and $F(T_n) = T^{-1}(0) \neq \emptyset$ for all $n \in \mathbb{N}_0$. Fix $n \in \mathbb{N}_0$, $x \in C$ and $z \in F(T_n)$. Set $v_n = \alpha_n x_0 + (1 - \alpha_n)x$. By Fact 2 we have $\frac{1}{r_n}J(v_n - T_n(v_n)) \in T(T_n(v_n))$ and since T is monotone, one can deduce that $\langle T_n(v_n) - z, J(v_n - T_n(v_n)) \rangle \geq 0$. Therefore,

$$\begin{aligned} \langle v_n - z, J(v_n - T_n(v_n)) \rangle &= \langle v_n - T_n(v_n) + T_n(v_n) - z, J(v_n - T_n(v_n)) \rangle \\ &\geq \langle v_n - T_n(v_n), J(v_n - T_n(v_n)) \rangle \\ &= \|v_n - T_n(v_n)\|^2. \end{aligned}$$

Consequently, condition (2.9) satisfies with $a_n = 1$. Now, let for a bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} g(||u_{n+1} - u_n||) < +\infty$ and $\sum_{n=0}^{+\infty} g(a||v_n - T_n(v_n))|| - \alpha_n ||x_0 - u_n||) < +\infty$ for some $g \in G$ where $v_n = \alpha_n x_0 + (1 - \alpha_n) u_n$ and a > 0. Then $\lim_n ||u_{n+1} - u_n|| = \lim_n ||v_n - T_n(v_n))|| = 0$. Let $(y, y^*) \in Gph(T)$ and

$$\begin{split} u_n &\stackrel{w}{\to} u, \text{ so} \\ 0 &\leq \langle T_n(v_n) - y, \frac{1}{r_n} J(v_n - T_n(v_n)) - y^* \rangle \\ &= \langle T_n(v_n) - v_n, \frac{1}{r_n} J(v_n - T_n(v_n)) - y^* \rangle + \langle v_n - y, \frac{1}{r_n} J(v_n - T_n(v_n)) - y^* \rangle \\ &= -\frac{1}{r_n} \|T_n(v_n) - v_n\|^2 + \langle T_n(v_n) - v_n, -y^* \rangle + \langle v_n - y, \frac{1}{r_n} J(v_n - T_n(v_n)) \rangle \\ &+ \langle v_n - y, -y^* \rangle \\ &\leq \|T_n(v_n) - v_n\| \|y^*\| + \frac{1}{r_n} \|v_n - y\| \|v_n - T_n(v_n)\| + \langle v_n - y, -y^* \rangle. \end{split}$$

Then $\langle u - y, -y^* \rangle \geq 0$ and from maximality of T we get $0 \in T(u)$; i.e., $u \in T^{-1}(0) = F$ and hence $w_w(u_n) \subseteq F$. That $\{x_n\}$ converges strongly to $P_{T^{-1}}(0)$ follows from Corollary 2.3.

Corollary 3.2. [6] Let X be a uniformly convex Banach space with a Gateaux differentiable norm and let T be a maximal monotone operator from X to X^* such that $T^{-1}(0) \neq \emptyset$. Suppose $\{x_n\}$ is a sequence generated by the following algorithm and $\liminf_{x \to \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $P_{T^{-1}(0)}(x_0)$.

$$\begin{cases} x_{0} \in X \\ y_{n} = J_{r_{n}}(x_{n}) \\ C_{n} = \{z \in X : \langle y_{n} - z, J(x_{n} - y_{n}) \rangle \geq 0\} \\ Q_{n} = \{z \in X : \langle x_{n} - z, J(x_{0} - x_{n}) \rangle \geq 0\} \\ x_{n+1} = P_{C_{n} \cap Q_{n}}(x_{0}). \end{cases}$$
(3.2)

4. Acknowledgment

Masood Salehi is supported by the Islamic Azad University–Savadkouh Branch and Vahid Dadashi is supported by the Islamic Azad University–Sari Branch.

References

- S. Atsushiba and W. Takahashi, Strong convergence theorems for nonexpansive semigroups by a hybrid method, J. Nonlinear Convex Anal. 3 (2002), 231–242.
- [2] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for fejermonotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), 248–264.
- [3] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Pure and Applied Math. 83, Marcel Dekker, New York, 1984.
- [4] Y. Haugazeau, Sur les inquations variationnelles et la minimisation de fonctionnelles convexes, These, Universite de Paris, Paris, France, 1968.
- [5] H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Panamer. Math. J. 14 (2004), 49–61.

M. Alimohammady, V. Dadashi, M. Roohi and M. Salehi

- [6] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems by the hybrid method for families of mappings in Banach spaces, Nonlinear Anal. 71 (3-4)(2009), 812–818.
- K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math. 10 (2006), 339–360.
- [8] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372–379.
- [9] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. Ser. A 87 (2000), 189–202.
- [10] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [11] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.