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Abstract. In this paper, we construct some algorithms for finding common fixed point of a
family of mappings with some sufficient condition. In fact, let C' be a nonempty closed convex
subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and let
{T} be a family of self-mappings on C such that the set of all common fixed points of {7}, } is
nonempty. We construct a sequence {z,} generated by the hybrid method in mathematical
programming and also we give the conditions of {7}, } under which {z,} converges strongly
to a common fixed point of {7}, }. Finally, we apply our results to zero of maximal monotone
operators.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, let Ng = NU {0} and let X be a real Banach space
with dual space X*. For a set-valued mapping 7' : X — Y, the domain of
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T is Dom(T) = {z € X : T(xz) # 0}, range of T is R(T) = {y € Y : 3z €
X, (z,y) € T} and the inverse T—% of T is {(y,x) : (z,y) € T}. For a real
number ¢, let ¢I' = {(z,cy) : (z,y) € T}. If S and T are any set-valued
mappings, we define S+ T = {(z,y + 2) : (z,y) € S, (z,z) € T'}. Set

G={g:[0,400) — [0,400) | ¢(0) =0, g is continuous, strictly increasing

and convex}. (1.1)

Lemma 1.1. [3] Let C' be a nonempty closed convexr subset of a uniformly

conver Banach space X and let x € X. Then, there exists a unique element

zg € C such that |zo — x| = ing ly — z||. Putting xo = Pc(z), we call Po the
ye

metric projection onto C.

Lemma 1.2. [10] Let C be a nonempty closed convex subset of a uniformly
convexr Banach space X whose norm is Gateauz differentiable and let x € X.

Then y = Po(x) if and only if (y — z,J(x —y)) >0 for all z € C.
Lemma 1.3. [10] Suppose X has a Gateauz differentiable norm. Then the

duality mapping J is single-valued and ||z|? — |Jy|* > 2(z — y, Jy) for all
x,y € X.

Lemma 1.4. [11] The Banach space X is uniformly convex if and only if for
every bounded subset B of X, there exists gg € G such that

Az + (1= Nyl? < Mlz|* + @ = Nllyl® = A1 = Ngp(llz —yl)  (1.2)
for all z,y € B and all X € [0,1].

Let {T,,}.129 be a family of mappings of a real Hilbert space H into itself
and let F(T, ) be the set of all fixed points of T,,. By the assumption that

ﬂ F(T,) # 0, Haugazeau [4] introduced a sequence {x,} generated by the
hybrld method, as following

Ty €H

Yn = Tn($n)
Cn={2€H:(xn —Yn,yn — 2) > 0}
Qn={z€H:{(xy— 2,20 — z,) >0}
Tni1 = Po,nq, (2o)-

In case that C; is a closed convex subset of H for i = 1,...,m, ﬂ Ci # 10

and T, = PCn(mo d ma1)? he proved a strong convergence theorem. Recently7
Solodov and Svaiter [9], Bauschke and Combettes [2], Atsushiba and Takahashi
[1], Nakajo and Takahashi [8], Iiduka, Takahashi and Toyoda [5], Nakajo,

Shimoji and Takahashi [7], studied the hybrid method in a Hilbert spaces and
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also Nakajo, Shimoji and Takahashi [6] considered this method for families of
mappings in Banach spaces.

Motivated and inspired by the mentioned results, in this paper we construct
some algorithms for finding common fixed point of a family of mappings with
generalized Takahashi’s condition. Then we apply our results to zero of max-
imal monotone operators.

2. CONVERGENCE THEOREMS
Let {x,} be a sequence, w,,(z,) will denote the set of all weak cluster points
of {z,}. Let {T},} be a family of self-mappings of C' with F' := ﬂ F(T,) #

which satisfies the following condition, in the sequel we call 1t genemlzzed
Takahashi’s condition, denoted by (GTC).

dzg € C FH{an} C (0,+00) with liminfa, > 0 Ha,} C [0,1], I{B} C [0,1]
such that

(Up — 2z, J(vp, — wy,)) > an||vn—fwn||2 (2.1)

for all x € C, z € F(T,,), where v, = apzo + (1 — an)x and w, = 5,To(xo) +
(1 — Bn)Tn(vn).

Algorithm 2.1. Let {T,,} be a famz'ly of self-mappings of C with F # ()
which satisfies (GTC). Let {x,}>] be a sequence generated by the following
algorithm.

Yn = Qo + (1 — o)y

20 = To(o)

Zn = ﬁnZO + (1 - ﬁn) ( n) ( 1) (2 2)
Cn:{ZEC:< — %, J(yn_zn)>2an||yn_zn”2} '
Qn={2€C:(z, z,J(wo—wn»Z

Tnt1 = Po,no, (330)-

Theorem 2.2. Suppose C is a nonempty closed convex subset of a uniformly
conver Banach space X whose norm is Gateaux differentiable and {1} is a

family of self-mappings of C' with F # () which satisfies (GTC). Assume that
+oo
(x) for every bounded sequence {u,} in C, > g(||upnt1 — un||) < +o00 and

n=0
+o0
> glallvn — wa|| = awl|zo — unl|) < 400 for some g € G and a > 0, where
n=0
Up = apzo + (1 — ap)u, and w, = ByTo(xo) + (1 — Bn)Th(vyn), imply that
Wy (upn) C F.

Then the sequence {x,} generated by Algorithm 2.1 converges strongly to
Prp(xg).



32 M. Alimohammady, V. Dadashi, M. Roohi and M. Salehi

Proof. We split the proof into six steps.
Step 1. {xz,} is well defined.

Notice that C;, and @, are closed and convex sets for all n € NU{0}. On
the other hand, condition (2.1) and the definition of C), in Algorithm 2.1 imply
that F(T,,) C C, for all n € NU{0}. Hence F' C C), for all n € NU{0}. Since
J(0) = 0, it follows from the definition of @, in Algorithm 2.1 that Qo = C
which implies that ' C Cy N Qg. Lemma 1.1 guarantees that there exists a
unique element z1 = Pcyng,(z0). By Lemma 1.2,

(x1 —z,J(xg — 1)) > 0
for all z € Cy N Qg and hence by FF C Cy N Qo we get
(x1 — 2z, J(xg — 1)) > 0

for all z € F. Therefore, F' C ()1 and so apply the fact that F' C C,, for all
n € NU{0} we have F' C C; N Q. Again, Lemma 1.1 guarantees that there
exists a unique element zo = Po,ng, (20). Inductively, we find that {z,} is
well defined.

Step 2. {z,} is a bounded sequence.

From z,,+1 = Pc,ng, (zo) and F' C C,, N Q,, for all n € Ny we have
[zn+1 — 2ol < [lzo — Pr (o)l (2.3)

for all n € Ny, which implies that {z,} is a bounded sequence.
Step 3. lim ||z, — xo|| ezists.
n

Replace terms x,,+1 — xg and z,, — x, respectively with x and y in Lemma
1.3, then we get

|zn — $0||2 < w1 — xOHQ = 2(Tpt1 — T, S (T0 — 20))

and hence 2,1 € Q, implies that ||z, —zo|? < ||Zny1—20||? for all n € Ny; i.e.,
|z — 0| is an increasing sequence and so by Step 2 we find that lim ||x,, — z,||
n

exists. .
o0
Step 4. > g(||znt1 — xnl|]) < 00 for some g € G.
n=0
It follows from Lemma 1.4 that there exists g € G such that

Ty + Tyt 1 1 1
1 E2EE )2 < e — 2ol + S llenst — 2ol = g9(knst — zall) (2.4)
and hence
Tp + X
g(lznsr = 2all) < 2lan — 2ol + 2znsr — zoll? — 4 I — )2 (25)

for all n € Ng. On the other hand, it follows from Lemma 1.2 and the definition
of @y that x, = Pg,z0 and so by z,41 € @, and convexity of ), we get
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’I’L+ n 3
% € Q. Again, by =, = Py, zo,
2
It follows from inequalities (2.5) and (2.6) that

—xo|* 2 [|lzn — ol|*. (2.6)

9| Zns1 — znl]) < 2)|zng1 — zo||* = 2|20 — z0]|? for all n € N. (2.7)
+oo
That > g(||zn+1 — xn|]) < +o0 follows from (2.7), Step 1 and Step 3.
=0
n +OO
Step 5. > g(allyn — znll — anl|zn — z0||) < +00 for some g € G and a > 0.
n=0
Since a, > 0 for all n € Ny and lim inf a,, > 0, there exists a > 0 for which
n
an > a for all n > k € Ng. Now, x,41 € C, guarantees that
Hyn - anrlHHyn - an > <yn — Tn+1, J(yn - Zn)> > anHyn - Zn||2

and thus

allyn = 2nll < llyn — o]l < nllan — zoll + [[€ns1 — zall

and hence

allyn = znll = anllzn — zoll < [[#nt1 — 2l (2.8)

+oo
for all n € Nyg. That Y. g(allyn — x| — anllzn — x0l]) < +o0 follows from
n=
(2.8), (1.1) and Step 4.
Step 6. {i,} — P (o)
It follows from (x), Step 4 and Step 5 that wy(z,) C F. Let the sub-

sequence {zp,} of {z,} converges weakly to w € F. Therefore, weak lower
semicontinuity of the norm and (2.3) imply that

1PF (o) = @oll < Jlw = ol < 1im |z, — o]l < [|Pp(w0) — 2ol

and hence z,, — w = Pp(x0). O

Corollary 2.3. Suppose C is a nonempty closed convex subset of a uniformly
convex Banach space X and {T,} is a family of self-mappings of C with F # ()
which satisfies the following conditions.

(a) Jzp € C FH{an} C (0, +00) with limninf an >0 Han} C[0,1] such that

(vn — 2, J(vn — Ty (vn))) 2> an|lvn — Tn(vn))HQ (2.9)

forallx € C, z € F(T,,), where, v, = anxo + (1 — ap)z;
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+oo
(b) for every bounded sequence {un} in C, Y g(|[unt1 — unl|) < +o0 and

n=0
+o0
> glallvy, = To(vp)) || — anllzo — unl|) < 400 for some g € G, vy, = anzo +
n=0

(1 — an)u, and a > 0 imply that wy,(uy) C F.
Then {x,} generated by the following algorithm converges strongly to Pr(xg).

Yn = Qpxo + (1 - O‘n)xn

Zn = Tn(yn)

Cpn=12€C :(yn— 2,J(Yn — 2n)) = anllyn — ZnHQ} (2.10)
Qn={z€C:(xy,— 2z J(xog—x,)) >0}

Tnt1 = PCann (l‘o)-

Corollary 2.4. Suppose C is a nonempty closed convexr subset of a uniformly
convex: Banach space X and {T,} is a family of self-mappings of C with F # ()
which satisfies the following conditions.

(a) Jzp € C FH{a,} C (0, +00) with liminfa, >0 3{8,} C [0,1] such that
(x =z, J(x —wn)) > apllz — wy|? (2.11)

forallz € C, z € F(T,), and w, = B,To(x0) + (1 — Bn)Tn(z);

+oo
(b) for every bounded sequence {un} in C, Y g(|[unt1 — unl|) < 400 and

n=0
—+oco
> glal|un, — wyl|) < 400 for some g € G, w,, = BpTo(x0) + (1 — Bn)Tn(un),
n=0

and a > 0 imply that wy,(u,) C F.
Then {xy} generated by the following algorithm converges strongly to Pr(xo).

20 = To(wo)
zn = Pnzo + (1 = Bn)Tn(zn) (n > 1)
Cho={2€C:(xy—2,J(xn—21)) > an||Tn — 2a|*} (2.12)

Qn=12€C:(xy—2zJ(xo—x,)) >0}
Tn+1 = Po,nq, (7o)

Corollary 2.5. [6] Suppose C is a nonempty closed convezr subset of a uni-
formly convex Banach space X and {T,} is a family of self-mappings of C
with F # () which satisfies the following conditions.

(a) I{an} C (0, +00) with lirr;linf an > 0 such that

(x —z,J(x — Ty(x))) > anHJ:an(x)||2 (2.13)

forallz € C and z € F(T,,);
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+oo
(b) for every bounded sequence {un} in C, Y g(|[unt1 — unl|) < +o0 and

n=0
+o0
> glal|un — Th(up)||) < +o00 for some g € G and a > 0 imply that wy,(uy) C
n=0

F.
Then {x,} generated by the following algorithm converges strongly to Pr(xg).

zo € C

Chn=1{2€C:{xy—2,J(Tn—Yn)) > anllTn — yall*} (2.14)
Qn={z€C:(xy,— 2 J(xyg—xy)) >0}

Tnt1 = Po,ng, (%0)-

Corollary 2.6. Suppose C is a nonempty closed convex subset of a real Hilbert
space H and {T,} is a family of self-mappings of C with F # () which satisfies
the following conditions.

(a) dxo € C FHby} C (—1,400) with liminf b, > —1 and IH{a,} C [0,1],
I{Bn} C [0,1] such that

”wn_ZHZ < HUn_ZHZ_anUn_wnuz (2.15)

forallz € C, z € F(T,,), where, v, = anxo+ (1 —ap)x and w, = B,To(xo) +
(1 - ﬁn)Tn(vn)a

+oo
(b) for every bounded sequence {u,} in C, Y. ||uns1 — unl|* < +oco and
n=0
+o0

> (al|wn — un || — anllzo — ’unH)2 < 400, where
n=0

wy = BuTo(x0) + (1 — Bn)Th(anzo + (1 — o )uy)

and a > 0 imply that wy,(u,) C F.
Then {xy} generated by the following algorithm converges strongly to Pr(zo).

Yn = Qnxo + (1 - an)xn

29 = To(xo)

Zn = 5nZO + (1 - ﬁn)Tn(yn) (n > 1)
Cn={2€C:|zn— ZH2 < |lyn — Z||2 — bnl|yn — ZnH2}
Qn=1{2€C:{(xy—2z20—1y) >0}

L Tn+l = P(Jann(xo)-

(2.16)

Proof. First we note that, for x € C, z € F(T},), v, = anzo + (1 — a,)x and
wn = BuTo(wo) + (1 = Bp)Tu(vn), by (2.15) we have [[wy, — 2[|* < [lon — 2 —
bullvn — wy|?, if and only if

Hwn - UnHZ + 2(wn, — Vp, vp — Z> + H'Un - Z||2 < H'Un - Z||2 — bp|lvn — wn||2
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if and only if (v, — 2, v, —wy) > 22 ||lv, —w,||%. Then condition (2.1) satisfies

14+bn
2

for a,, = . In a real Hilbert space H, we have

IAa + (1= Nyl* = Mz ]* + 1 = Nllyl* = A1 = Nz — y|?

for all z,y € H and \ € [0, 1], so, we can consider gg(t) = t? for each bounded
subset B of H in Lemma 1.4 and hence (%) holds. Then all conditions of
Theorem 2.2 hold which it implies that {x, } converges strongly to Pr(xg). O

Corollary 2.7. Suppose C is a nonempty closed convex subset of a real Hilbert
space H and {T,} is a family of self-mappings of C with F # () which satisfies
the following conditions.

(a) Jzo € C IH{bn} C (—1,+00) with liminfb, > —1 and F{a,} C [0,1]
such that

1T (vn) = 2117 < llvn = 201> = ballon = T(vn) |12 (2.17)
forallx € C, z € F(T,,), where, v, = anxo + (1 — ap)x;

+o00
(b) for every bounded sequence {u,} in C, Y |[uns1 — unl|* < +oo and

n=0

+oo
S (al|To(vn) — unl| — anllzo — unl))? < 400, where vy, = anzo + (1 — an)uy
n=0

and a > 0 imply that wy,(u,) C F.
Then {xy,} generated by the following algorithm converges strongly to Pr(xo).

Yn = anxo + (1 — ap)zy,
zn = Tn(Yn)
Crn={z€C:llzn—2|* < llyn — 2II° = bullyn — zal*} (2.18)
Qn={z€C:(xy—2,20—xp) >0}
Tnt1 = Po,nq, (2o)-
Corollary 2.8. Suppose C is a nonempty closed convex subset of a real Hilbert
space H and {T,} is a family of self-mappings of C' with F # () which satisfies
the following conditions.
(a) dxg € C Hbp} C (—1,400) with liminfb, > —1 and F{F,} C [0,1]
such that "

lwon = 2] < [l — 2[|* = bal|lz — wal|? (2.19)
forallx € C, z € F(T,,), where w, = ByTo(xo) + (1 — Bn)Th(z);

+o00o
(b) for every bounded sequence {u,} in C, Y. ||uns1 — unl|*> < +oo and
n=0
+o0
3 (a||lwn — unl))? < 400, where wy, = BrTo(xo) + (1 — Ba)Tn(uyn) and a > 0

n=0
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imply that wy,(uy,) C F.
Then {x,} generated by the following algorithm converges strongly to Pr(xo).

z0 = To(zo)
Zn = Bnzo + (1 = Bp)Tn(zn) (n > 1)
Cp={2€C:|lzn — 2| < [lzn — 2| = bullzn — 2a|1?} (2.20)

Qn={2€C:(xy—2z,x0— ) >0}
Tni1 = Po,nq, (To).

By putting o, = 8, = 0, we get the following result of K. Nakajo, K.
Shimoji and W. Takahashi.

Corollary 2.9. [6] Suppose C is a nonempty closed convex subset of a real
Hilbert space H and {T,,} is a family of self-mappings of C with F # () which
satisfies the following conditions.
(a) I{bn} C (—1,400) with limninf bn, > —1 such that
1T (@) = 2II* < ||z — 2[|* = ballz — T ()2 (2.21)
forallz e C, z€ F(T,);

+o00
(b) for every bounded sequence {u,} in C, Y ||[unt1 — unl|* < +oo and

n=0
+o00
S un — Thun || < +oo imply that wy,(u,) C F.
n=0

Then {xy,} generated by the following algorithm converges strongly to Pr(xo).

xg € C
Zpn = Tn(xn)
Cn={2€C: |z, — 2|12 < |lzn — 2| = bu||Tn — 2a]|?} (2.22)

Qn={2€C:(xy—2z,x0— ) >0}
Tnt1 = Pco,ng, (%0)

3. APPLICATIONS TO ZERO OF MAXIMAL MONOTONE OPERATORS

An operator A : X — X* is said to be monotone if (z* —y*;x —y) > 0
for every (x,z*),(y,y*) € Gph(A). A monotone operator A : X — X* is
called mazimal if Gph(A) is not properly contained in the graph of any other
monotone operator. It is known that a monotone operator A : X — X* is
maximal if and only if for (y,y*) € X x X*, we have (z* —y*,x —y) > 0 for
every (z,z*) € X x X* implies (y,y*) € Gph(A). We remark the following
facts.

Fact 1: Let X be a uniformly convex Banach space whose norm is Gteaux
differentiable and let A : X — X™* be a monotone operator. Then, A is
maximal if and only if R(J +7rA) = X* for all r > 0.
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Fact 2: Let X be a uniformly convex Banach space whose norm is Gteaux
differentiable and A be a maximal monotone operator of X into X*, for any
x € X and r > 0, there exists a unique element z, € Dom(A) such that
0€ J(x, —x) +1rA(x)).

Using Fact 2, we can define J,. : X — X by J,.(z) = z, for every x € X and
r > 0 and such J, is called the resolvent of A, for more details see [10].

Theorem 3.1. Let X be a uniformly conver Banach space with o Gateaux
differentiable norm and let T be a mazximal monotone operator from X to X*
such that T=(0) # 0. Suppose {x,} is a sequence generated by the following
algorithm and lin%inf rn > 0. If li7rln an = 0, then {x,} converges strongly to

Pr-1(gy(w0) as n — oo.

o€ X
Yn = QpTo + (]- - an)xn
zn = Jr, (Yn) (3.1)

Cn=1{2€X:{yp— 2z, J(xp — 2z,)) > 0}
Qn=1{2z€ X :(xy,—2zJ(xog—2p)) >0}
Tnt+1 = Po,nq, (%0)

Proof. Let T,, = J,, for all n € Ny. It follows from Fact 2 that T;, is a mapping
from X into Dom(T) and F(T,,) = T=1(0) # ) for all n € Ng. Fix n € Ny,
x € C and z € F(T,). Set v, = apzo + (1 — ap)z. By Fact 2 we have
%J(vn —Tn(vp)) € T(Th(vy)) and since T is monotone, one can deduce that
(Tn(vn) — 2, J(vn — Tn(vp))) > 0. Therefore,

(Un — 2, J(vn — Ty(vn))) = (v — T(vn) + Ta(vn) — 2, J (v — Tn(vn)))
(Un, = Tn(vn), J (v — T(vn)))
= v _Tn(vn)||2~

Y

Consequently, condition (2.9) satisfies with a,, = 1. NOW let for a bounded

sequence {up} in C, Z 9(l[tnt1 = unll) < +oo and Z glallvn = Tn(va))ll -

n=0

ap||lro — upl|) < +o0 for some g € G where v, = apxo+ (1 — ay)u, and a > 0.

Then lim ||uy+1 — uy|| = lim ||v, — T (vy))|| = 0. Let (y,y*) € Gph(T) and
n n
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w
Up, — U, SO

0 < (Tulon) = 4 oI (on = Tulen)) — ")

n

= (Ta(vn) — g, iJ(Un = Ta(vn)) = y*) + (vn =y, —J (v — Tn(vn)) — y*)

Tn n

— T =l (Talen) = s =7} + (00— 95T 0 Ta(wn)

n

+<Un - Y, _y*>
1 *
< 1 Tn(on) = valllly™ | + —=llvn = yllllvn = Tn(va)ll + (v =y, —y7).
n

Then (v — y,—y*) > 0 and from maximality of 7" we get 0 € T'(u); i.e.,
u € T71(0) = F and hence wy,(u,) € F. That {z,} converges strongly to
Pr-1(0) follows from Corollary 2.3. O

Corollary 3.2. [6] Let X be a uniformly convex Banach space with a Gateaux
differentiable norm and let T' be a mazimal monotone operator from X to X*
such that T=(0) # 0. Suppose {z,} is a sequence generated by the following
algorithm and lin%inf mn > 0. Then {z,} converges strongly to Pp-1(g) (o).

o € X
Yn = Jrn(xn)
Cn=1{2€X:{yp— 2z, J(xn —yn)) > 0} (3.2)

Qn=12€X:(zp—2J(xog—2p)) >0}
Tp+1 = PCann (330)-
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