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A DISCRETE FORM OF THE BECKMAN-QUARLES
THEOREM FOR TWO-DIMENSIONAL
STRICTLY CONVEX NORMED SPACES

APOLONIUSZ TYSZKA

ABSTRACT. Let p > 0 be a fixed real number. Let X be a real normed vector
space, dim X > 2. We prove that if z,y € X and ||z — y||/p is a rational
number then there exists a finite set {z,y} C Szy € X with the following
property: for each strictly convex Y of dimension 2 each map f : Szy — Y
preserving the distance p satisfies [|f(z) — f(¥)|| = ll= — yl|. It implies that
each map from X to ¥ that preserves the distance p is an affine isometry.

Let Q denote the field of rational numbers. All vector spaces mentioned in
this article are assumed to be real. A normed vector space E is called strictly
conves ([6]), if for each pair a, b of nonzero elements in F such that ||a+ b]| =
llal| + |||, it follows that a = b for some v > 0. It is known ([17]) that two-
dimensional strictly convex normed spaces satisfy the following condition (*):

(*) for any a # b on line L and any ¢, d on the same side of L, if |la — c|| =
lla — d|| and ||b — ¢|| = ||b — d]|, then ¢ = d.
Conversely ([17]), for any two-dimensional normed space the condition (%)
implies that the space is strictly convex. ‘

The classical Beckman-Quarles theorem states that any map from R” to
R™ (2 £ n < o0) preserving unit distance is an isometry, see [2], [3] and [7].
Various unanswered questions and counterexamples concerning the Beckman-
Quarles theorem and isometries are discussed by Ciesielski and Rassias [5].
For more open problems and new results on isometric mappings the reader
is referred to [8]-[14]. The Theorem below may be viewed as a discrete form
of the Beckman-Quarles theorem for two-dimensional strictly convex normed
spaces.
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Theorem. Let p > 0 be a fized real number. Let X be a normed vector space,
dim X > 2.

1. If 2,y € X and ||z — yl||/p is a rational number then there exists a finite
set {z,y} € Szy C X with the following property: for each strictly convex
Y of dimension 2 eabh map f : Sgy — Y preserving the distance p satisfies
1f(z) = fW)l = llz—yll. '

2. If 2,y € X and e > 0 then there exists a finite set {z,y} C Tgy(e) € X
with the following property: for each strictly convex Y of dimension 2 each
map [ : Tyy(e) = Y preserving the distance p satisfies

117~ F)l — lle — vl <

Proof. The proof is divided into three parts.

Part 1. We prove items 1 and 2 for injective maps. Let D denote the set of

all non-negative numbers d with the following property (¢):

(¢) if z,y € X and ||z — y|| = d then there exists a finite set {z,y} C

Szy € X such that each injective f : Sz, — Y preserving the distance
p satisfies || f(z) — f(W)ll = llz — yll.

Obviously 0, p € D. We first prove that if d € D, then 2-d € D. Assume that

deD,d>0,z,y¢€X, ||z—uy| =2-d Using the notation of Figure 1

n d T

Figure 1
e —yll=2-d
_T+y
| z=—
lz = zll = llz — y1ll = Iz = u[| = d

Ty =y + (2 — 1)
we show that

Say = Sz U Sz U Syra, U Sapy U Sazy U Seyy U Sy
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satisfies the condition (¢). Let an injective f : Sy — Y preserves the dis-
tance p. By the injectivity of f: f(z) # f(z1) and f(y) # f(y1). According
to (x): f(y1) = f(z1) = f(z) = f(2) and f(y1) — f(z1) = f(2) — f(y). Hence
f(@) = f(2) = f(2) = f(y). Therefore ||f(z) — f(W)ll = [2(f(z) = fF())] =
2-f@) - fl=2-|lz~ 2| =2-d = [lz - yl|.

From Figure 2, the previous step and the property that defines strictly
convex normed spaces it is clear that if d € D, then all distances k- d (k a
positive integer) belong to D.

@ d S d @ d & ® ® 9 -o--—-—-—d--—-—-—o
T = Wy wy Wy W3 W1 Wy = Y.
Figure 2
lz—yll=Fk-d

Sey = J{Sab 1 0,6 € {wo, w1, ..., wi}, lla = Bl = d V |la — b| = 2 d}

From Figure 3, the previous step and the property that defines strictly
convex normed spaces it is clear that if d € D, then all distances d/k (k a
positive integer) belong to D. Hence D/p := {d/p : d € D} O Qn[0,0c0).
This completes the proof of item 1 for injective maps.

z Figure 3
le =yl = d/k
Z=z+ (k- 1)z - =2)
g=y+k-1y-2)

i-f=z-y+(k-1)z-2)-(y-2)=kz-y)

g =
Swy - Ssi:t? U S:Ea; ) Sa:z U S:i:z U Sgy U Syz U S:,;z

From Figure 4 follows item 2 for injective maps.
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z Y

Figure 4
|z —zl/p, |2 = yl/p € QN [0,00), |z—y| <e/2

Note. From Figure 1 follows that instead of injectivity in Part 1 we may
assume that ‘

Vu,v € dom(f)(llu —v|[/p € QN (0,00) = [|f () = f(v)|| # llu - v]|/2).

Part 2. Let X = R” (2 < n < o0) be equipped with euclidean norm. We
prove that the assumption of injectivity is unnecessary to prove items 1 and 2.
In proofs of items 1 and 2 we used injectivity only in the first step for distances
2-d,d € D. Let D is defined without the assumption of injectivity. Let d € D,
d > 0. We need to prove that 2-d € D. Let us see at configuration from
Figure 5, all segments have the length d.

Y1 T

Figure 5
lz—yll=2-4d
Tty
= —

Szy = U{Sab : a’7b € {xwfi‘a$1’f1ay7g7y1ag17zvzxazy}a ”a' - b” = d}
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Assume that f: Sy, — Y preserves the distance p. It is sufficient to prove
that f(z) # f(z1) and similarly f(y) # f(y1). Suppose, on the contrary, that
f(z) = f(z1), the proof of f(y) # f(y1) is similar. Hence four points: (&),
F(zy), F(#1), f(z1) have the distance d from each other. We prove that it
is impossible in two-dimensional strictly convex normed spaces. Suppose, on
the contrary, that a1, ag,a3,04 € Y and |la1 — az|| = ||a1 — a3]| = ||a1 — a4]] =
llag — as|| = |laz — aa|| = |laz —a4|| = d > 0. Let us consider the segment azas.
According to (%) a; and a4 lie on the opposite sides of the line L{as, as) and
as — a1 = a4 — a3. Let us consider the segment aja3. According to (*) az and
a4 lie on the opposite sides of the line L(a1,a3) and a1 — az = a4 — a3. Hence

a4 — a3 = 0, a contradiction. This completes the proof.
Part 3. We prove that for each normed space X the assumption of 1n3ect1v1ty
is unnecessary to prove items 1 and 2. Analogously as in Part 2 it suffices to
prove that for each z,y € X, z # y there exist points forming the configuration
from Figure 5 where all segments have the length ||z — y||/2. Let us consider
z,y € X, z #y. We choose two-dimensional subspace X C X containing x
and y.

First case: the norm induced on X is strictly convex. Obviously X is
isomorphic to R? as a linear space. Let us consider R? with a strictly convex

norm || ||. It suffices to prove that for each a,b € R? satisfying ||a|| = ||b]| =
la — bl| = d > 0 there exist d,b € R? satisfying ||a|| = ||b|| = ||a — b|| =
1(@+8) — (a+b)|| = d. We fix a = (az,a,) and b = (by,b,). Let S := {z €

2 : |lz|| = d}. According to (x) for each u = (ug,u,) € S there exists a

unique h{u) = (h(u)z, h(u)y) € S such that |ju — h(u)|| = d and

. o iz ] >0

Obviously h(a) = b. The mapping h : § — S is continuous. For each u € S
h(—u) = —h(u) and [Ju+h(uw)|| = [|2u— (u~h(u)]| 2 III2u]] - [lu—A(W)|]| = d
The following function

S35z -% ||z + h(z) - a— ha)] € [0,00)

is continuous. We have:
g(a’) =0,
g(=a)=|l—a+h(-a)—a-h(a)]| =2 |la+h(a)]| 2 2-d
Since g is continuous there exists & € S such that g(@) = d. From this & and
b := h(a) satisfy ||a|| = ||b]] = ||a—0b]] = [[(@+b) — (a+b)|| = d. This completes
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the proof of the Theorem in the case where the norm induced on X is strictly

convex.

Second case: we assume only that || || is a norm on X. The graph I' from
Figure 5 (11 vertices, 19 edges) has the following matrix representation:

Vo |Vt | Uz | VU3 | Vs |Us | Vs | VU7 | Vg | Vg | V10
vpi= o(ofltj1]|olofo|L1L|o|O]|O
vy =y ojol1{0o|1|0of1|0|0|0}]0O

wi=z=%¢|1]1]0]0]|1|0]0|1]0|0]0
v3 1= t{ofojojojlo|ojo|l1]0]|1
Vg =3 oj1j1jo0fo0joj0o|1]1]0]1
vy 1= ) o{ojlojolojofrf{1]0|1]O
vg 1= of1jo0|ofol1]0f0j0]1]0O
V7= 1j{of1jof1|1|0]0|0O|1]0O
vg 1= 1 0{o0jo0|1|1]0j0l0j0]0]1
Vg 1= 2, ololofolo|1]1|1]olo] o
vip = 2y 0fojo|1f1{0]0f{0]1]0]0

Let ug 1= v =T, Uy :=V{ =Y, Ug := Vg = Z =

function %:

%r—?i. We define the following

X85 (usy ey t10) 2 (fJus — us]) 1 0 < i < § < 10, (v5,9;) € T) € R,
The image of ¢ is a closed subset of R1?. For each ¢ > 0 and each bounded B C
X the norm || || may be approximate on B with e-accuracy by a strictly convex
norm on X, for example by a norm || || + ¢ |leuclidean for sufficiently small
positive t. Therefore according to the first case for each z,y € X, x # y and
each ¢ > 0 there exist points forming the configuration from Figure 5 where

all segments have || ||-lengths belonging to the interval (“m;y” —€, ””’;y” +¢€).

Therefore:

£“$ = yll/2, ..., |z — yll/2) € ¥(X8) (the closure of P(X?)).

Since 1(X?8) is closed we conclude that

This completes the proof of the Theorem.

(lz = yll/2, - lie = yll/2) € H(X®).

From item 2 of the Theorem we obtain the following Corollary.
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Corollary. Let p > 0 be a fized real number. Let X and Y be normed vector
spaces satisfying: dim X > 2, dim Y = 2, Y is strictly convex. Let f : X =Y
preserves the distance p. Then f is an isometry, by Remark 1 below f is an
affine isometry.

Remark 1. J. A. Baker ([1]) proved that an isometry from one normed vector
space into a strictly conver normed vector space is affine.

Remark 2. W. Benz and H. Berens ([4], see also [3] and [11]) proved the
following theorem: Let X andY be normed vector spaces such that'Y is strictly
convez and such that the dimension of X is at least 2. Let p > 0 be a fized
real number and let N > 1 be a fized integer. Suppose that f: X —Y isa
mapping satisfying: ‘

lla—bll=p=1f(a) - F® <p
la—bll = Np = |If(a) - F(O)I = Np

for all a,b € X. Then f is an affine isometry.

Remark 3. A. Tyszka ([15],[16]) proved the following theorem: if x,y € R"
(2 < n < o0) and |x — y| is an algebraic number then there exists a finite set
{z,y} C Szy € R such that each unit distance preserving mapping f : Szy —>
R satisfies |f(z) — f(y)] = [z - yl.
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