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Abstract. Let K be a nonempty closed convex nonexpansive retract of a uniformly convex

Banach space E with P as a nonexpansive retraction. Let T : K → E be a nonself asymp-

totically nonexpansive in the intermediate sense mapping with F (T ) 6= φ. Let {αi
n}, {βi

n}
and {γi

n} are sequences in [0, 1] with αi
n + βi

n + γi
n = 1 for all i = 1, 2, 3. From arbitrary

x1 ∈ K, define the sequence {xn} iteratively by (1.8), where {ui
n} for all i = 1, 2, 3 are

bounded sequences in K with
∑∞

n=1 u
i
n < ∞. (i) If the dual E∗ of E has the Kadec-Klee

property, then {xn} converges weakly to a fixed point of T ; (ii) if T satisfies condition (A),

then {xn}, {yn} and {zn} converges strongly to a fixed point of T . The results presented in

this paper extend and improve the results in [1, 4, 6, 11, 12, 17, 18, 22, 32] and many others

1. Introduction and Preliminaries

Let K be a nonempty closed convex subset of a Banach space E. A self
mapping T : K → K is called asymptotically nonexpansive if there exists a
sequence {kn} ⊂ [1,∞); kn → 1 as n → ∞ such that for all x, y ∈ K, the
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following inequality holds:

||Tnx− Tny|| ≤ kn||x− y||,∀n ≥ 1. (1.1)

T is called uniformly L-Lipschitzian if there exists a constant L > 0 such
that for all x, y ∈ K,

||Tnx− Tny|| ≤ L||x− y||, ∀n ≥ 1. (1.2)

T is called asymptotically nonexpansive type [29] if the following inequality
holds:

lim sup
n→∞

sup
y∈K

(||Tnx− Tny|| − ||x− y||) ≤ 0. (1.3)

for every x ∈ K, and that TN is continuous for some N ≥ 1.
T is called asymptotically nonexpansive in the intermediate sense [21] if T

is uniformly continuous and

lim sup
n→∞

sup
x,y∈K

(||Tnx− Tny|| − ||x− y||) ≤ 0. (1.4)

The class of asymptotically nonexpansive maps was introduced by Goebel
and Kirk [13] as an important generalization of the class of nonexpansive
maps (i.e., mappings T : K → K such that ||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ K)
who proved that if K is a nonempty closed convex subset of a real uniformly
convex Banach space and T is an asymptotically nonexpansive self-mapping
of K, then T has a fixed point.

Iterative techniques for approximating fixed points of nonexpansive map-
pings and asymptotically nonexpansive mappings have been studied by various
authors (see e.g., [27], [2, 3], [5], [25], [18], [7], [26], [1], [11, 12], [8], [14, 15, 16,
17]) using the Mann iteration method (see e.g., [31]) or the Ishikawa iteration
method (see e.g., [24]).

In 1978, Bose [23] proved that if K is a bounded closed convex nonempty
subset of a uniformly convex Banach space E satisfying Opial’s [33] condi-
tion and T : K → K is an asymptotically nonexpansive mapping, then the
sequence {Tnx} converges weakly to a fixed point of T provided T is asymp-
totically regular at x ∈ K, i.e., limn→∞ ||Tnx − Tn+1x|| = 0. Passty [7] and
also Xu [9] proved that the requirement that E satisfies Opial’s condition can
be replaced by the condition that E has a Fréchet differentiable norm. Fur-
thermore, Tan and Xu [14, 15] later proved that the asymptotic regularity
of T can be weakened to the weakly asymptotic regularity of T at x, i.e.,
ω − limn→∞(Tnx− Tn+1x) = 0.

In [11, 12], Schu introduced a modified Mann process to approximate fixed
points of asymptotically nonexpansive self-maps defined on nonempty closed
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convex and bounded subsets of a Hilbert space H. In 1994, Rhoades [1]
extended the Schu’s result to uniformly convex Banach space using a modified
Ishikawa iteration method. In all the above results, the operator T remains
a self-mapping of a nonempty closed convex subset K of a uniformly convex
Banach space. If, however, the domain of T , D(T ) is a proper subset of E
(and this is the case in several applications), and T maps D(T ) into E, then
the iteration processes of Mann and Ishikawa studied by these authors; and
their modifications introduced by Schu may fail to be well defined.

In 2003, Chidume et al [4] studied the iterative scheme defined by

x1 ∈ K,

xn+1 = P ((1− αn)xn + αnT (PT )n−1xn), n ≥ 1, (1.5)

in the framework of uniformly convex Banach space, where K is a closed
convex nonexpansive retract of a real uniformly convex Banach space E with
P as a nonexpansive retract. T : K → E is an asymptotically nonexpansive
nonself map with sequence {kn} ⊂ [1,∞), kn → 1 as n → ∞. {αn}∞n=1 is a
real sequence in [0, 1] satisfying the condition ε ≤ αn ≤ 1 − ε for all n ≥ 1
and for some ε > 0. They proved strong and weak convergence theorems for
asymptotically nonexpansive nonself maps.

In 2005, Shahzad [19] studied the sequence {xn} defined by

x1 ∈ K,

xn+1 = P ((1− αn)xn + αnTP [(1− βn)xn + βnTxn]), (1.6)

where K is a nonempty closed convex nonexpansive retract of a real uniformly
convex Banach space E with P as a nonexpansive retraction. He proved weak
and strong convergence theorems for nonself nonexpansive mappings in Banach
spaces.

Recently, Su and Qin [32] studied the sequence {xn} defined by

x1 ∈ K,

zn = P (α′′nT (PT )n−1xn + (1− α′′n)xn),

yn = P (α′nT (PT )n−1zn + (1− α′n)xn),

xn+1 = P (αnT (PT )n−1yn + (1− αn)xn), (1.7)

where {αn}, {α′n} and {α′′n} are real sequences in (0, 1) and K is a nonempty
closed convex nonexpansive retract of a uniformly convex Banach space E with
P as a nonexpansive retraction. They proved weak and strong convergence
theorems for asymptotically nonexpansive nonself mappings in uniformly con-
vex Banach space.
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Motivated by Su and Qin [32] and some others, the purpose of this paper
is to construct a three step iterative scheme with errors for approximating
fixed point of asymptotically nonexpansive nonself mappings in the interme-
diate sense (when such a fixed point exists) and to prove weak and strong
convergence theorems for such maps.

Let K be a nonempty closed convex subset of a uniformly convex Banach
space E and T : K → E is asymptotically nonexpansive nonself mappings in
the intermediate sense. In this paper, the following iteration scheme is studied:

x1 ∈ K,

zn = P (α3
nT (PT )n−1xn + β3nxn + γ3nu

3
n),

yn = P (α2
nT (PT )n−1zn + β2nxn + γ2nu

2
n),

xn+1 = P (α1
nT (PT )n−1yn + β1nxn + γ1nu

1
n), (1.8)

where{α1
n}, {α2

n}, α3
n},{β1n}, {β2n}, {β3n}, {γ1n}, {γ2n}, {γ3n} are sequences in [0, 1]

with αin + βin + γin = 1 for all i = 1, 2, 3, and {u1n}, {u2n}, {u3n} are bounded
sequences in K.

Our theorems improve and generalize some previous results. Our weak con-
vergence result applies not only to Lp-spaces with 1 < p <∞ but also to other
spaces which do not satisfy Opial’s condition or have a Fréchet differentiable
norm. More precisely, we prove weak convergence of the above defined itera-
tion scheme with errors (1.8) in a uniformly convex Banach space whose dual
has the Kadec-Klee property. It is worth mentioning that there are uniformly
convex Banach spaces, which have neither a Fréchet differentiable norm nor
Opial’s property; however their dual does have the Kadec-Klee property (see,
e.g., [10, 28]).

Let E be a real Banach space. A subset K of E is said to be a retract of E
if there exists a continuous map P : E → E such that Px = x for all x ∈ K.
A map P : E → E is said to be a retraction if P 2 = P . It follows that if a map
P is a retraction, then Py = y for all y in the range of P . A set K is optimal
if each point outside K can be moved to be closure to all points of K. It is
well known (see, e.g., [30]) that

(i) if E is a separable, strictly convex, smooth, reflexive Banach space, and
if K ⊂ E is an optimal set with interior, then K is a nonexpansive retract of E;

(ii) a subset of `p, with 1 < p <∞, is a nonexpansive retract if and only if
it is optimal.
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Note that every nonexpansive retract is optimal. In strictly convex Banach
spaces, optimal sets are closed and convex. However, every closed convex
subset of a Hilbert space is optimal and also a nonexpansive retract.

A mapping T with domain D(T ) and range R(T ) in E is said to be demi-
closed at p if whenever {xn} is a sequence in D(T ) such that {xn} converges
weakly to x∗ ∈ D(T ) and {Txn} converges strongly to p, then Tx∗ = p.

A Banach space E is said to have the Kadec-Klee property if for every
sequence {xn} in E, xn → x weakly and ||xn|| → ||x|| strongly together imply
||xn − x| → 0.

Recall that the following:
A mapping T : K → K with F (T ) 6= φ is said to satisfy condition (A) [8] on

K if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0
and f(r) > 0 for all r ∈ (0,∞) such that for all x ∈ K,

||x− Tx|| ≥ f(d(x, F (T )))

where d(x, F (T )) = inf{||x− p|| : p ∈ F (T )}.
In order to prove our main results, we will make use of the following lemmas:

Lemma 1.1.(see [16]): Let {sn} and {tn} be sequences of nonnegative real
numbers satisfying the inequality

sn+1 ≤ sn + tn ∀n ≥ 1.

If
∑∞

n=1 tn < ∞, then limn→∞ sn exists. Moreover, if there exists a subse-
quence {snj} of {sn} such that snj → 0 as j →∞, then sn → 0 as n→∞.

Lemma 1.2. ( Schu [12]): Let E be a uniformly convex Banach space and
0 < a ≤ tn ≤ b < 1 for all n ≥ 1. Suppose that {xn} and {yn} are sequences
in E satisfying

lim sup
n→∞

||xn|| ≤ r, lim sup
n→∞

||yn|| ≤ r,

lim
n→∞

||tnxn + (1− tn)yn|| = r,

for some r ≥ 0. Then

lim
n→∞

||xn − yn|| = 0.

Lemma 1.3. (Demiclosed principle for nonselfmap [6]): Let E be a uniformly
convex Banach space, K a nonempty closed convex subset of E. Let T : K → E
be a mapping which is asymptotically nonexpansive in the intermediate sense.
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If the sequence {xn} ⊂ K converges weakly to x∗ and if

lim
j→∞

(lim sup
n→∞

||xn − T (PT )j−1xn||) = 0,

then Tx∗ = x∗.

Lemma 1.4. (see [10]): Let E be a real reflexive Banach space such that
its dual E∗ has the Kadec-Klee property. Let {xn} be a bounded sequence
in E and x∗, y∗ ∈ ww(xn); here ww(xn) denotes the weak w-limit set of {xn}.
Suppose limn→∞ ||txn + (1− t)x∗ − y∗|| exists for all t ∈ [0, 1]. Then x∗ = y∗.

2. Main Results

Definition 2.1. (see [4]): Let E be a real normed linear space, K a nonempty
subset of E. Let P : E → K be the nonexpansive retraction of E onto K.
A map T : K → E is said to be asymptotically nonexpansive if there exists
a sequence {kn} ⊂ [1,∞); kn → 1 as n → ∞ such that for all x, y ∈ K, the
following inequality holds:

||T (PT )n−1x− T (PT )n−1y|| ≤ kn||x− y||, ∀n ≥ 1. (2.1)

T is called uniformly L-Lipschitzian if there exists a constant L > 0 such
that for all x, y ∈ K

||T (PT )n−1x− T (PT )n−1y|| ≤ L||x− y||, ∀n ≥ 1. (2.2)

T is called asymptotically nonexpansive type if the following inequality
holds:

lim sup
n→∞

sup
y∈K

(||T (PT )n−1x− T (PT )n−1y|| − ||x− y||) ≤ 0, (2.3)

for every x ∈ K, and that TN be continuous for some N ≥ 1.
T is called asymptotically nonexpansive in the intermediate sense (Chidume

et al [6]) if T is uniformly continuous and

lim sup
n→∞

sup
x,y∈K

(||T (PT )n−1x− T (PT )n−1y|| − ||x− y||) ≤ 0. (2.4)

Lemma 2.2. Let E be a uniformly convex Banach space andK be a nonempty
closed convex subset which is also a nonexpansive retract of E. Let T : K → E
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be an asymptotically nonexpansive nonself mapping in the intermediate sense.
Put

Gn = max{ sup
x,y∈K

(||T (PT )n−1x− T (PT )n−1y|| − ||x− y||), 0}, ∀n ≥ 1

such that
∑∞

n=1Gn < ∞. Let {αin}, {βin} and {γin} are sequences in [0, 1]
with αin + βin + γin = 1 for all i = 1, 2, 3. From arbitrary x1 ∈ K, define
the sequence {xn} iteratively by (1.8), where {uin} are bounded sequences in
K for all i = 1, 2, 3 with

∑∞
n=1 u

i
n < ∞,

∑∞
n=1 γ

1
n < ∞,

∑∞
n=1 γ

2
n < ∞ and∑∞

n=1 γ
3
n <∞. Then for any x∗ ∈ F (T ), limn→∞ ||xn − x∗|| exists.

Proof. For any given x∗ ∈ F (T ), and since {uin} for i = 1, 2, 3 is bounded
sequence in K, so we put

M = max{sup
n≥1
||uin − x∗|| : i = 1, 2, 3},

it follows from scheme (1.8) that

||xn+1 − x∗|| = ||P (α1
nT (PT )n−1yn + β1nxn + γ1nu

1
n)− Px∗|| (2.5)

≤ ||(α1
nT (PT )n−1yn + β1nxn + γ1nu

1
n)− x∗||

≤ α1
n||T (PT )n−1yn − x∗||+ β1n||xn − x∗||+ γ1n||u1n − x∗||

≤ α1
n||yn − x∗||+Gn + β1n||xn − x∗||+ γ1n||u1n − x∗||,

||yn − x∗|| = ||P (α2
nT (PT )n−1zn + β2nxn + γ2nu

2
n)− Px∗|| (2.6)

≤ ||(α2
nT (PT )n−1zn + β2nxn + γ2nu

2
n)− x∗||

≤ α2
n||T (PT )n−1zn − x∗||+ β2n||xn − x∗||+ γ2n||u2n − x∗||

≤ α2
n||zn − x∗||+Gn + β2n||xn − x∗||+ γ2n||u2n − x∗||

and

‖zn − x∗‖ = ‖P (α3
nT (PT )n−1xn + β3nxn + γ3nu

3
n)− Px∗‖ (2.7)

≤ ||(α3
nT (PT )n−1xn + β3nxn + γ3nu

3
n)− x∗||

≤ α3
n||T (PT )n−1xn − x∗||+ β3n||xn − x∗||+ γ3n||u3n − x∗||

≤ α3
n||xn − x∗||+Gn + β3n||xn − x∗||+ γ3n||u3n − x∗||.
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Substituting (2.7) into (2.6),

||yn − x∗|| ≤ α2
n[α3

n||xn − x∗||+Gn + β3n||xn − x∗||+ γ3n||u3n − x∗|| (2.8)

+Gn + β2n||xn − x∗||+ γ2n||u2n − x∗||
≤ α2

nα
3
n||xn − x∗||+ α2

nGn + α2
nβ

3
n||xn − x∗||

+α2
nγ

3
n||u3n − x∗||+Gn + β2n||xn − x∗||+ γ2n||u2n − x∗||

≤ (1− β2n − γ2n)α3
n||xn − x∗||+ (1− β2n − γ2n)β3n||xn − x∗||

+β2n||xn − x∗||+mn

≤ β2n||xn − x∗||+ (1− β2n)α3
n||xn − x∗||

+(1− β2n)β3n||xn − x∗||+mn

≤ β2n||xn − x∗||+ (1− β2n)(α3
n + β3n)||xn − x∗||+mn

≤ β2n||xn − x∗||+ (1− β2n)||xn − x∗||+mn

≤ ||xn − x∗||+mn

where mn = 2Gn + γ2n||u2n − x∗|| + γ3n||u3n − x∗||. Note that
∑∞

n=1mn < ∞.
Now substituting (2.8) into (2.5), we have

||xn+1 − x∗|| ≤ α1
n[||xn − x∗||+mn] +Gn + β1n||xn − x∗|| (2.9)

+γ1n||u1n − x∗||
≤ (α1

n + β1n)||xn − x∗||+ α1
nmn +Gn + γ1n||u1n − x∗||

≤ ||xn − x∗||+mn +Gn + γ1n||u1n − x∗||
≤ ||xn − x∗||+ 3Gn + (γ1n + γ2n + γ3n)M

≤ ||xn − x∗||+ bn

where bn = 3Gn + (γ1n + γ2n + γ3n)M . Since
∑∞

n=1Gn < ∞,
∑∞

n=1 γ
1
n < ∞,∑∞

n=1 γ
2
n <∞ and

∑∞
n=1 γ

3
n <∞, it follows that

∑∞
n=1 bn <∞. Therefore, by

Lemma 1.1, we have limn→∞ ||xn − x∗|| exists. This completes the proof. �

Lemma 2.3. Let E be a uniformly convex Banach space andK be a nonempty
closed convex subset which is also a nonexpansive retract of E. Let T : K → E
be asymptotically nonexpansive nonself mapping in the intermediate sense
with F (T ) 6= φ. Put

Gn = max{ sup
x,y∈K

(||T (PT )n−1x− T (PT )n−1y|| − ||x− y||), 0}, ∀n ≥ 1

such that
∑∞

n=1Gn < ∞. From arbitrary x1 ∈ K, define the sequence {xn}
iteratively by (1.8), where {α1

n}, {α2
n}, {α3

n}, {β1n}, {β2n}, {β3n}, {γ1n}, {γ2n}
and {γ3n} are real sequences in [0, 1] and {u1n}, {u2n} and {u3n} are bounded
sequences in K such that
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(i) α1
n + β1n + γ1n = α2

n + β2n + γ2n = α3
n + β3n + γ3n = 1.

(ii)
∑∞

n=1 γ
1
n <∞,

∑∞
n=1 γ

2
n <∞,

∑∞
n=1 γ

3
n <∞.

(iii) 0 ≤ α < α1
n, α

2
n ≤ β < 1.

Then

(a) limn→∞ ||T (PT )n−1yn − xn|| = 0;

(b) limn→∞ ||T (PT )n−1zn − xn|| = 0.

Proof. For any x∗ ∈ F (T ), it follows from Lemma 2.2, we have limn→∞ ||xn−
x∗|| exists. Let limn→∞ ||xn − x∗|| = c for some c ≥ 0. From (2.8), we have

||yn − x∗|| ≤ ||xn − x∗||+mn, ∀n ≥ 1.

Taking lim supn→∞ in both sides, we obtain

lim sup
n→∞

||yn − x∗|| ≤ lim sup
n→∞

||xn − x∗||

= lim
n→∞

||xn − x∗||

= c.

Note that

lim sup
n→∞

||T (PT )n−1yn − x∗|| ≤ lim sup
n→∞

(||yn − x∗||+Gn)

= lim sup
n→∞

||yn − x∗||

≤ c.

Next consider

||T (PT )n−1yn − x∗ + γ2n(u2n − xn)|| ≤ ||T (PT )n−1yn − x∗||+ γ2n||u2n − xn||.

Thus

lim sup
n→∞

||T (PT )n−1yn − x∗ + γ2n(u2n − xn)|| ≤ c.

Also,

||xn − x∗ + γ1n(u1n − xn)|| ≤ ||xn − x∗||+ γ1n||u1n − xn||
gives that

lim sup
n→∞

||xn − x∗ + γ1n(u1n − xn)|| ≤ c
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and

c = lim
n→∞

||xn+1 − x∗||

≤ lim inf
n→∞

||α1
nT (PT )n−1yn + β1nxn + γ1nu

1
n − x∗||

= lim inf
n→∞

||α1
n[(T (PT )n−1yn − x∗) +

γ1n
2α1

n

(u1n − x∗)]

+ β1n[(xn − x∗) +
γ1n
2β1n

(u1n − x∗)]||

≤ lim inf
n→∞

α1
n||T (PT )n−1yn − x∗||+ lim inf

n→∞
β1n||xn − x∗||

≤ lim inf
n→∞

α1
n[||yn − x∗||+Gn] + lim inf

n→∞
β1n||xn − x∗||

≤ lim inf
n→∞

[α1
n(||xn − x∗||+Gn) + (1− α1

n)||xn − x∗||]

≤ lim inf
n→∞

[||xn − x∗||+ α1
nGn] = c.

Hence

c = lim
n→∞

||α1
n[(T (PT )n−1yn − x∗) +

γ1n
2α1

n

(u1n − x∗)]

+ β1n[(xn − x∗) +
γ1n
2β1n

(u1n − x∗)]||

= lim
n→∞

||α1
n[(T (PT )n−1yn − x∗) +

γ1n
2α1

n

(u1n − x∗)]

+ (1− α1
n)[(xn − x∗) +

γ1n
2β1n

(u1n − x∗)]||.

By Lemma 1.2, we have

lim
n→∞

||T (PT )n−1yn − xn + (
γ1n

2α1
n

− γ1n
2β1n

)(u1n − x∗)|| = 0.

Since

lim
n→∞

||( γ
1
n

2α1
n

− γ1n
2β1n

)(u1n − x∗)|| = 0,

we obtain that

lim
n→∞

||T (PT )n−1yn − xn|| = 0.

This completes the proof of (a).
(b) For each n ≥ 1,

||xn − x∗|| ≤ ||xn − T (PT )n−1yn||+ ||T (PT )n−1yn − x∗||
≤ ||xn − T (PT )n−1yn||+ ||yn − x∗||+Gn.
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Since limn→∞ ||xn − T (PT )n−1yn|| = 0 = limn→∞Gn, we obtain that

c = lim
n→∞

||xn − x∗|| ≤ lim inf
n→∞

||yn − x∗||.

It follows that

c = lim inf
n→∞

||yn − x∗|| ≤ lim sup
n→∞

||yn − x∗|| ≤ c.

This implies that

lim
n→∞

||yn − x∗|| = c.

On the other hand, we note that

||zn − x∗|| = ||P (α3
nT (PT )n−1xn + β3nxn + γ3nu

3
n)− Px∗||

≤ ||(α3
nT (PT )n−1xn + β3nxn + γ3nu

3
n)− x∗||

≤ α3
n||T (PT )n−1xn − x∗||+ β3n||xn − x∗||+ γ3n||u3n − x∗||

≤ α3
n(||xn − x∗||+Gn) + β3n||xn − x∗||+ γ3n||u3n − x∗||

≤ α3
n||xn − x∗||+Gn + (1− α3

n)||xn − x∗||+ γ3n||u3n − x∗||
≤ ||xn − x∗||+Gn + γ3n||u3n − x∗||

By boundedness of {u3n} and limn→∞Gn = 0 = limn→∞ γ
3
n, we have

lim sup
n→∞

||zn − x∗|| ≤ lim sup
n→∞

||xn − x∗|| = c,

and

lim sup
n→∞

||T (PT )n−1zn − x∗|| ≤ lim sup
n→∞

(||zn − x∗||+Gn) ≤ c.

Next, consider

||T (PT )n−1zn − x∗ + γ3n(u3n − xn)|| ≤ ||T (PT )n−1zn − x∗||+ γ3n||u3n − xn||.

Thus

lim sup
n→∞

||T (PT )n−1zn − x∗ + γ3n(u3n − xn)|| ≤ c.

Also,

||xn − x∗ + γ3n(u3n − xn)|| ≤ ||xn − x∗||+ γ3n||u3n − xn||,

gives that

lim sup
n→∞

||xn − x∗ + γ3n(u3n − xn)|| ≤ c
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and

c = lim
n→∞

||yn − x∗||

≤ lim inf
n→∞

||α2
nT (PT )n−1zn + β2nxn + γ2nu

2
n − x∗||

= lim inf
n→∞

||α2
n[(T (PT )n−1zn − x∗) +

γ2n
2α2

n

(u2n − x∗)]

+ β2n[(xn − x∗) +
γ2n
2β2n

(u2n − x∗)]||

≤ lim inf
n→∞

α2
n||T (PT )n−1zn − x∗||+ lim inf

n→∞
β2n||xn − x∗||

≤ lim inf
n→∞

α2
n[||zn − x∗||+Gn] + lim inf

n→∞
β2n||xn − x∗||

≤ lim inf
n→∞

[α2
n(||xn − x∗||+Gn) + (1− α2

n)||xn − x∗||]

≤ lim inf
n→∞

[||xn − x∗||+ α2
nGn] = c.

Hence

c = lim
n→∞

||α2
n[(T (PT )n−1zn − x∗) +

γ2n
2α2

n

(u2n − x∗)]

+ β2n[(xn − x∗) +
γ2n
2β2n

(u2n − x∗)]||

= lim
n→∞

||α2
n[(T (PT )n−1zn − x∗) +

γ2n
2α2

n

(u2n − x∗)]

+ (1− α2
n)[(xn − x∗) +

γ2n
2β2n

(u2n − x∗)]||.

By Lemma 1.2, we have

lim
n→∞

||T (PT )n−1zn − xn + (
γ2n

2α2
n

− γ2n
2β2n

)(u2n − x∗)|| = 0.

Since

lim
n→∞

||( γ
2
n

2α2
n

− γ2n
2β2n

)(u2n − x∗)|| = 0,

we obtain that

lim
n→∞

||T (PT )n−1zn − xn|| = 0.

This completes the proof of (b). �
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Lemma 2.4. Let E be a uniformly convex Banach space andK be a nonempty
closed convex subset which is also a nonexpansive retract of E. Let T : K → E
be asymptotically nonexpansive nonself mapping in the intermediate sense
with F (T ) 6= φ. Put

Gn = max{ sup
x,y∈K

(||T (PT )n−1x− T (PT )n−1y|| − ||x− y||), 0}, ∀n ≥ 1

such that
∑∞

n=1Gn < ∞. From arbitrary x1 ∈ K, define the sequence {xn}
iteratively by (1.8), where {α1

n}, {α2
n}, {α3

n}, {β1n}, {β2n}, {β3n}, {γ1n}, {γ2n}
and {γ3n} are real sequences in [0, 1] and {u1n}, {u2n} and {u3n} are bounded
sequences in K such that

(i) α1
n + β1n + γ1n = α2

n + β2n + γ2n = α3
n + β3n + γ3n = 1.

(ii)
∑∞

n=1 γ
1
n <∞,

∑∞
n=1 γ

2
n <∞,

∑∞
n=1 γ

3
n <∞.

(iii) 0 ≤ α < α1
n, α

2
n, α

3
n ≤ β < 1.

Then for all u, v ∈ F (T ), the limit

lim
n→∞

||txn + (1− t)u− v||

exists for all t ∈ [0, 1].

Proof. By Lemma 2.2, we have limn→∞ ||xn − x∗|| exists for all x∗ ∈ F (T ).
This implies that {xn} is bounded. Observe that there exists R > 0 such that
{xn} ⊂ C = BR(0) ∩ K, where BR(0) = {x ∈ E : ||x|| ≤ R}. Then C is a
nonempty closed convex bounded subset of E. Let an(t) = ||txn + (1− t)u−
v||. Then limn→∞ an(0) = ||u − v|| and from Lemma 2.2, limn→∞ an(1) =
limn→∞ ||xn − v|| exists. Without loss of generality, we may assume that
limn→∞ ||xn − u|| = r > 0 and t ∈ (0, 1). Define Tn : C → C by

Tnx = P (α1
nT (PT )n−1(P (α2

nT (PT )n−1)(P (α3
nT (PT )n−1x)

+β3nx+ γ3nu
3
n) + β2nx+ γ2nu

2
n) + β1nx+ γ1nu

1
n),

x ∈ K and set Sn,m = Tn+m−1Tn+m−2 . . . Tn, m ≥ 1. Then

||Sn,mx− Sn,my|| ≤ ||x− y||+Gn+m−1 +Gn+m−2 + · · ·+Gn

≤ ||x− y||+
n+m−1∑
j=n

Gj

Observe that Sn,mxn = xn+m and Sn,my = y, for all y ∈ F (T ).
Set

bn,m := ||xn − u||[Sn,m(txn + (1− t)u)− tSn,mxn − (1− t)Sn,mu];



54 G. S. Saluja and Jong Kyu Kim

Dn,m := [Sn,mu+ Sn,mxn − 2Sn,m(txn + (1− t)u)]

n+m−1∑
j=n

Gj ;

Mn,m :=
[
t||xn − u||+

n+m−1∑
j=n

Gj
]
×
[
(1− t)||xn − u||+

n+m−1∑
j=n

Gj
]
;

Fn,m := [tSn,mu+ (1− 2t)Sn,m(txn + (1− t)u)− (1− t)Sn,mxn]×
n+m−1∑
j=n

Gj

and

Ln := [t||xn − u||+ L]× [(1− t)||xn − u||+ L], where L =

n+m−1∑
j=n

Gj .

It is well known (see, for example, Bruck [20], p.108) that if E is uniformly
convex,

||tx+ (1− t)y|| ≤ 1− 2 min{t, (1− t)}δE(||x− y||) (2.10)

≤ 1− 2t(1− t)δE(||x− y||)

for all t ∈ [0, 1] and for all x, y ∈ E such that ||x|| ≤ 1, ||y|| ≤ 1. Set

Wn,m :=
Sn,mu− Sn,m(txn + (1− t)u)

t||xn − u||+
∑n+m−1

j=n Gj
;

Zn,m :=
Sn,m(txn + (1− t)u)− Sn,mxn
(1− t)||xn − u||+

∑n+m−1
j=n Gj

.

Then ||Wn,m|| ≤ 1 and ||Zn,m|| ≤ 1 so that it follows from (2.10) that

2t(1− t)δE(||Wn,m − Zn,m||) ≤ 1− ||tWn,m + (1− t)Zn,m||. (2.11)

Observe that

||Wn,m − Zn,m|| =
||bn,m −Dn,m||

Mn,m

and

||tWn,m + (1− t)Zn,m|| =
||t(1− t)||xn − u||[Sn,mu− Sn,mxn] + Fn,m||

Mn,m
.
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From (2.11), we then obtain that

2Mn,mδE
( ||bn,m −Dn,m||

Mn,m

)
≤ ||xn − u||2 (2.12)

+
1

t(1− t)

n+m−1∑
j=n

Gj
[
||xn − u||+

n+m−1∑
j=n

Gj
]

−||xn − u|| · ||xn+m − u||+
||Fn,m||
t(1− t)

.

Observe that Ln ≥Mn,m for all n,m. Since E is uniformly convex, then δE(s)
s

is nondecreasing and hence from (2.12) that

2LnδE
( ||bn,m −Dn,m||

Ln

)
≤ ||xn − u||2

+
1

t(1− t)

n+m−1∑
j=n

Gj
[
||xn − u||+

n+m−1∑
j=n

Gj
]

−||xn − u|| · ||xn+m − u||+
||Fn,m||
t(1− t)

.

Since limn→∞ ||xn − u|| exists, we have that

lim
n→∞

||xn − u|| = lim
n→∞

||xn+m − u||.

Moreover, δE(0) = 0, the continuity of δE gives from inequality (2.13) that
lim infn(lim supm ||bn,m −Dn,m||) = 0. Observe that

lim sup
m

||bn,m|| ≤ lim sup
m

||bn,m −Dn,m||+ lim sup
m

||Dn,m||

= lim sup
m

||bn,m −Dn,m||+Kn

∞∑
j=n

Gj

for some bounded sequence {Kn}. Since

∞∑
j=n

Gj → 0 as n→∞ and lim inf
n

(lim sup
m

||bn,m −Dn,m||) = 0,

it follows that lim infn(lim supm ||bn,m||) = 0. Hence,

lim inf
n

(lim sup
m

||Sn,m(txn + (1− t)u)− tSn,mxn − (1− t)Sn,mu||) = 0.
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Clearly,

an+m(t) ≤||txn+m + (1− t)u− v
+ (Sn,m(txn + (1− t)u)− tSn,mxn − (1− t)Sn,mu)||
+ || − [Sn,m(txn + (1− t)u)− tSn,mxn − (1− t)Sn,mu]||

=||Sn,m(txn + (1− t)u)− v||+ ||Sn,m(txn + (1− t)u)− tSn,mxn
− (1− t)Sn,mu||

≤||txn + (1− t)u)− v||+
n+m−1∑
j=n

Gj

+ ||Sn,m(txn + (1− t)u)− tSn,mxn − (1− t)Sn,mu||

≤an(t) +
n+m−1∑
j=n

Gj

+ ||Sn,m(txn + (1− t)u)− tSn,mxn − (1− t)Sn,mu||.

Hence lim supn→∞ an(t) ≤ lim infn→∞ an(t). This shows that limn→∞ an(t)
exists, that is,

lim
n→∞

||txn + (1− t)u− v||

exists for all t ∈ [0, 1]. This completes the proof.
�

Theorem 2.5. Let E be a uniformly convex Banach space and K be a
nonempty closed convex subset which is also a nonexpansive retract of E. Let
T : K → E be asymptotically nonexpansive nonself mapping in the interme-
diate sense with F (T ) 6= φ. Put

Gn = max{ sup
x,y∈K

(||T (PT )n−1x− T (PT )n−1y|| − ||x− y||), 0}, ∀n ≥ 1

such that
∑∞

n=1Gn < ∞. From arbitrary x1 ∈ K, define the sequence {xn}
iteratively by (1.8), where {α1

n}, {α2
n}, {α3

n}, {β1n}, {β2n}, {β3n}, {γ1n}, {γ2n}
and {γ3n} are real sequences in [0, 1] and {u1n}, {u2n} and {u3n} are bounded
sequences in K such that

(i) α1
n + β1n + γ1n = α2

n + β2n + γ2n = α3
n + β3n + γ3n = 1.

(ii)
∑∞

n=1 γ
1
n <∞,

∑∞
n=1 γ

2
n <∞,

∑∞
n=1 γ

3
n <∞.
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(iii) 0 ≤ α < α1
n, α

2
n ≤ β < 1.

Suppose T satisfies condition (A). Then {xn}, {yn} and {zn} converges
strongly to a fixed point of T .

Proof. It follows from Lemma 2.3, that

lim
n→∞

||T (PT )n−1yn − xn|| = 0 = lim
n→∞

||T (PT )n−1zn − xn||

and this implies that

||xn+1 − xn|| ≤ α1
n||T (PT )n−1yn − xn||+ γ1n||u1n − xn|| (2.13)

→ 0 as n→∞.

Thus

||T (PT )n−1xn − xn|| ≤ ||T (PT )n−1xn − T (PT )n−1yn|| (2.14)

+||T (PT )n−1yn − xn||
≤ ||xn − yn||+Gn + ||T (PT )n−1yn − xn||
≤ α2

n||xn − T (PT )n−1zn||+ γ2n||u2n − xn||+Gn

+||T (PT )n−1yn − xn||
→ 0 as n→∞.

Since

||xn − Txn|| ≤ ||xn+1 − xn||+ ||xn+1 − T (PT )nxn+1||
+||T (PT )nxn+1 − T (PT )nxn||+ ||T (PT )nxn − Txn||

by uniform continuity of T and from (2.13) and (2.14), we have

lim
n→∞

||xn − Txn|| = 0. (2.15)

By Lemma 2.2, limn→∞ ||xn−x∗|| exists for all x∗ ∈ F (T ). Let limn→∞ ||xn−
x∗|| = c for some c ≥ 0. If c = 0, there is nothing to prove. Suppose c > 0.
By (2.15), we know that limn→∞ ||xn − Txn|| = 0, and Lemma 2.2 gives that

||xn+1 − x∗|| ≤ ||xn − x∗||+ bn,

where bn = 3Gn + (γ1n + γ2n + γ3n)M . That is,

d(xn+1, F (T )) ≤ d(xn, F (T )) + bn.

Since
∑∞

n=1 bn < ∞, so by Lemma 1.1 gives that limn→∞ d(xn, F (T )) exists.
Since T satisfies condition (A), we have limn→∞ f(d(xn, F (T ))) = 0. Since f
is a nondecreasing function and f(0) = 0, we conclude that

lim
n→∞

d(xn, F (T )) = 0.
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Now we can choose a subsequence {xnj} of {xn} and a sequence {yj} ⊂ F (T )

such that ||xnj − yj || < 2−j . Then we have

||xnj+1 − yj || ≤ ||xnj − yj ||+Gn

≤ ||xnj − yj ||+
M

2j

< 2−j +
M

2j

<
M + 1

2j
.

Since
∑∞

n=1Gn <∞, so there exists M > 0 such that Gn <
M
2j

and hence

||yj+1 − yj || ≤ ||yj+1 − xnj+1||+ ||xnj+1 − yj ||

≤ 2−(j+1) +
M + 1

2j

<
2M + 3

2j+1
.

This shows that {yj} is a Cauchy sequence and therefore converges strongly
to an element of E. Assume that yj → y as j → ∞. Then y ∈ F (T ) since
F (T ) is closed, which implies that xnj → y as j →∞. This shows that {xn}
converges strongly to some fixed point of T . Again since

||yn − xn|| ≤ α2
n||T (PT )n−1zn − xn||+ γ2n||u2n − xn|| → 0, as n→∞

and

||zn − xn|| ≤ α3
n||T (PT )n−1xn − xn||+ γ3n||u3n − xn|| → 0 as n→∞.

Therefore limn→∞ yn = y = limn→∞ zn. This completes the proof. �

Theorem 2.6. Let E be a uniformly convex Banach space such that its
dual E∗ has the Kadec-Klee property and K a nonempty closed convex subset
which is also a nonexpansive retract of E. Let T : K → E be an asymptotically
nonexpansive nonself mapping in the intermediate sense with F (T ) 6= φ. Put

Gn = max{ sup
x,y∈K

(||T (PT )n−1x− T (PT )n−1y|| − ||x− y||), 0}, ∀n ≥ 1

such that
∑∞

n=1Gn < ∞. From arbitrary x1 ∈ K, define the sequence {xn}
iteratively by (1.8), where {α1

n}, {α2
n}, {α3

n}, {β1n}, {β2n}, {β3n}, {γ1n}, {γ2n}
and {γ3n} are real sequences in [0, 1] and {u1n}, {u2n} and {u3n} are bounded
sequences in K such that

(i) α1
n + β1n + γ1n = α2

n + β2n + γ2n = α3
n + β3n + γ3n = 1.
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(ii)
∑∞

n=1 γ
1
n <∞,

∑∞
n=1 γ

2
n <∞,

∑∞
n=1 γ

3
n <∞.

(iii) 0 ≤ α < α1
n, α

2
n, α

3
n ≤ β < 1.

Then {xn} converges weakly to some fixed point of T .

Proof. By Lemma 2.2, we have limn→∞ ||xn−x∗|| exists for all x∗ ∈ F (T ). This
implies that {xn} is bounded. Since E is reflexive, there exists a subsequence
{xnj} of {xn} converges weakly to some x∗ ∈ K.

By Theorem 2.5 (equ. (2.15)), we have limj→∞ ||xnj − Txnj || = 0. Since T
is uniformly continuous, we can get that

lim
m→∞

(lim sup
j→∞

||T (PT )m−1xnj − xnj ||) = 0.

Now Lemma 1.3 guarantees that Tx∗ = x∗, hence this means that x∗ ∈ F (T ).
It remains to show that {xn} converges weakly to x∗. Suppose {xni} is another
subsequence of {xn} converges weakly to some y∗. Then y∗ ∈ K and so
x∗, y∗ ∈ ωw(xn) ∩ F (T ). By Lemma 2.4, the limit

lim
n→∞

||txn + (1− t)x∗ − y∗||

exists for all t ∈ [0, 1]. By Lemma 1.4, we have x∗ = y∗. As a result, ωw(xn)∩
F (T ) is a singleton, and so {xn} converges weakly to a fixed point of T . This
completes the proof. �

Remark 2.7. Our results extend the corresponding results of Su and Qin [32]
to the case of three step iterative sequences with errors for more general class
of asymptotically nonexpansive nonself mappings. Also our iteration scheme
generalizes the scheme of [32].

Remark 2.8. Our results also extend the corresponding results of Chidume
et al [6] to the case of three step iterative sequences with errors.

Remark 2.9. Our results also extend the corresponding results of Plubtieng
and Wangkeeree ( [22]) to the case of nonself mappings.

Remark 2.10. Our results also extend the corresponding results of Chidume
et al [4] to the case of three step iterative sequences with errors and more
general class of asymptotically nonexpansive nonself mappings.

Remark 2.11. [6]: It is well known that duals of reflexive Banach spaces
with Fréchet differentiable norm have the Kadec-Klee property. However, it is
worth mentioning that there exist uniformly convex Banach spaces which have
neither a Fréchet differentiable norm nor satisfy Opial’s condition but their
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duals do have the Kadec-Klee property. To see this, consider X = R2 with
the norm given by |x| =

√
||x1||2 + ||x2||2 and Y = Lp[0, 1] with 1 < p < ∞

and p 6= 2. Then the Cartesian product X × Y equipped with the `2-norm
is uniformly convex, it does not satisfy Opial’s condition, and its norm is not
Fréchet differentiable. However, its dual does have the Kadec-Klee property.
For details, see Falset et al. [10] and Kaczor [28].

Remark 2.12. Theorem 2.4 extends Theorem 1.5 of Schu [11] and the corre-
sponding result of Rhoades [1], and Osilike and Aniagbosor [18] to the case of
more general class of nonself mappings and three step iteration scheme with
errors. Furthermore, no boundedness condition is imposed on K. Under the
additional hypothesis that the dual E∗ of E has the Kadec-Klee property,
Theorem 2.6 generalizes Theorem 2.1 of Schu [12] to the case of nonself maps
and three step iteration scheme with errors in Banach spaces that includes Lp
spaces (1 < p <∞), with Opial’s condition and boundedness of K dispensed
with. Since duals of reflexive Banach spaces with Fréchet differentiable norms
have the Kadec-Klee property, Theorem 2.6 extends Theorem 3.1 of Tan and
Xu [17] to the case of nonself maps which are asymptotically nonexpansive
in the intermediate sense and three step iteration scheme with errors, with
boundedness of K dispensed with.
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