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Abstract. We give here forward and reverse g—Holder inequality, g—Poincaré inequality,
q—Sobolev inequality, g—reverse Poincaré inequality, g—reverse Sobolev inequality, ¢g—Ost-
rowski inequality, ¢g—Opial inequality and g—Hilbert-Pachpatte inequality. Some interesting

background is mentioned and built in the introduction.

1. INTRODUCTION

Here we follow [3], [6].
Let g € (0,1), n € N. A g—natural number [n], is defined by

[n], =14q+..+¢h (1)
In general, a g—real number [a], is
1—¢®
= R 2
[a], g € (2)
We define
O, =1, [nl,! = [n], [n = 1], .. 1],

L _ (3)
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Also, the g—Pochhammer symbol is defined by
k—1
(z—a)(o)zl, (z—a)(k):H(z—aqi), keN, z,aeR. (4)
i=0
The g—derivative of a function f () is

(Duf) )= LTI ), )

(Dqf) (0) := lim (Dy f) (2),

and the high g—derivatives
DYf = f, Dif:=D, (D’;—lf) L k=1,2,3,.. (6)

From the above definition it is clear that a continuous function on an inter-
val, which does not include 0 is continuously g—differentiable.

Here we assume that the g—derivatives we use always exist up to n*® order.

Notice that if f is differentiable then éLn%qu () = f'(z).

The g—integral is defined by
(of) @) = [ 1), t=r-03 s (o) O<a<n. @

We call f g—integrable on [0,a], iff [ |f (t)| dyt exists for all z € [0,a], a > 0.
If f is such that, for some C >0, a > —1, |f(z)] < Cx in a right
neighborhood of z = 0, then f is q—integrable, see [3].
All functions considered in this article are assumed to be g—integrable.
By [2] it holds

1) @) = [ F)d=tim 00 @), ®)
given that f is Riemann integrable on [0, x].
Also it holds
(Dqu70f) (x> =f (1’) (9>
and
(Ig,0 (Dgf)) (x) = f (x) = f(0) .
One can define
Iof = (Igolf>, n=1,2, .. (10)
Let x > 0. Then one has ([ ], [4] [5]) the g—Taylor formula

- Dk x
f [n—luv/o (x— )"V Drf (8 dgt. (1)
]

M

=0 q

o
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Assuming (D(’;f) (0)=0,k=0,1,....,n — 1 we get
f@) = [ e-a VD 0 (12)
[n — 1](1' 0 q 1
Let u (z) = ax”. Then we get the change of variable formula ([3]),
u(a) a
[ r@du= [ fa@)D u@d e (13)
u(0) 0 " "
In this article double g—integrals are meant in an iterative way.
Lemma 1.1. ([3]) Let n € Z4; x,t,s,a,b, A, B € R. Then
Dyt = [, 2%, (14)
Dy (Az + )™ = [n], A (Az + b)Y (15)
and
Dy (a+ Bx)™ = [n], B (a+ Bqa)" Y. (16)
We get the g—power rule
z Az + b)(n+1) _ pn+1)
At )™ g p = ¢ , 17
| aren®, T (1)
Where b(n+l) — bn+1qn(n2+1)
Furthermore, it holds another ¢g—power rule,
x . (a+ B:r)(”) —a”
(a+ Bqt)" Y d,t = . (18)
/0 ! ], B
Let f (z) > 0 and f increasing. Then
| rwdps @ (19)
We easily observe that (a > 0,0 < ¢ < 1)
[ @] < [ @lde (20)
and
/ (crfi(z) +cafa (x q$—61/ fi(x d$+62/ fo (x c1,c2 € R.
0

(21)
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Let 0 < z <y and f increasing. Then

z (1 —Q)if (wq’“) ¢ <y(1 —q)if (qu> 7",
k=0

k=0
so that
z y
| o< [ raag (22)
0 0
Let f < g. Then
f (mqk) <y (qu) q"
and . .
r(1-q)> f (qu'“> F<z(l-9)) g (wq’“) 7",
k=0 k=0
that is

F@de< [ gt dy (23)
0
(x>0,0<g<1).

Next comes the g—Holder’s inequality.

Proposition 1.2. Letz > 0, 0 < ¢ < 1, p1,q1 > 1 such that p% + q% = 1.
Then

/Oxlf(t)l g (t)] dgt < </Ox|f(t)|p1 dqt>”11 (/OI (0" dqt>q11' (24)

Proof. By the discrete Holder’s inequality we have

/Ox £ O]9 (8)] dgt
o9y 7 (o) o (a") | &
(1 o) () (Jo (o) ()

1 1

(fv (1-q) i )f (qu’“) " qk) " (90 (1-q) i ‘g (qu) " qk) "
k k=0

=0

~([1rar dqt>‘°ll NICE dqt)"ll.

i
o

NE

=z(l—-q)

B
Il

0

IN
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Clearly it holds that

/ ld,t = . (25)
0

It follows the reverse g—H®older’s inequality.

Proposition 1.3. Let:c>0 O<q<1'0<p1<1,q1<0:pi1 qi—l Let
fr9 =0 with [} (g ()" dgt > 0. Then

[ rwswan= ( [ uwr dqt)’}l ([ wor dqt)"ll. (26)

Proof. Notice that [y (g (£)) dgt > 0, iff 2 (1 — q) 52 (9 (z¢*))™ ¢* > 0, iff
Yo (9 (¢")" q k>0

By the discrete reverse Holder’s inequality we have
20035 (a) o (sr) o
k=0
2002 (1 () (#)7) (o (o) ()"
( 0B 0 ) ) (-0 D))
proving the claim. O

2. MAIN RESULTS

We present the g—Poincaré inequality.

Theorem 2.1. Let o, 3 > 1 : é—l—% =1,z > 0. Assume (Dgf) (0) =0,
k=0,1,....n—1 and !D;Lf‘ be increasing. Then

15w de
(e

« (/;‘D;‘f(t)‘ﬁdqt>.

Q@

dqw> (27)
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Proof. For 0 < w < x, we have

fw) =

1 Y N (n—1) myn
= /0 (w— gt)""V DI f (1) dyt.

Hence, from the g—Holder’s inequality,

fw) < [n_ll], | = Dps 0]yt
R )
[ o) (o)
Hence

7 ) < ([—1”')6 ([ (w- qt)(”_l))adqt>§ ([ 1par @ ae).

(28)
Then applying ¢—integration on (28) over [0, x], we prove (27). O

We present the g—Sobolev inequality.

Theorem 2.2. Let o, 3 > 1: é+% =1,z>0,r>1. Assume (Dgf) (0) =0,
k=0,1,...n—1 and {Dg‘f‘ be increasing. Denote

1
s = ([ 1@ )
Then

g < [n—ll]q' ( /Ox ( /Ow ((w _ qt)(n—l))adqt> . dqw> (29)

x HDng%ﬂ’[O,x] :

Sl

Proof. As in the proof of Theorem 2.1 we get

) < ([”—1”‘) ([ (- qt><“>)adqt>; ([ 12z ) an)

=
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Hence, from (23)

/Ox If (W) dgw < W (/Or </0w ((w —qt)(“l))adqt>£ dqw>

« (/Ox\Dgf(t)\ﬁdqt>g. (30)

Next raise both sides of (30) to power 1. Thus proving the claim. O

A

Next we give the reverse ¢g—Poincaré inequality.

Theorem 2.3. Let 0 < p; < 1, ¢1 < 0 : p% + qil =1,z > 0. Assume

(Dgf) 0)=0,k=0,1,....n—1; ‘D;‘ﬂ be decreasing, and Dy f (t) of fized

strict sign on [0, z]. Then

/ "1 () dgw
0

> ([n_ll]!)_ql </Ow (/Ow ((w — qt)("—l))pl dqt> = dqw> (31)
x </Ox D f (6 dqt|>1.

Proof. Clearly here we have

/Ow D7 f (t)|" dgt > 0,
for all 0 < w < x. Also we have
F) = g ) om0 g @t
all 0 < w < z. Hence
ey AUl L AT

all 0 < w < . By g—reverse Holder inequality, we obtain

)2 ([ (=" dqt);l ([ 1oss o dqt);l.

Since |DZ} f ‘ is decreasing, we have that ‘D;L f ‘ql is increasing on [0, z]. Thus

[ psr ol de< [ Dy
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</°w G dqt) ’ = (/Ox Dy f ()] dqt> g :

for all 0 < w < z. Therefore we derive

712 g () (- 0)” dqt)pll NEACE dqt);l ,

all 0 < w < z. Hence

and

—q1

1 )l > 1') ([ (w=a)" ae) "

([n —1],!

T -1
x </ DU f ()] dqt> ,
0
all 0 < w < z. At last g—integrating (32) on [0, z] we obtain (31). O

It follows the reverse g—Sobolev inequality.

Theorem 2.4. All assumptions were as in Theorem 2.3 and r > 1. Then

U (a0 ) )
||f||q,r,[0,x] > [n _ 1](1! (/0 </0 ((w qt) ) dqt> dqw> (33)

x HDgf||q7ql7[O’m] .

Proof. As in the proof of Theorem 2.3 we obtain:

ot ([ G- )
4
X </Ox |Dy f ()" dqt>qu ,
all 0 < w < z. Hence
N ([ o) o) )
X (/Ox |Dy f(6)]" dqt>qu ,
proving the claim. O

We continue with a ¢g—Ostrowski inequality.
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Theorem 2.5. Assume (Df;f) 0)=0,k=1,.,n—1,2>0,0<qg<1.
Then
xn

1 [* n
90/0 S (w) dqw — f (0 ' 105 /| o2l 1], (34)

Proof. By assumptions we obtain

f(w)—f(0)= [n—ll]q!/o (w— qt)" Dy f(t)dgt, all0<w <.
Hence
= 1/ f(w)dyw — f(0)
/ f (w) dgw — - / 70
—2 ([ - f@Mw).
Thus
@<y [ 1fw) - olde. (35)
However we observe that
1 b (n=1) | yn
INW—fmﬂém_HA(w—ﬁ) D2 f ()] dgt
HD 1941].cp o )
[n — 1 /

Next we apply (13) for u (t) := —t.
We notice that Dyu (t) = —1. Therefore it holds from (18),

/ Cw— gV e = - / " (w+ qu )"V Dyu (1) dyt
0 0
=—A (w + qu (1) dgu ()

= —/0 (w+ qy)" ™V dyy

w+«wwm—w1

—
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By (36), then we have

Consequently by (35) we derive from (14),

v Dy
|A (z)] < % </0 w"dqw> 7“ : HOO’[O’x}

[,
_ 1 gt HDZIZfHoo,[O,:L‘}
_as[n—f—l]q [n],!
123 Fll o o.0)
= —"x
[n+1],! '

proving the claim.

Next we give a ¢—Opial type inequality.

Theorem 2.6. Assume (D’;f) 0)=0,neN, k=01,..,n—1, z > 0,
0<g<l;a,B>1: %4—% = 1. Also suppose ’Dgf} is increasing on [0, z].

Then

T

/0 f ()] [ D (w)| dgu

@[

<y (] (] (00 ) )

1

([ @)

Proof. 1t holds
1
f(w) = CEE
Hence, from the g—Holder’s inequality,

Pl < =gy [ w=an® ) D ()] dt

it ([ ooy s ([ e

2 (w) ::/Ow\pgf(t)\ﬁdqt, (2(0)=0), all0<w<a.

Set

], /0 (w—qt)" D (D f) (1) dgt, all 0<w <.

(38)

@[
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That is,
1= gt () () )" cot,
with
2 (w) < Dy f (w)]"w,
and

(z (w))% < ‘Dgf (w)‘w%, forall 0 <w < .

Consequently we have

@)l < _11] ! </0w ((w =gy V)" dqt>i D2 f (w)| wh,

q

and

1
1 w « o 1
n (n—1) 2
@D 0] < o () (0= a0©) o) (s
all 0 < w < z. Finally we derive, from the g—Holder’s inequality,

17 @103 )] d
i (L @y ) @ssr
g ] ooy )

([ o)

1

<o (L () (o) ) )

1

([ gt ) a),

proving the claim. O

IN
@l

) dqw

Q=

A

|-

We finish with a g—Hilbert-Pachpatte type inequality.

Theorem 2.7. Assume (D f) (0)
z,y>0,0<qg<1;p,q1 >1:

(Dkg) (0)=0,k=0,1,...n—1, nEN;
= 1. Also suppose | D} f

1,1 n
o o s Dqg‘ are
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increasing on [0, x], [0,y], respectively. Define

F(s) = / ((s - qa)(”—l)y1 dyo, 0<s<u,
0

t
G(t) = / ((t - (JT)(’"“l))q1 dyr, 0<t<y.
0
Then

v OLf ()] !g I
[Igse |
<></» v (P

Proof. We have

1

f(s) = [n_l]q!/o (S—qJ)(nfl)DZ}f(U)dqa, all 0 < s <u;

1

t
g(t) = ,/ (t —qr)™ Y Dyg(r)dyr, all0<t<y.
[TL ].]q 0

FOI< oy [ =00 D5 )] dyo

[n_luql (/08 ((5 - qa)(”—1)>p1 dq0> =
([ 1ps @I duo) u

[n—ll]!/o (t — qT)("_l) ‘Dgg (T)} dgT

g (] (emom )" )’
« (/Ot D2 (r) dq7>pll .

Young’s inequality for a,b > 0 says that

IN

Also it holds

lg ()]

IN

IN

11 a b
arthn < — 4 —.
b1 q1
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Therefore we have

[f (s)l1g (B)] <

ey " |
([ 1pps @l de)” </Ot Dy dyr )"
< 0 _11]q!)2 (Fp<1s> N Gq(f))

([l dqa)"ll ([ sl dqf);l.

Hence it holds (0 < s <z, 0 <t <y)

bttty <ot ([mrorae) ([ o )

p1 q1

Therefore
) ([11]) (/om ([ 1o2s @ )" dqs)
~ ( [ ([ 12 ar) z dqt>
< ({n_ll]')x ([ ([ 1o3s o o) dqs)‘i

X g1 </0y </Ot D g (7)]" dq7> dqt)pll
) (In _11]q!)2 (7o) </0 </0 Daf @) dq") dqs) ’

X (/Oy </0y |Dyg (7)™ dq7-> dqt>pll




92

George A. Anastassiou

— xy]>2 </O$|Dj;f(a)]‘h dq(;)qll (/0y|Dgg(T)}p1 dq7>pll,

([n— 1],!

proving the claim. O
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