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Abstract. We establish some fixed point theorems in convex metric spaces for (k, L)− Lip-

schitzian mappings. Our results generalize and extend corresponding results in the existing

literature.

1. Introduction

The notion of convexity in metric spaces was introduced by Takahashi [16]
and he established that all normed spaces and their convex subsets are convex
metric spaces. In addition, he also gave several examples of convex metric
spaces which are not imbedded in any normed space or Banach space. Sub-
sequently several papers have been devoted to the study of fixed points in
convex metric spaces in the literature (see Agarwal et al. [1], Beg [2, 3], Ciric
[5], Gajic and Stojakovic [9], Guay et al. [10] and Shimizu and Takahashi [15].)

Definition 1.1. ([3, 16]) Let (X, d) be a metric space. A mapping W : X ×
X × [0, 1] → X is said to be a convex structure on X if for each (x, y, λ) ∈
X ×X × [0, 1] and u ∈ X,

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y). (1.1)
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A metric space X having the convex structure W is called a convex met-
ric space.

Let (X, d,W ) be a convex metric space. A nonempty subset E of (X, d,W )
is said to be convex if W (x, y, λ) ∈ E whenever (x, y, λ) ∈ E × E ×
[0, 1].Clearly, we have from (1.1) that W (x, x, λ) = x. Takahashi [16] has also
shown that the open ball B(x, r) = {x ∈ X | d(x, y) < r} and the closed ball

B(x, r) = {x ∈ X | d(x, y) ≤ r}, are convex sets.

Definition 1.2. ([1, 3, 6]) Let E be a nonempty subset of a metric space X.
A mapping T : E → E is said to be k−Lipschitzian if there exists a k ∈ [0,∞)
such that

d(Tx, Ty) ≤ kd(x, y), ∀ x, y ∈ E. (1.2)

Definition 1.3. Let (X, d,W ) be a complete convex metric space and E a
nonempty closed convex subset of X. A mapping T : E → E is said to be
(k, L)−Lipschitzian if there exists a k ∈ [1,∞), L ∈ [0, 1) such that

d(Tx, Ty) ≤ Ld(x, Tx) + kd(x, y), ∀ x, y ∈ E. (1.3)

Definition 1.4. ([3, 7]) Let (X, d) be a complete metric space and E ⊂ X. A
mapping T : E → E is said to be an involution if T 2(x) = x.

Definition 1.5. ([4]) A function φ : R+ → R+ is called a comparison function
if:
(i) φ is monotone increasing; and
(ii) lim

n→∞
φn(t) = 0, ∀ t ∈ R+.

Several iterative processes for approximating fixed points of various map-
pings in normed spaces are available in the literature. Three of the well-known
iterative processes are those of Krasnoselskii [12], Schaefer [14] and Mann [13].
We now state these iterative processes in the context of convex metric space:
For x0 ∈ E, the sequence {xn} defined by

xn+1 = W (xn, Txn;λ), λ ∈ [0, 1], (n = 0, 1, 2, · · · ) (1.4)

is called the Schaefer’s iterative process.
If λ = 1

2 , then the process (1.4) reduces to the Krasnoselskii’ iterative process:

xn+1 = W

(
xn, Txn;

1

2

)
, (n = 0, 1, 2, · · · ). (1.5)

For x0 ∈ E, the sequence {xn} defined by

xn+1 = W (xn, Txn;αn), αn ∈ [0, 1], (n = 0, 1, 2, · · · ) (1.6)

is called the Mann iterative process.
Beg [3] employed Krasnoselskii [12] iteration defined in (1.5) to obtain some
fixed point theorems in convex metric spaces. In this paper, we shall use the
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Mann iteration to establish results for (k, L)− Lipschitzian mappings.

2. Main results

Suppose that E is a nonempty closed convex subset of a complete convex
metric space X and T : E → E is a mapping. For x0 ∈ E, let {xn} be defined
by

xn+1 = W (xn, Txn; θn), where θn ∈ [0, 1], (n = 0, 1, 2, · · · ). (2.1)

If there exists a real number c ∈ [0, 1) such that

d(xn+2, xn+1) ≤ cd(xn+1, xn), (n = 0, 1, 2, · · · ), (2.2)

then {xn} converges to a point x∗ ∈ E.
In a similar manner, if there exists a comparison function φ : R+ → R+ such
that

d(xn+2, xn+1) ≤ φ(d(xn+1, xn)), (n = 0, 1, 2, · · · ), (2.3)

then {xn} converges to a point x∗ ∈ E. For details we refer to Beg [2].
If in (2.1), θn = αn ∈ [0, 1], we have Mann iteration. If in (2.1), θn = λ ∈

[0, 1],we obtain Schaefer’s iteration. Also (2.1) reduces to the Kransnoselskii’s
iteration if θn = 1

2 .

Theorem 2.1. Let (X, d,W ) be a complete convex metric space, E a nonempty
closed convex subset of X and T : E → E is a (k, L)−Lipschitzian mapping.
Let φ : R+ → R+ be a comparison function such that, for arbitrary x ∈ E,
there exists u ∈ E with
(i) d(Tu, u) ≤ φ(d(Tx, x));
(ii) d(u, x) ≤ bd(Tx, x), b > 0.
Then, T has a fixed point in E.

Proof. Let x0 ∈ E be an arbitrary point. Consider a sequence {xn}∞n=0 ⊂ E .
By conditions (i) and (ii), we have

d(Txn+1, xn+1) ≤ φ(d(Txn, xn)), n = 0, 1, 2, · · · , (2.4)

and

d(xn+1, xn) ≤ bd(Txn, xn), b > 0, n = 0, 1, 2, · · · . (2.5)

We obtain by induction in (2.4) that

d(Txn+1, xn+1) ≤ φ(d(Txn, xn)) ≤ φ2(d(Txn−1, xn−1))

≤ · · · ≤ φn+1(d(Tx0, x0)). (2.6)

Using (2.6) in (2.5) gives

d(xn+1, xn) ≤ bφn(d(Tx0, x0))→ 0 as n→∞. (2.7)
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Therefore {xn} is a Cauchy sequence in E. Since E is complete, there exists
x∗ ∈ E such that lim

n→∞
xn = x∗. By (1.3), (2.6) and triangle inequality, we

have

d(Tx∗, x∗) ≤ d(Tx∗, Txn) + d(Txn, xn) + d(xn, x
∗)

≤ Ld(Txn, xn) + kd(xn, x
∗) + d(Txn, xn) + d(xn, x

∗)

= (1 + L)d(Txn, xn) + (1 + k)d(xn, x
∗)

≤ (1 + L)φn(d(Tx0, x0)) + (1 + k)d(xn, x
∗)

→ 0 as n→∞. (2.8)

It follows from (2.8) that Tx∗ = x∗. Hence, x∗ is a fixed point of T. �

Theorem 2.1 can be extended to the next result under the assumption
of two metrics ρ and d such that (X, ρ) is complete and T : E → E is
(k, L)−Lipschitzian with respect to d.

Theorem 2.2. Let X be a nonempty set, E ⊂ X, ρ and d are two metrics on
X and T : E → E be a mapping. Suppose that:
(H1) there exists a comparison function φ : R+ → R+ such that, for arbitrary
x ∈ E, there exists u ∈ E with (i) d(Tu, u) ≤ φ(d(Tx, x)); (ii) d(u, x) ≤
bd(Tx, x), b > 0;
(H2) there exists a real numbers A ≥ 0, R ≥ 0 such that, for arbitrary x ∈ E,
there exists u ∈ E with;

(i) ρ(u, x) ≤ Ad(u, x); (ii) ρ(Tx, x) ≤ Rd(Tx, x);
(H3) (X, ρ,W ) is a complete convex metric space and E is a closed convex
subset of (X, ρ,W );
(H4) T : (E, ρ)→ (E, ρ) is continuous;
(H5) T : (E, d)→ (E, d) is (k, L)−Lipschitzian.
Then, T has a fixed point in E.

Proof. Let x0 ∈ E be an arbitrary point. By using conditions (H1)(i) and
(H1)(ii), we obtain as in Theorem 2.1 that

d(xn+1, xn) ≤ bφn(d(Tx0, x0))→ 0 as n→∞.

Thus {xn} is a Cauchy sequence in (E, d). By condition (H2)(i), we have that

ρ(xn+1, xn) ≤ Ad(xn+1, xn)

≤ Abφn(d(Tx0, x0))→ 0 as n→∞,

Therefore {xn} is a Cauchy sequence in (E, ρ). By (H3), (X, ρ,W ) is a com-
plete convex metric space. Therefore, (E, ρ,W ) is a complete subspace of
complete convex metric space (X, ρ,W ). Thus, there exists x∗ ∈ E such that
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lim
n→∞

xn = x∗. Using (H2)(ii) and (H4), we obtain that

ρ(Tx∗, x∗) ≤ ρ(Tx∗, Txn) + ρ(Txn, xn) + ρ(xn, x
∗)

≤ ρ(Tx∗, Txn) +Rd(Txn, xn) + ρ(xn, x
∗)

≤ ρ(Tx∗, Txn) +Rφn(d(Tx0, x0)) + ρ(xn, x
∗)

→ 0 as n→∞, (2.9)

It follows from (2.9) that Tx∗ = x∗. Hence, x∗ is a fixed point of T. �

Remark 2.1. Theorem 2.2 is a generalization/ extension of Beg [3, Theorem
2.1]. Condition (H5) provides us with the fact that T : (E, d) → (E, d) needs
not be continuous.

Theorem 2.3. Let (X, d,W ) be a complete convex metric space, E a nonempty
closed convex subset of X and T : E → E be a (k, L)−Lipschitzian involution.
For x0 ∈ E, let {xn} defined by (1.6) be the Mann iterative process, with

αn ∈ [0, 1]. If αn <
1−(k+L)L
(k+L)(1−L) , L(k + L) < 1, then, T has a fixed point in E.

Proof. For any x ∈ E, let u = W (x, Tx, αn). Then,

d(u, x) = d(W (x, Tx, αn), x)

≤ (1− αn)d(x, x) + αnd(x, Tx)

= αnd(Tx, x). (2.10)

Also,

d(u, Tu) = d(W (x, Tx, αn), Tu)

≤ (1− αn)d(x, Tu) + αnd(Tx, Tu)

= (1− αn)d(T 2x, Tu) + αnd(Tx, Tu)

≤ (1− αn)[Ld(Tx, T 2x) + kd(Tx, u)]

+αn[Ld(x, Tx) + kd(x, u)]

= L(1− αn)d(Tx, T 2x) + k(1− αn)d(Tx, u)

+αnLd(x, Tx) + kαnd(x, u)

≤ [ (1− αn)(k + L)L+ αnL+ kα2
n

+kαn(1− αn) ]d(Tx, x)

= (k + L) [L+ (1− L)αn] d(Tx, x)

= βd(Tx, x), (2.11)

where β = (k + L) [L+ (1− L)αn] and 0 ≤ β < 1 since αn < 1−(k+L)L
(k+L)(1−L) ,

(k + L)L < 1. For arbitrary x0 ∈ E, we define the Mann iterative sequence
{xn} ⊂ E by

xn+1 = W (xn, Txn, αn), (n = 0, 1, 2, · · · ).
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By using (2.11), we have as in Theorem 2.1 that

d(Txn+1, xn+1) ≤ βd(Txn, xn) ≤ β2d(Txn−1, xn−1)

≤ · · · ≤ βn+1d(Tx0, x0). (2.12)

Using (2.12) in (2.10) gives

d(xn+1, xn) ≤ αnβ
nd(Tx0, x0)→ 0 as n→∞. (2.13)

From (2.13), we have that {xn} is a Cauchy sequence in E. Since E is complete,
there exists x∗ ∈ E such that lim

n→∞
xn = x∗. By (1.3), (2.12) and triangle

inequality, we have that

d(Tx∗, x∗) ≤ d(Tx∗, Txn) + d(Txn, xn) + d(xn, x
∗)

≤ (1 + L)d(Txn, xn) + (1 + k)d(xn, x
∗)

≤ (1 + L)βnd(Tx0, x0) + (1 + k)d(xn, x
∗)

→ 0 as n→∞,
from which it follows that Tx∗ = x∗. Hence, x∗ is a fixed point of T. �

Remark 2.2. Theorems 3.1 and 3.2 of are generalizations/extensions of Beg
[3, Theorems 3.1 and 3.2] as well as a result of Goebel [6].
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