
Nonlinear Functional Analysis and Applications
Vol. 16, No. 1 (2011), pp. 101-113

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2011 Kyungnam University Press

ZYGMUND-TYPE INEQUALITIES FOR POLYNOMIALS
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Abstract. In this paper we consider a problem of investigating the dependence of ‖P (Rz)

−βP (rz)‖p on ‖P (z)‖p for every real or complex number β with |β| ≤ 1, R > r ≥ 1, p > 0

and present compact generalizations of certain well-known polynomial inequalities.

1. Introduction

Let Pn(z) denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j

of degree at most n. For P ∈ Pn, define

‖P (z)‖p :=

{
1

2π

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p}1/p

, 1 ≤ p <∞,

‖P (z)‖∞ := Max
|z|=1

|P (z)| and m(P, 1) := Min
|z|=1

|P (z)| .

If P ∈ Pn, then ∥∥P ′(z)∥∥
p
≤ n ‖P (z)‖p , p ≥ 1, (1.1)

and
‖P (Rz)‖p ≤ R

n ‖P (z)‖p , R > 1, p > 0. (1.2)

Inequality (1.1) was found by Zygmund [17] whereas inequality (1.2) is a
simple consequence of a result of Hardy [9](see also [13, Theorem 5.5]). Since
inequality (1.1) on p was indeed essential. This question was open for a long
time. Finally Arestov [2] proved that (1.1) remains true for 0 < p < 1 as well
was deduced from Riesz’s interpolation formula [15] by means of Minkowski’s
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inequality, it was not clear, whether the restrictil. For p = ∞, the inequality
(1.1) is due to Bernstein (see [11, p.531] or [16]) whereas the case p = ∞ of
inequality (1.2) is a simple consequence of the maximum modulus principle
(for reference, see [11, p.442] or [12, vol.I, p.137]). Both the inequalities (1.1)
and (1.2) can be sharpened if we restrict ourselves to the class of polynomials
having no zero in |z| < 1. In fact, if P ∈ Pn and P (z) 6= 0 in |z| < 1, then
inequalities (1.1) and (1.2) can be respectively replaced by∥∥P ′(z)∥∥

p
≤ n
‖P (z)‖p
‖1 + z‖p

, p ≥ 0 (1.3)

and

‖P (Rz)‖p ≤
‖Rnz + 1‖p
‖1 + z‖p

‖P (z)‖p , R > 1, p > 0. (1.4)

Inequality (1.3) is due to De-Bruijn [8](see also [4]) for p ≥ 1. Rahman and
Schmeisser [14] extended it for 0 < p < 1 whereas the inequality (1.4) was
proved by Boas and Rahman for p ≥ 1 and later it was extended for 0 < p < 1
by Rahman and Schmeisser[14]. For p = ∞, the inequality (1.3) was con-
jectured by Erdös and later verified by Lax [10] whereas inequality (1.4) was
proved by Ankeny and Rivlin [1].

Aziz and Dawood [3] refined Erdös-Lax theorem [10] and a result of Ankeny
and Rivilin[1] by showing that if P ∈ Pn and P (z) 6= 0 in |z| < 1, then∥∥P ′(z)∥∥∞ ≤ n

2
{‖P (z)‖∞ −m(P, 1)} (1.5)

and

‖P (Rz)‖∞ ≤
Rn + 1

2
‖P (z)‖∞ −

Rn − 1

2
m(P, 1), R > 1. (1.6)

Recently Aziz and Rather [5](see also [6]) investigated the dependence of

‖P (Rz)− P (z)‖p on ‖P (z)‖p
for R > 1, p ≥ 1. As a compact generalization of inequalities (1.1) and (1.2),
they have shown that if P ∈ Pn, then for every R > 1 and p ≥ 1,

‖P (Rz)− P (z)‖p ≤ (Rn − 1) ‖P (z)‖p . (1.7)

In the present paper we consider a more general problem of investigate the
dependence of

‖P (Rz)− βP (rz)‖p on ‖P (z)‖p and m(P, 1)

for every real or complex number β with |β| ≤ 1, R > r ≥ 1, p > 0 and develop
a unified method for arriving at these results. we first present the following
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result.

Theorem 1.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then for every
real or complex number β with |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|P (Rz)− βP (rz)| ≥ |Rn − βrn||z|nm(P, 1). (1.8)

The result is best possible and equality in (1.8) holds for P (z) = azn, a 6= 0.

Remark 1.1. Taking β = 0 in (1.8), we get for |z| ≥ 1

|P (Rz)| ≥ Rn|z|nm(P, 1), R > 1. (1.9)

For β = 1 if we divide the two sides of (1.8) R− r and make R→ r, we get
for |z| ≥ 1,

|P ′(rz)| ≥ nrn−1|z|nm(P, 1), r ≥ 1. (1.10)

Next we present the following interesting result which is a compact gener-
alization of inequalities (1.3), (1.4), (1.5) and (1.6).

Theorem 1.2. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for all
real or complex numbers β, δ with |β| ≤ 1, |δ| ≤ 1, R > r ≥ 1 and p > 0,∥∥∥∥P (Rz)− βP (rz) + δ

{
|Rn − βrn| − |1− β|

2

}
m(P, 1)

∥∥∥∥
p

≤
‖(Rn − βrn)z + (1− β)‖p

‖1 + z‖p
‖P (z)‖p . (1.11)

The result is best possible and equality in (1.11) holds for P (z) = azn+b, |a| =
|b| = 1.

For different values of parameters, a variety of interesting results can be
easily deduced from Theorem 1.2. Here we mention a few of these. The fol-
lowing corollary immediately follows from Theorem 1.2 by letting p → ∞ in
(1.11) and choosing the argument of δ suitably with |δ| = 1.

Corollary 1.1. If P ∈ Pn and P (z) does not vanish in |z| < 1,then for every
real or complex number β with |β| ≤ 1, R > r ≥ 1 and for |z| = 1,
|P (Rz)− βP (rz)|

≤ |R
n − βrn|+ |1− β|

2
Max
|z|=1

|P (z)|− |R
n − βrn| − |1− β|

2
Min
|z|=1

|P (z)| . (1.12)

The result is sharp and equality in (1.12) holds forP (z) = azn+b, |a| = |b| = 1.
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Remark 1.2. For β = 0, inequality (1.12) reduces to (1.6) and for β = 1 ,we
get the following interesting result.

Corollary 1.2. If P ∈ Pn and P (z) does not vanish in |z| < 1,then for
R > r ≥ 1 and |z| = 1,

|P (Rz)− P (rz)| ≤ (Rn − rn)

2

{
Max
|z|=1

|P (z)| −Min
|z|=1

|P (z)|
}

(1.13)

The result is sharp and equality in (1.13) holds forP (z) = azn+b, |a| = |b| = 1.

Remark 1.3. If we divide the two sides of (1.13) by R− r and let R→ r, we
get for |z| = 1,∣∣P ′(rz)∣∣ ≤ n

2
rn−1

{
Max
|z|=1

|P (z)| −Min
|z|=1

|P (z)|
}
, r ≥ 1. (1.14)

For r = 1 inequality (1.14) reduces to inequality (1.5). The following result
which is a generalization of inequalities (1.3) and (1.4) follows from Theorem
1.2 by setting δ = 0 in inequality (1.14).

Corollary 1.3. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every
real or complex number β with |β| ≤ 1, R > r ≥ 1 and p > 0,

‖P (Rz)− βP (rz)‖p ≤
‖(Rn − βrn)z + (1− β)‖p

‖1 + z‖p
‖P (z)‖p . (1.15)

The result is best possible and equality in (1.15) holds for P (z) = azn+b, |a| =
|b| = 1.

Remark 1.4. For β = 0, inequality (1.15) reduces to (1.6). If we divide the
two sides of (1.15) by R− r with β = 1 and let R→ r,we get∥∥P ′(rz)∥∥

p
≤ nrn−1

‖P (z)‖p
‖1 + z‖p

, p ≥ 0, r ≥ 1. (1.16)

The result is sharp.

For r = 1 inequality (1.16) reduces to inequality (1.3) due to De Bruijn [8].

2. Lemmas

For the proofs of these theorems, we need the following lemmas.
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Lemma 2.1. If P ∈ Pn and P(z) has all its zeros in |z| ≤ ρ where ρ ≥ 0,
then for every R ≥ r, rR ≥ ρ2 and |z| = 1,

|P (Rz)| ≥
(
R+ ρ

r + ρ

)n
|P (rz)| . (2.1)

Proof. Since all the zeros of P(z) lie in |z| ≤ ρ, we write

P (z) = C
n∏
j=1

(
z − rjeiθj

)
where rj ≤ ρ, j = 1, 2, · · · , n. Now for 0 ≤ θ < 2π, R ≥ r and rR ≥ ρ2, we
have ∣∣∣∣Reiθ − rjeiθjreiθ − rjeiθj

∣∣∣∣ =

{
R2 + r2j − 2RrjCos(θ − θj)
r2 + r2j − 2rrjCos(θ − θj)

}1/2

≥
{
R+ rj
r + rj

}
≥
{
R+ ρ

r + ρ

}
,

j = 1, 2, · · · , n. Hence∣∣∣∣P (Reiθ)

P (reiθ)

∣∣∣∣ =

n∏
j=1

∣∣∣∣Reiθ − rjeiθjreiθ − rjeiθj

∣∣∣∣
≥

n∏
j=1

(
R+ ρ

r + ρ

)
=

(
R+ ρ

r + ρ

)n
for 0 ≤ θ < 2π. This implies for |z| = 1, R ≥ r and rR ≥ ρ2

|P (Rz)| ≥
(
R+ ρ

r + ρ

)n
|P (rz)| ,

which completes the proof of Lemma 2.1. �

Lemma 2.2. If P ∈ Pn and P(z) does not vanish in |z| < 1, then for every
real or complex number β with |β| ≤ 1,R ≥ r ≥ 1, and |z| = 1,

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)| (2.2)

where Q(z) = znP (1/z).The result is sharp and equality in (2.2)holds for
P (z) = zn + 1.

Proof. For the case R=r, the result follows by observing that |P (z)|≤|Q(z)|
for |z| ≥ 1. Henceforth, we assume that R > r. Since the polynomial P (z)
has all its zeros in |z| ≥ 1, therefore, for every real or complex number α

with |α| > 1, the polynomial f(z) = P (z)− αQ(z), where Q(z) = znP (1/z),
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has all its zeros in |z| ≤ 1. Applying Lemma 2.1 to the polynomial f(z) with
ρ = 1, we obtain for every R > r ≥ 1 and 0 ≤ θ < 2π,

|f(Reiθ)| ≥
(
R+ 1

r + 1

)n
|f(reiθ)|. (2.3)

Since f(Reiθ) 6= 0 for every R > r ≥ 1, 0 ≤ θ < 2π and R+ 1 > r + 1, it
follows from (2.3) that

|f(Reiθ)| >
(
r + 1

R+ 1

)n
|f(Reiθ)| ≥ |f(reiθ)|

for every R > r ≥ 1 and 0 ≤ θ < 2π. This gives

|f(rz)| < |f(Rz)| for |z| = 1 and R > r ≥ 1.

Using Rouche’s theorem and noting that all the zeros of f(Rz) lie in
|z| ≤ 1

R < 1, we conclude that the polynomial

T (z) = f(Rz)− βf(rz) = {P (Rz)− βP (rz)} − α {Q(Rz)− βQ(rz)} (2.4)

has all its zeros in |z| < 1 for every real or complex number α with |α| > 1
and R > r ≥ 1. This implies

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)| (2.5)

for |z| ≥ 1 and R > r ≥ 1. If inequality (2.5) is not true, then exist a point
z = w with |w| ≥ 1 such that

|P (Rw)− βP (rw)| > |Q(Rw)− βQ(rw)|.
But all the zeros of Q(z) lie in |z| ≤ 1, therefore, it follows (as in case of
f(z)) that all the zeros of Q(Rz)− βQ(rz) lie in |z| < 1. Hence
Q(Rw)− βQ(rw) 6= 0 with |w| ≥ 1. We take

α =
P (Rw)− βP (rw)

Q(Rw)− βQ(rw)
,

then α is a well defined real or complex number with |α| > 1 and with this
choice of α, from (2.4) we obtain T (w) = 0, where |w| ≥ 1. This contradicts
the fact that all the zeros of T (z) lie in |z| < 1. Thus

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)|
for |z| ≥ 1 and R > r ≥ 1. This proves Lemma 2.2. �

Lemma 2.3. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every
real or complex number β with |β| ≤ 1,R ≥ r ≥ 1, and |z| = 1,

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)| − (|Rn − βrn| − |1− β|)m(P, 1)

where Q(z) = znP (1/z).
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Proof. By hypothesis P (z) has all its zeros in |z| ≥ 1 and

m(P, 1) ≤ |P (z)| for |z| = 1. (2.6)

We show F (z) = P (z) + λm(P, 1) does not vanish in |z| < 1 for every λ with
|λ| < 1. This is obvious if m(P, 1) = 0, that is, if P (z) has a zero on |z| = 1.
So we assume all the zeros of P (z) lie in |z| > 1, then m(P, 1) > 0 and by the
maximum modulus principle, it follows from (2.6),

m(P, 1) < |P (z)| for |z| < 1. (2.7)

Now if F (z) = P (z) + λm(P, 1) = 0 for some z = z0 with |z0| < 1,then

P (z0) + λm(P, 1) = 0.

This implies
|P (z0)| = |λ|m(P, 1) ≤ m(P, 1), |z0| < 1,

which is clearly a contradiction to (2.7). Thus the polynomial F (z) does not
vanish in |z| < 1 for every λ with |λ| < 1. Applying Lemma 2.2 to the
polynomial F (z), we get

|F (Rz)− βF (rz)| ≤ |G(Rz)− βG(rz)|

for |z| = 1 and R ≥ r ≥ 1 where G(z) = znF (1/z) = Q(z) + λ̄znm(P, 1).
Replacing F (z) by P (z) + λm(P, 1),we obtain

|P (Rz)− βP (rz) + λ(1− β)| ≤
∣∣Q(Rz)− βQ(rz) + λ̄(Rn − βrn)zn

∣∣ (2.8)

for |z| = 1 and R ≥ r ≥ 1. Now choosing the argument of λ in the right hand
side of (2.8) such that∣∣Q(Rz)− βQ(rz) + λ̄(Rn − βrn)zn

∣∣ = |Q(Rz)− βQ(rz)| − |λ||Rn − βrn|
for |z| = 1, which is possible by Theorem 1.1, we get

|P (Rz)− βP (rz)| − |λ||1− β| ≤ |Q(Rz)− βQ(rz)| − |λ||Rn − βrn|
for |z| = 1 and R ≥ r ≥ 1. Equivalently,

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)| − (|Rn − βrn| − |1− β|)m(P, 1)

for |z| = 1 and R ≥ r ≥ 1. This proves Lemma 2.3. �

Next we describe a result of Arestov.

For γ = (γ0, γ1, · · · , γn) and P (z) =
∑n

j=0 ajz
j ∈ Pn, we define

ΛγP (z) =

n∑
j=0

γjajz
j .

The operator Λγ is said to be admissible if it preserves one of the following
properties:
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(i) P (z) has all its zeros in {z ∈ C : |z| ≤ 1} ,
(ii) P (z) has all its zeros in{z ∈ C : |z| ≥ 1} .

The result of Arestov may now be stated as follows.

Lemma 2.4. ([2, Theorem 4]) Let φ(x) = ψ(logx) where ψ is a convex
nondecreasing function on R. Then for all P ∈ Pn and each admissible
operator Λγ, ∫ 2π

0
φ(|ΛγP (eiθ)|)dθ ≤

∫ 2π

0
φ(C(γ, n)|P (eiθ)|)dθ

where C(γ, n) = max(|γ0|, |γn|).

In particular, Lemma 2.4 applies with φ : x→ xp for every p ∈ (0,∞).
Therefore, we have{∫ 2π

0
(|ΛγP (eiθ)|p)dθ

}1/p

≤ C(γ, n)

{∫ 2π

0
|P (eiθ)|pdθ

}1/p

. (2.9)

We use (2.9) to prove the following interesting result.

Lemma 2.5. If P ∈ Pn and P(z) does not vanish in |z| < 1, then for every
real or complex number β with |β| ≤ 1, R > r ≥ 1, p > 0 and α real,∫ 2π

0
|(P (Reiθ)− βP (reiθ)) + eiα(RnP (eiθ/R)− β̄rnP (eiθ/r))|pdθ

≤ |(Rn − βrn) + eiα(1− β̄)|p
∫ 2π

0
|P (eiθ|pdθ.

Proof. Let Q(z) = znP (1/z). Since P (z) does not vanish in |z| < 1 by
Lemma 2.2, for every real or complex number β with |β| ≤ 1, R ≥ r ≥ 1 and
|z| = 1,we have

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)| =
∣∣RnP (z/R)− βrnP (z/r)

∣∣ .
Now(as in the proof of Lemma 2.2), the polynomial

H(z) = Q(Rz)− βQ(rz) = RnznP (1/Rz)− βrnznP (1/rz)

has all its zeros in |z| < 1 for every real or complex number β with |β| ≤ 1
and R > r. This gives that the polynomial

znH(1/z) = RnP (z/R)− βrnP (z/r)

has all its zeros in |z| > 1. Hence the function

f(z) =
P (Rz)− βP (rz)

RnP (z/R)− βrnP (z/r)
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is analytic in |z| ≤ 1 and |f(z)| ≤ 1 for |z| = 1. Since f(z) is not a constant,
it follows by the maximum modulus Principle that

|f(z)| < 1 for |z| < 1,

or equivalently,

|P (Rz)− βP (rz)| <
∣∣RnP (z/R)− βrnP (z/r)

∣∣ for |z| < 1. (2.10)

A direct application of Rouche’s theorem shows that

ΛγP (z) = (P (Rz)− βP (rz)) + eiα(RnP (z/R)− βrnP (z/r))

= ((Rn − βrn) + eiα(1− β)anz
n + · · ·+ ((1− β) + eiα(Rn − βrn))a0

does not vanish in |z| < 1 for every β with |β| ≤ 1, R > r ≥ 1 and α real.
Therefore, Λγ is an admissibe operator. Applying (2.9) of Lemma 2.5, the
desired result follows immediately for each p > 0. This completes the proof
of Lemma 2.5. �

We also need the following lemma [5].

Lemma 2.6. If A, B, C are non-negative real numbers such that B + C≤A,
then for every real number α,

|(A− C)eiα + (B + C)| ≤ |Aeiα +B|.

3. Proofs of theorems

Proof of Theorem 1.1. By hypothesis, all the zeros P (z) lie in |z| ≤ 1 and

m(P, 1)|z|n ≤ |P (z)| for |z| = 1.

We first show that the polynomial G(z) = P (z)−αm(P, 1)zn has all its zeros
in |z| ≤ 1 for every real or complex number α with |α| < 1. This is obvious if
m(P, 1) = 0, that if P (z) has a zero on |z| = 1. Henceforth, we assume P (z)
has all its zeros in |z| < 1, then m(P, 1) > 0 and it follows by the Rouche’s
theorem that the polynomial G(z) = P (z)− αm(P, 1)zn has all its zeros in
|z| < 1 for every real or complex number α with |α| < 1. Applying Lemma
1.1 to the polynomial G(z) with ρ = 1, we deduce as before,

|G(Rz)| > |G(rz)| for |z| = 1 and R > r ≥ 1. (3.1)

Since all the zeros of G(Rz) lie in |z| < (1/R) < 1, by Rouche’s Theorem
again it follows from (3.1) that all the zeros of polynomial

H(z) = G(Rz)−βG(rz) = (P (Rz)−βP (rz))−α(Rn−βrn)znm(P, 1)) (3.2)

lie in |z| < 1 for every α, β with |α| < 1, |β ≤ 1 and R > r ≥ 1. This gives

|P (Rz)− βP (rz)| ≥ |Rn − βrn||z|nm(P, 1) (3.3)
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for |z| ≥ 1 and R > r ≥ 1. Because if the inequality (3.3) is not true, then
there is point z = z0 with |z0| ≥ 1 such that

|P (Rz0)− βP (rz0)| > |Rn − βrn||z0|nm(P, 1).

We choose

α =
P (Rz0)− βP (rz0)

(Rn − βrn)zn0m(P, 1)
,

then clearly |α| < 1 and with choice of α, from (3.2) we get H(z0) = 0 with
|z0| ≥ 1. This is clearly a contradiction to the fact that the zeros of H(z) lie
in |z| < 1.Thus for every real or complex number β with |β| ≤ 1,

|P (Rz)− βP (rz)| ≥ |Rn − βrn||z|nm(P, 1)

for |z| ≥ 1 and R > r ≥ 1. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. By hypothesis P (z) does not vanish in |z| < 1,
therefore, by Lemma 2.3, we have

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)| − (|Rn − βrn| − |1− β|)m(P, 1)

for |z| = 1, |β| ≤ 1 and R > r ≥ 1 where Q(z) = znP (1/z). Equivalently,

|P (Rz)− βP (rz)|
≤
∣∣RnP (z/R)− β̄rnP (z/r)

∣∣− (|Rn − βrn| − |1− β|)m(P, 1)

for |z| = 1, |β| ≤ 1 and R > r ≥ 1. This implies for every real or complex
number β with |β| ≤ 1, 0 ≤ θ < 2π and R > r ≥ 1,

|P (Reiθ)− βP (reiθ)|+ |R
n − βrn| − |1− β|

2
m(P, 1)

≤ |RnP (eiθ/R)− β̄rnP (eiθ/r)| − |R
n − βrn| − |1− β|

2
m(P, 1). (3.4)

Taking

A = |RnP (eiθ/R)− β̄rnP (eiθ/r)|, B = |P (Reiθ)− βP (reiθ)|

and

C =
|Rn − βrn| − |1− β|

2
m(P, 1)

in Lemma 2.6 and noting by (3.4) that

(B + C) ≤ (A− C) ≤ A,
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we get for every real α,∣∣∣∣{|RnP (eiθ/R)− β̄rnP (eiθ/r)| − |R
n − βrn| − |1− β|

2
m(P, 1)

}
eiα

+

{
|P (Reiθ)− βP (reiθ)|+ |R

n − βrn| − |1− β|
2

m(P, 1)

}∣∣∣∣
≤
∣∣∣|RnP (eiθ/R)− β̄rnP (eiθ/r)|eiα + |P (Reiθ)− βP (reiθ)|

∣∣∣ .
This implies for each p > 0,

∫ 2π

0
|F (θ) + eiαG(θ)|pdθ

≤
∫ 2π

0

∣∣∣|RnP (eiθ/R)− β̄rnP (eiθ/r)|eiα + |P (Reiθ)− βP (reiθ)|
∣∣∣p dθ, (3.5)

where

F (θ) = |P (Reiθ)− βP (reiθ)|+
(
|Rn − βrn| − |1− β|

2

)
m(P, 1)

and

G(θ) = |RnP (eiθ/R)− β̄rnP (eiθ/r)| −
(
|Rn − βrn| − |1− β|

2

)
m(P, 1).

Integrating both sides of (3.5) with respect to α from 0 to 2π, we get with
the help of Lemma 2.5 for each p > 0, R > r ≥ 1 and α real,

∫ 2π

0

∫ 2π

0
|F (θ) + eiαG(θ)|pdαdθ

≤
∫ 2π

0

∫ 2π

0
||RnP (eiθ/R)− β̄rnP (eiθ/r)|eiα+ |P (Reiθ)−βP (reiθ)||pdθdα

=

∫ 2π

0

{∫ 2π

0
||RnP (eiθ/R)− β̄rnP (eiθ/r)|eiα + |P (Reiθ)− βP (reiθ)||pdα

}
dθ

=

∫ 2π

0

{∫ 2π

0
|(RnP (eiθ/R)− β̄rnP (eiθ/r))eiα + (P (Reiθ)− βP (reiθ)|pdα

}
dθ

=

∫ 2π

0

{∫ 2π

0
|(RnP (eiθ/R)− β̄rnP (eiθ/r))eiα + P (Reiθ)− βP (reiθ)|pdθ

}
dα

≤
∫ 2π

0
|(Rn−βrn) + eiα(1− β̄)|pdα

∫ 2π

0
|P (eiθ)|pdθ. (3.6)
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Now for every real α, t ≥ 1 and p > 0, we have∫ 2π

0
|t+ eiα|pdα ≥

∫ 2π

0
|1 + eiα|pdα.

If F (θ) 6= 0, we take t = |G(θ)|/|F (θ)|, then by (30) t ≥ 1 and we get∫ 2π

0
|F (θ) + eiαG(θ)|pdα = |F (θ)|p

∫ 2π

0

∣∣∣∣1 + eiα
G(θ)

F (θ)

∣∣∣∣p dα
= |F (θ)|p

∫ 2π

0

∣∣∣∣G(θ)

F (θ)
+ eiα

∣∣∣∣p dα
= |F (θ)|p

∫ 2π

0

∣∣∣∣∣∣∣∣G(θ)

F (θ)

∣∣∣∣+ eiα
∣∣∣∣p dα

≥ |F (θ)|p
∫ 2π

0

∣∣1 + eiα
∣∣p dα.

For F (θ) = 0, this inequality is trivially true. Using this in(3.6), we conclude
that for every real or complex number β with |β| ≤ 1, R > r ≥ 1 and α real,∫ 2π

0
|1 + eiα|pdα

∫ 2π

0

{
|P (Reiθ)−βP (reiθ)|+ |R

n − βrn| − |1− β|
2

m(P, 1)

}p
dθ

≤
{∫ 2π

0
|(Rn − βrn) + eiα(1− β̄)|pdα

}{∫ 2π

0
|P (eiθ|pdθ

}
.

This gives for every real or complex number δ, β with |δ| ≤ 1, |β| ≤ 1,
R > r ≥ 1 and α real,∫ 2π

0
|1+eiα|pdα

∫ 2π

0
|P (Reiθ)−βP (reiθ)+δ

{
|Rn − βrn|−|1− β|

2

}
m(P, 1)|pdθ

≤
{∫ 2π

0
|(Rn − βrn) + eiα(1− β̄)|pdα

}{∫ 2π

0
|P (eiθ|pdθ

}
. (3.7)

Since ∫ 2π

0
|(Rn − βrn) + eiα(1− β̄)|pdα

=

∫ 2π

0
||Rn − βrn|+ eiα|1− β̄||pdα

=

∫ 2π

0
||Rn − βrn|+ eiα|1− β||pdα

=

∫ 2π

0
||Rn − βrn|eiα + |1− β||pdα

=

∫ 2π

0
|(Rn − βrn)eiα + (1− β)|pdα, (3.8)
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the desired result follows immediately by combining (3.7) and (3.8). This
completes the proof of Theorem 1.2.

Remark 3.1. From Theorem 1.1, one can easily deduce that if P ∈ Pn and
P (z) has all its zeros in |z| ≤ 1, then for every real or complex number β
with |β| ≤ 1 and R > r ≥ 1,

‖P (Rz)− βP (rz)‖p ≥ |R
n − βrn|m(P, 1). (3.9)

The result is best possible and equality in (3.9) holds for P (z) = azn, a 6= 0.
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C.R.Acad. Sci, Paris, 158 (1914), 1152–1254.

[16] A.C. Schaffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related
functions, Bull. Amer. Math. Soc., 47 (1941), 565–579.

[17] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 292–
400.


