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ZERO-FREE REGIONS FOR ANALYTIC FUNCTIONS
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Abstract. In this paper we obtain some interesting zero-free regions for a class of analytic
functions which generalise a number of already known results by putting less restrictive

conditions on the coefficients of the analytic functions.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following famous result due to Enestrom and Kakeya [8] is well known
in the theory of the location of the zeros of a polynomial.

Theorem 1.1. If
P(z) = anz"+an_12"" 1+ ...+ a1z + ao,
18 a polynomial of degree n, such that
p > Qe > oo >a1 > ag >0, (1.1)
then P(z) does not vanish in |z| > 1.

This is a very elegant result but is equally limited in scope. In the literature
[1-7, 9], there already exist some extensions and generalizations of Enestrom—
Kakeya Theorem. Aziz and Zargar [5] relaxed the hypothesis in several ways
and among other things proved the following generation of Theorem 1.1.

Theorem 1.2. If
P(z) = anz"+an_12""1+ ...+ a1z + ao,
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1 a polynomial of degree n, such that for some k > 1,
kap > apn—1> ........ > a1 > ag >0,
then P(z) has all its zeros in
lz+k—1| <k. (1.2)
Aziz and Mohammad [2] extended Enestrom-Kakeya Theorem to a class of

analytic functions f(z) = >272, a;jz’ (# 0) with its coefficients a; satisfying a
relation analogus to (1.1) and proved.

Theorem 1.3. Let f(z)=) 72, ajz) (#0) be analytic in |z| < t.

If aj >0 and aj—1 —ta; >0, j =1,2,3,---, then f(z) does not vanish in
2| < t.

Recently Aziz and Shah [3] relaxed the hypothesis of Theorem 1.3 and
established the following result:

Theorem 1.4. Let f(z) = 222, ajzl (#0) be analytic in |z| < t such that
for some k> 1,
kao > tay > tPaz > -+,
then f(z) does not vanish in
k-1 ;
2k —1

kt

§ %—1

<

In this paper we shall prove the following more general result which includes
Theorems 1.3 and 1.4 as special cases. These Theorems and many other such
results can be established from Theorem 1.5 by a fairly uniform procedure.

Theorem 1.5. Let f(z) = Y 72a;27 (# 0) be analytic for |2| < 1. If for
some k > 1,

Ma:c‘z|:1 |(ka0 —a1)+ (a1 —a2)z + (a2 — ag)ZQ + - ‘ <M, (1.3)
then f(z) does not vanish in the disk
(k1) ]ao)? < M |ao|
M? — (k-1)* |aol?| = M2 —|ao|* (k — 1)2

(1.4)

Applying this result to f(tz), we immediately get the following generaliza-
tion of Theorem 1.4.

Corollary 1.6. Let f(2) = 372, ajz! be analytic in |z| < t. If for some
k>1,

Mammzl |(ka0 — tCLl) + (a1 — tag)Z + (CLQ — ta3)22 + - | < M,
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then f(z) does not vanish in the disk
k- Daft | Mt
M2 — (k= 1)% |ao|*| = M2 — |ao|* (k — 1)*
Remark 1.7. Suppose f(z) satisfies the hypothesis of Theorem 1.4. Tthen
Maz|,— ‘(k:ao —tay) + (ay — tag)z + (az — taz)z? + - -- ‘
< |kag — tay| + |ay — tag|t + |az — tas|t> + - -

= (k‘ao — al) + (ta1 — t2a2) + ..
= kao = M.

(1.5)

So that,

M? —Jag|* (k —1)* = |ao|* [k* — (k —1)%] = |ao| (2k - 1).
Using this in (1.5), it follows that f(z) does not vanish in the disk
(k—1)t tk
2k—1 |~ 2k—1"

This is precisely the conclusion of Theorem 1.4.

(1.6)

Next we prove the following result which is a generalization of Theorem 1.3.

Theorem 1.8. Let f(2) = > 72, a;jz’ (# 0) be analytic for |z| < t. If for some
k>1,

Mo, |(kag — tar) + (a1 — taz)z + (az — tag)z® + - - | < M,
then f(z) does not vanish in the disk
tao|
(k—1)|ao| + M~
Remark 1.9. If f(z) satisfies the hypothesis of Theorem 1.3, then clearly
Maw|,—; |(kag — tar) + (a1 — taz)z + (ag — tag)z® + - - |
< |kag — tay| + a1 — tag|t + |ag — tag|t> + - --
= (kag — tay) + (tay — t?ag) + - - = kag

2| <

(1.7)

and we immediately get the following generalization of Theorem 1.3.

Corollary 1.10. If f(z) is analytic in |z| <t and if for some positive number
k>1,
kag > tay > t*az > -+,
then f(z) does not vanish in
t
2k —1°

2] <
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Remark 1.11. For k =1, Corollary 1.10 reduces to Theorem 1.5. If
H(z) = |(kag — ta1) + (a1 — tas)z + (az — taz)z* +---|,
then
M = Maz|.— |H(2)| = |H(t)]
= ‘(kao —tay) + (a1 — tag)t + (ag — taz)t® + - -- ‘
=k ’ao‘ .
Now for k > 1, we have
2ao| < 2k|aol,
which implies,
lao| < (k — 1) |ag| + k|ao| < (k — 1) |ag| + M.
So that
t |ao| -y
(k—1)lao| + M —

This gives

min{ tlaol t} = tlaol .
(k—l)\a0|+M’ (k—l)]a0|+M

Keeping these observation in view, we see that Theorem 1.8 is a special case
of the following more general result for R =t.

Theorem 1.12. Let f(2) = > 72, ajzl (#0), be analytic for |z| < R. If for
some positive real numbers t and R,
Maz, =g [H(2)| < M,

where
H(z) = |(kag — ta1) + (a1 — taz)z + (a2 — taz)z? + - - |. (1.8)
Then f(z) does not vanish in the disk

: t]aol
< R>.
Z'—mm{<k—1>|aor+M’ }

If we take k = 1, we immediately get the following result;

Corollary 1.13. If f(z) =372, ajzl (#0), be analytic in |z| < R and

o
Maa;M:R Z(aj_l — taj)zjfl < M,
=0

then f(z) does not vanish in the disk

. tlao|
< RS.
|z _mln{ , }
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Corollary 1.13 was independently proved by Aziz and Shah [4, Cor 3].

2. PROOFS OF THE THEOREMS

Proof of Theorem 1.5. It is obvious that, lim; . a; = 0, consider the
function.

F(z)=(z = 1)f(2) = —ag + (ap — a1)z + (a1 — ag)z* + - --
= —ag — k:aoZ + agz + (kag - al)z + (a1 - a2)22 + -
= —ap—apz(k — 1)+ zH(2),

where
H(Z): (kao—a1)+(al_a2)z+... .
Clearly,
M = MCLIIZ‘|Z‘:1 ‘H(Z)| (2 1)
> |H(1)| = |(kao — a1) + (a1 —az) +---| = kao| . '
Now for |z| < 1, we have
[F(2)| = |aol |2(k — 1) + 1] — |2 [H(2)] , (2.2)

where
H(z)=(kap—a1)+ (a1 —az)z+--- .
Since H(z) is analytic for |z| <1 and
|H(z)| <M for |z|]=1.
By maximum modulus principle, it follows that
|H(z)| <M for |z|<1.
Using this fact in (2.2) we get
[F(2)| = lao| [2(k = 1) + 1] = [2| M > 0,
if
M |z|

|ao
Now it can be verified that the region E defined by

E:{z: Ml yz(k—1)+1\}

<|z(k—1)+1].

|aol
is precisely the disk
1 2
sl =1l
M? — (k —1)%|acl

M |ag|
T M2—(k—1)2]a)* |
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It can be easily seen that E is contained in the disk |z| < 1. For if w € E,
then clearly
k-l | Ml
M2 (k=12 a0 | = MZ— (k— 1)%[aol”

Which implies
o < Ja0l (0= Vool £ 11}
M? — (k — 1) |ao]

if
lag| < M — (k — 1) |ao]
or, if
k|a0] S M.

Which is true by (2.1). Using these observations we conclude that F'(z) does
not vanish in the disk defined by (1.4). Since all the zeros of f(z) are also the
zeros of F(z), we conclude that f(z) does not vanish in the disk.

Gl [ Miel
M2 = (k= 1)2]aof*| = M2 = (k= 1)% ao

Which completes the proof of Theorem 1.5.

Proof of Theorem 1.12. Consider the function
F(2) = (z = t)f(2) = —aot + (ap — ta1)z + (a1 — tag)z* + -
= —aot — kagz + apz + (kag — tay)z + (a1 — tag)z® + - -
= —aot —apz(k — 1) + zH(z),
where
H(z) = (kap —ta1) + (a1 — tag)z+ - - - .
We first assume that

M ol { = (=1 (2.3

Since H(z) is analytic for |z| < R and |H(z)| < M for |z| = R therefore by
maximum modulus theorem it follows that |H(z)| < M for |z| < R. Hence
for|z| < R,
|F(z)] = |—tag — ap(k — 1)z + zH(2)| > |tao| — |ao| |k — 1] |z] — M |2].
This implies
[F'(2)] >0,
if
[tao] — (Jao| (k — 1) + M) |z| > 0
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or if, by (2.3),

Now assume,

then for |z| < R, we have,

[H(z)] < M

and by (2.4),
|F(2)] = |—tap — ag(k — 1)z + zH(2)| > t]ao| — (lao| (k — 1) + M)R > 0.

Thus |F(z)| > 0 for |z| < R, this implies F(z) # 0 for |z| < R. From which
it follows that F(z) does not vanish for |z| < R in this case also. Combining
this with (2.3). We conclude that F(z) does not vanish in the disk

) taol
<
'Z’—mm{<k—1>rao|+M’R}

and this completes the proof of Theorem 1.12.
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