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Abstract. In this paper, we prove the existence, uniqueness and stability of solutions of

neutral stochastic infinite delay differential equations with Poisson jumps and Markovian

switching in the phase space BC
(
(−∞, 0];<d

)
which is the family of bounded continuous

<d-valued functions ϕ defined on (−∞, 0] with norm ‖ϕ‖ = sup−∞<θ≤0 |ϕ(θ)| under non-

Lipschitz condition and weakened linear growth condition. The solutions are constructed by

the successive approximation method. Also we prove the continuous dependence of solutions

on the initial value.

1. Introduction

Stochastic delay differential equations have many applications in econom-
ics, biology, medicine and finance. Many of the processes either natural or
manual involve time delays and they are dependent on the impact of the past.
Indeed, stochastic delay differential equations as the stochastic models appear
frequently in applied research and the related study has received considerable
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attention. Stability of stochastic differential equations is essential to avoid pos-
sible explosion of solutions. Mao [1] discussed stochastic functional differential
equations under uniform Lipschitz condition and linear growth condition on
the coefficients. Liu and Xia [2] investigated the exponential stability in mean
square of neutral stochastic functional differential equations. In contrast to
these theoretical studies there appear several papers on numerical stability of
stochastic differential equations see [3, 4, 5] and references therein.

The Poisson jumps become very popular in recent years, because it is ex-
tensively used to model many of the phenomena arising in the areas such as
economics, finance, physics, biology, medicine and other sciences. For exam-
ple, a system jumps from a ”normal state” to a ”bad state”, the strength
of system is of random. It is natural and necessary to include jumps term
in the stochastic delay differential equations. Fixed point method was first
introduced by Liu et al.[6] to study the stability problem of neutral stochas-
tic delay differential equations with Poisson jumps. Another important kind
of stochastic functional differential equations is the neutral stochastic func-
tional differential equations with finite delay which could be used in chemical
engineering and aeroelasticity [7]. Wei and Wang [8] and Zhou and Xue [9]
established the existence and uniqueness of solutions to the neutral stochastic
functional differential equations with infinite delay. Ayoola and Gbolagade
ivestigated the existence, uniqueness and stability of strong solutions of quan-
tum stochastic differential equations [16]. In [10, 11], the authors have studied
the existence, uniqueness and stability of solutions to neutral stochastic func-
tional differential equations with infinite delay under non-Lipschitz condition
and weakened linear growth condition.

The hybrid systems driven by continuous-time Markov chains have been
used to model many practical systems where they may experience abrupt
changes in their structure and parameters caused by phenomena such as com-
ponent failures or repairs, changing subsystem interconnections, and abrupt
environmental disturbances. The hybrid systems combine a part of the state
that takes values continuously and another part of the state that takes discrete
values. One of the important classes of the hybrid systems is the stochastic
delay differential equations(SDDEs) with Markovian switching.

Motivated by the above work [10, 11], in this paper, we prove the existence,
uniqueness and stability of solutions of neutral stochastic infinite delay differ-
ential equations with Poisson jumps and Markovian switching (NSIDDEPM)
in the phase space BC

(
(−∞, 0];<d

)
under non-Lipschitz condition and weak-

ened linear growth condition. The solution is constructed by the successive
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approximation technique. Furthermore, we prove the continuous dependence
of solutions on the initial value.

2. Preliminaries and Notations

Let {Ω,F , P} be a complete probability space with a filtration {Ft}t≥t0
(where t0 > 0) satisfying the usual conditions, that is, the filtration is right
continuous and F0 contains all P -null sets. Let {W (t) = (W1(t),W2(t), · · · ,
Wm(t))T , t ≥ 0

}
denote a standard m-dimensional Wiener process defined on

the probability space. Let BC
(
(−∞, 0];Rd

)
denotes the family of bounded

continuous <d-value functions ϕ defined on (−∞, 0] with norm ‖ϕ‖=sup−∞<θ≤0

|ϕ(θ)|, where |.| is the Euclidean norm in <d, i.e., |x| =
√
xTx

(
x ∈ <d

)
. If A

is a vector or matrix, its trace norm is defined by |A| =
√
trace (ATA). De-

note byM2
(
(−∞, 0] ;<d

)
the family of all Ft0-measurable, <d-valued process

ψ(t) = ψ(t, ω), t ∈ (−∞, 0] such that E
∫ 0
−∞ |ψ(t)|2dt <∞.

Let {v (dt, du) , t ∈ <+, u ∈ <} be a centered Poisson random measure with
parameter π (du) dt. Let r(t) , t ≥ 0, be a right-continuous Markov chain on
the probability space taking values in a finite state space S = {1, 2, ..., N}
with generator Γ = (γij)N×N given by

P {r (t+ ∆) = j|r (t) = i} =

{
γij∆ + o (∆) if i 6= j,
1 + γii∆ + o (∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while
γii = −

∑
j 6=i γij . We assume that the Markov chain r(.) is independent of the

Brownian motion w(.). It is known that almost every sample path of r(t) is
a right-continuous step function with a finite number of simple jumps in any
finite subinterval of <+. As for r(t), the following lemma is satisfied (see[14]).

Lemma 2.1. Given h > 0, then
{
rhn = r (nh) , n = 0, 1, 2, ...

}
is a discrete

Markov chain with the one-step transition probability matrix

P (h) = (Pij (h))N×N = ehΓ.

Since the γij are independent of x, the paths of Markov chain r can be
generated independent of x and, in fact, before computing x. It is well known
that r(t) is ergodic Markov chain and that there is a sequence {τk}k≥0 of stop-

ping times such that t0 = τ0 < τ1 < τ2 < ... < τk →∞ and r(t) is a constant
on every interval [τk, τk+1), i.e., for every k ≥ 0, r(t) = r(τk) on t ∈ [τk, τk+1)
(see[15]).
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Consider the following d-dimensional neutral stochastic infinite delay dif-
ferential equations with Poisson jumps and Markovian switching of the form

d [X(t)−G (t,Xt, r(t))]

= (t,Xt, r(t)) dt+ g (t,Xt, r(t)) dW (t)

+

∫ +∞

−∞
h (t,Xt, u) ṽ (dt, du) , t0 ≤ t ≤ T, (2.1)

where Xt = {X (t+ θ) : −∞ < θ ≤ 0} can be regarded as a BC
(
(−∞, 0];<d

)
-

value stochastic process and

f : [t0, T ]×BC
(

(−∞, 0];<d
)
× S → <d,

g : [t0, T ]×BC
(

(−∞, 0];<d
)
× S → <d×m,

h : [t0, T ]×BC
(

(−∞, 0];<d
)
×< → <d,

and

G : [t0, T ]×BC
(

(−∞, 0];<d
)
× S → <d

be Borel measurable.
Let ṽ (dt, du) = v (dt, du) − π(du)dt be a compensated Poisson random

measure which is independent of {W (t)} and we assume that
∫ +∞
−∞ π(du) <∞.

The initial value of (2.1) is given by

Xt0 = ξ = {ξ(θ) : −∞ < θ ≤ 0} (2.2)

is Ft0-measurable, BC
(
(−∞, 0];<d

)
-value random variable such that ξ ∈

M2
(
(−∞, 0] ;<d

)
.

Definition 2.2. <d-value stochastic process X(t) defined on −∞ < t ≤ T is
called the solution of NSIDDEPM (2.1) with initial value (2.2), if

(i) X(t) is continuous and for all t0 ≤ t ≤ T , X(t) is Ft-adapted.
(ii) {f (t,Xt, r(t))} ∈ L1

(
[t0, T ] ;<d

)
, {g (t,Xt, r(t))} ∈ L2

(
[t0, T ] ;<d×m

)
,

and {h (t,Xt, u)} ∈ L3
(
[t0, T ]×<;<d

)
.

(iii) Xt0 = ξ, for each t0 ≤ t ≤ T ,

X(t) = ξ(0) +G (t,Xt, r(t))−G (t0, ξ, r(t0)) +

∫ t

t0

f (s,Xs, r(s)) ds

+

∫ t

t0

g (s,Xs, r(s)) dW (s) +

∫ t

t0

∫ +∞

−∞
h (s,Xs, u) ṽ (ds, du) a.s.
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Definition 2.3. X(t) is called as a unique solution, if any other solution X̄(t)
is distinguishable with X(t), that is

P
(
X(t) = X̄(t), for all−∞ < t ≤ T

)
= 1.

To establish the existence of solution of (2.1) with initial vaue (2.2), we
assume the following conditions:

(H1): For all ϕ,ψ ∈ BC
(
(−∞, 0];<d

)
, t ∈ [t0, T ] and i ∈ S, it follows

|f(t, ϕ, i)− f(t, ψ, i)|2 ∨ |g(t, ϕ, i)− g(t, ψ, i)|2

∨
∫ +∞

−∞
|h(t, ϕ, u)− h(t, ψ, u)|2 π(du) ≤ κ(‖ϕ− ψ‖2),

where κ(.) is a concave nondecreasing function from <+ to <+ such
that κ(0) = 0, κ(u) > 0 for u > 0 and

∫
0+

du
κ(u) =∞.

(H2): For all t ∈ [t0, T ], it follows that f(t, 0, i), g(t, 0, i), h(t, 0, u) ∈ L2

and i ∈ S, such that

|f(t, 0, i)|2 ∨ |g(t, 0, i)|2 ∨
∫ +∞

−∞
|h(t, 0, u)|2 π(du) ≤ K,

where K > 0 is a constant.
(H3): For any ϕ,ψ ∈ BC

(
(−∞, 0];<d

)
, t ∈ [t0, T ] and i ∈ S, there

exists a positive number K0 such that K0 <
1
10 such that

|G(t, ϕ, i)−G(t, ψ, i)|2 ≤ K0‖ϕ− ψ‖2.

Remark 2.4. The importance of the above types of conditions are discussed
in [10].

In order to obtain the uniqueness of solutions, we use the Bihari inequality
proved in [12].

Lemma 2.5. (Bihari inequality) Let T > 0 and u0 > 0, u(t), v(t) be contin-
uous functions on [0, T ]. Let κ : <+ → <+ be a concave continuous nonde-
creasing function such that κ(r) > 0 for r > 0. If

u (t) ≤ u0 +

∫ t

0
v(s)κ (u(s)) ds for all 0 ≤ t ≤ T,

then

u (t) ≤ G−1

(
G(u0) +

∫ t

0
v(s)ds

)
for all such t ∈ [0, T ] that

G(u0) +

∫ t

0
v(s)ds ∈ Dom

(
G−1

)



128 A. Rathinasamy, K. Balachandran and J.K. Kim

where G(r) =
∫ r

1
ds
κ(s) , r ≥ 0 and G−1 is the inverse function of G. In partic-

ular, if, moreover, u0 = 0 and
∫

0+
ds
κ(s) =∞, then u(t) = 0 for all 0 ≤ t ≤ T .

For establishing the stability of solutions, we give a generalization of Bihari
inequality which appeared in [[13],Lemma 3.2] and its corollary.

Lemma 2.6. Let the assumptions of Lemma 2.5 hold. If

u (t) ≤ u0 +

∫ T

t
v(s)κ (u(s)) ds for all 0 ≤ t ≤ T,

then

u (t) ≤ G−1

(
G(u0) +

∫ T

t
v(s)ds

)
for all such t ∈ [0, T ] that

G(u0) +

∫ T

t
v(s)ds ∈ Dom

(
G−1

)
where G(r) =

∫ r
1

ds
κ(s) , r ≥ 0 and G−1 is the inverse function of G.

Corollary 2.7. Let the assumptions of Lemma 2.5 hold and v(t) ≥ 0 for
t ∈ [0, T ]. If for all ε > 0, there exists t1 ≥ 0 such that for 0 ≤ u0 < ε,∫ T
t1
v(s)ds ≤

∫ ε
u0

ds
κ(s) holds. Then for every t ∈ [t1, T ], the estimate u(t) ≤ ε

holds.

3. Existence and Uniqueness of Solutions

Now we prove the existence and uniqueness theorem to the equation (2.1)
with initial value (2.2) under the above non-Lipschitz condition and the weak-
ened linear growth condition.

Theorem 3.1. Assume that (H1), (H2) and (H3) hold. Then, there exists a
unique solution to NSIDDEPM (2.1) with initial value (2.2).

To prove the above theorem, we first consider Eq.(2.1) on t ∈ [t0, τ1 ∧ T ].
The solution of Eq.(2.1) on t ∈ [t0, τ1 ∧ T ] is denoted by Xτ1(t). Now we have
to prove several lemmas. For that we need the following definition.
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Definition 3.2. Let (Xτ1)0(t) = ξ(0) and (Xτ1)nt0 = ξ, (n = 1, 2, ...). Then
the Picard sequence is

(Xτ1)n(t)−G (t, (Xτ1)nt , i0)

= ξ(0)−G
(
t0, (X

τ1)nt0 , i0
)

+

∫ t

t0

f
(
s, (Xτ1)n−1

s , i0
)
ds+

∫ t

t0

g
(
s, (Xτ1)n−1

s , i0
)
dW (s)

+

∫ t

t0

∫ +∞

−∞
h
(
s, (Xτ1)n−1

s , u
)
ṽ (ds, du) , t0 ≤ t ≤ τ1 ∧ T. (3.1)

Lemma 3.3. Under the assumptions of Theorem 3.1 , for all t ∈ (−∞, τ1∧T ],
n ≥ 1,

E |(Xτ1)n(t)|2 ≤ C1, (3.2)

where C1 is a positive constant.

Proof. Obviously, (Xτ1)0(t) ∈M2
(
(−∞, τ1 ∧ T ];<d

)
.

By induction, (Xτ1)n(t) ∈ M2
(
(−∞, τ1 ∧ T ];<d

)
. In fact, from (3.1) and

r(t) = i0 for t ∈ [t0, τ1 ∧ T ], we have

E

[
sup
t0≤s≤t

|(Xτ1)n(s)|2
]

≤ 5E

[
sup
t0≤s≤t

∣∣G(s, (Xτ1)ns , i0)−G(t0, (X
τ1)nt0 , i0)

∣∣2]
+5E |ξ(0)|2 + 5E

∣∣∣∣∫ t

t0

f
(
s, (Xτ1)n−1

s , i0
)
ds

∣∣∣∣2
+5E

∣∣∣∣∫ t

t0

g
(
s, (Xτ1)n−1

s , i0
)
dW (s)

∣∣∣∣2
+5E

∣∣∣∣∫ t

t0

∫ +∞

−∞
h
(
s, (Xτ1)n−1

s , u
)
ṽ (ds, du)

∣∣∣∣2 . (3.3)

From Hölder inequality, we get

E

[
sup
t0≤s≤t

|(Xτ1)n(s)|2
]

≤ 5E

[
sup
t0≤s≤t

∣∣G(s, (Xτ1)ns , i0)−G(t0, (X
τ1)nt0 , i0)

∣∣2]+ 5E |ξ(0)|2

+5 ((τ1 ∧ T )− t0)E

∫ t

t0

∣∣f (s, (Xτ1)n−1
s , i0

)
− f (s, 0, i0) + f (s, 0, i0)

∣∣2 ds
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+5E

∫ t

t0

∣∣g (s, (Xτ1)n−1
s , i0

)
− g (s, 0, i0) + g (s, 0, i0)

∣∣2 ds
+5E

∫ t

t0

∫ +∞

−∞

∣∣h (s, (Xτ1)n−1
s , u

)
− h (s, 0, u) + h (s, 0, u)

∣∣2 π (du) ds

≤ 10K0E

[
sup
t0≤s≤t

‖(Xτ1)ns ‖
2

]
+ (10K0 + 5)E ‖ξ‖2

+10 ((τ1 ∧ T )− t0)E

∫ t

t0

(∣∣f (s, (Xτ1)n−1
s , i0

)
− f (s, 0, i0)

∣∣2 + |f (s, 0, i0)|2
)
ds

+10E

∫ t

t0

(∣∣g (s, (Xτ1)n−1
s , i0

)
− g (s, 0, i0)

∣∣2 + |g (s, 0, i0)|2
)
ds

+10E

∫ t

t0

∫ +∞

−∞

(∣∣h (s, (Xτ1)n−1
s , u

)
− h (s, 0, u)

∣∣2 + |h (s, 0, u)|2
)
π (du) ds.

≤ 10K0E

[
sup
t0≤s≤t

‖(Xτ1)ns ‖
2

]
+ (10K0 + 5)E ‖ξ‖2

+10 ((τ1 ∧ T )− t0 + 2) ((τ1 ∧ T )− t0)K

+10 ((τ1 ∧ T )− t0 + 2)E

∫ t

t0

κ
(∥∥(Xτ1)n−1

s

∥∥2
)
ds. (3.4)

For

E

[
sup
t0≤s≤t

∥∥(Xτ1)n−1
s

∥∥2
]
≤ E

[
sup
t0≤s≤t

∣∣(Xτ1)n−1(s)
∣∣2]+ E ‖ξ‖2 .

We obtain

E

[
sup
t0≤s≤t

|(Xτ1)n(s)|2
]

≤ 10K0E

[
sup
t0≤s≤t

|(Xτ1)n(s)|2
]

+ (20K0 + 5)E ‖ξ‖2

+10 ((τ1 ∧ T )− t0 + 2) (T − t0)K

+10 ((τ1 ∧ T )− t0 + 2)E

∫ t

t0

κ
(∥∥(Xτ1)n−1

s

∥∥2
)
ds. (3.5)

Given that κ(.) is concave and κ(0) = 0, we can find a pair of positive constants
a and b such that

κ(u) ≤ a+ bu, for all u ≥ 0.

So, we have

(1− 10K0)E

[
sup
t0≤s≤t

|(Xτ1)n(s)|2
]
≤ C+10 ((τ1 ∧ T )−t0+2) bE

∫ t

t0

∥∥(Xτ1)n−1
s

∥∥2
ds.
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Note that

max
1≤n≤k

E
∣∣(Xτ1)n−1(s)

∣∣2
= max

{
E |ξ(0)|2 , E

∣∣(Xτ1)1(s)
∣∣2 , ..., E ∣∣∣(Xτ1)k−1(s)

∣∣∣2}
≤ max

{
E |ξ(0)|2 , E

∣∣(Xτ1)1(s)
∣∣2 , ..., E ∣∣∣(Xτ1)k−1(s)

∣∣∣2 , E ∣∣∣(Xτ1)k(s)
∣∣∣2}

≤ E ‖ξ‖2 + max
1≤n≤k

E |(Xτ1)n(s)|2 .

It follows that

max
1≤n≤k

E

[
sup
t0≤s≤t

|(Xτ1)n(s)|2
]

≤ C +
10 ((τ1 ∧ T )− t0 + 2) b

(1− 10K0)

∫ τ1∧T

t0

max
1≤n≤k

E

[
sup
t0≤s≤t

|(Xτ1)n(s)|2
]
dt.

From Grownwall’s inequality and since k is arbitrary, we have

E |(Xτ1)n(t)|2 ≤ C exp

(
10 ((τ1 ∧ T )− t0 + 2) b

(1− 10K0)
((τ1 ∧ T )− t0)

)
,

t0 ≤ t ≤ τ1 ∧ T, n ≥ 1.

So, the proof is completed with C1 =Cexp
(

10((τ1∧T )−t0+2)b
(1−10K0) ((τ1∧T )− t0)

)
. �

Lemma 3.4. Under the assumptions of Theorem 3.1, there exists a positive
constant C2 such that

E

[
sup
t0≤s≤t

∣∣(Xτ1)n+m(s)− (Xτ1)n(s)
∣∣2]

≤ C2

∫ t

t0

κ

(
E

(
sup

t0≤r≤s

∣∣(Xτ1)n+m−1(r)− (Xτ1)n−1(r)
∣∣2)) ds (3.6)

for all t0 ≤ t ≤ τ1 ∧ T , n,m ≥ 1.
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Proof. From (3.1), we have

(Xτ1)n+m(t)− (Xτ1)n(t)

= G
(
t, (Xτ1)n+m

t , i0
)
−G (t, (Xτ1)nt , i0)

+

∫ t

t0

[
f
(
s, (Xτ1)n+m−1

s , i0
)
− f

(
s, (Xτ1)n−1

s , i0
)]
ds

+

∫ t

t0

[
g
(
s, (Xτ1)n+m−1

s , i0
)
− g

(
s, (Xτ1)n−1

s , i0
)]
dW (s)

+

∫ t

t0

∫ +∞

−∞

[
h
(
s, (Xτ1)n+m−1

s , u
)
− h

(
s, (Xτ1)n−1

s , u
)]
ṽ (ds, du) .

So,

E
∣∣(Xτ1)n+m(t)− (Xτ1)n(t)

∣∣2
≤ 4E

∣∣G (t, (Xτ1)n+m
t , i0

)
−G (t, (Xτ1)nt , i0)

∣∣2
+4E

∣∣∣∣∫ t

t0

[
f
(
s, (Xτ1)n+m−1

s , i0
)
− f

(
s, (Xτ1)n−1

s , i0
)]
ds

∣∣∣∣2
+4E

∣∣∣∣∫ t

t0

[
g
(
s, (Xτ1)n+m−1

s , i0
)
− g

(
s, (Xτ1)n−1

s , i0
)]
dW (s)

∣∣∣∣2
+4E

∣∣∣∣∫ t

t0

∫ +∞

−∞

[
h
(
s, (Xτ1)n+m−1

s , u
)
− h

(
s, (Xτ1)n−1

s , u
)]
ṽ (ds, du)

∣∣∣∣2
≤ 4EK0

∣∣(Xτ1)n+m(t)− (Xτ1)n(t)
∣∣2

+4 (t− t0)E

∫ t

t0

∣∣f (s, (Xτ1)n+m−1
s , i0

)
− f

(
s, (Xτ1)n−1

s , i0
)∣∣2 ds

+4E

∫ t

t0

∣∣g (s, (Xτ1)n+m−1
s , i0

)
− g

(
s, (Xτ1)n−1

s , i0
)∣∣2 ds

+4E

∫ t

t0

∫ +∞

−∞

∣∣h (s, (Xτ1)n+m−1
s , u

)
− h

(
s, (Xτ1)n−1

s , u
)∣∣2 π (du) ds.

Thus, we obtain

E

[
sup
t0≤s≤t

∣∣(Xτ1)n+m(s)− (Xτ1)n(s)
∣∣2]

≤ 4 ((τ1 ∧ T )− t0 + 2)

(1− 4K0)
E

∫ t

t0

κ
(∥∥(Xτ1)n+m−1

s − (Xτ1)n−1
s

∥∥2
)
ds.
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From Jensen’s inequality, we get

E

[
sup
t0≤s≤t

∣∣(Xτ1)n+m(s)− (Xτ1)n(s)
∣∣2]

≤ 4 ((τ1 ∧ T )− t0 + 2)

(1− 4K0)

∫ t

t0

κ

(
E sup
t0≤r≤s

∣∣(Xτ1)n+m−1(r)−(Xτ1)n−1(r)
∣∣2) ds.

If we choose C2 = 4((τ1∧T )−t0+2)
(1−4K0) , we can show that the lemma holds. �

Lemma 3.5. Under the assumptions of Theorem 3.1 , there exists a positive
constant C3 such that

E

[
sup
t0≤s≤t

∣∣(Xτ1)n+m(s)− (Xτ1)n(s)
∣∣2] ≤ C3 (t− t0) (3.7)

for all t0 ≤ t ≤ τ1 ∧ T , n,m ≥ 1.

Define

ϕ1(t) = C3 (t− t0) ,

ϕn+1(t) = C2

∫ t

t0

κ (ϕn(s)) ds, n ≥ 1,

ϕn,m(t) = E

(
sup

t0≤r≤t

∣∣(Xτ1)n+m(r)− (Xτ1)n(r)
∣∣2) , n,m ≥ 1.

Choose T1 ∈ [t0, τ1 ∧ T ) such that C2κ(C3(t− t0)) ≤ C3 for all t0 ≤ t ≤ T1.

Lemma 3.6. There exists a positive t0 ≤ T1 < τ1∧T such that for all n,m ≥ 1,

0 ≤ ϕn,m(t) ≤ ϕn(t) ≤ ϕn−1(t) ≤ ... ≤ ϕ1(t) (3.8)

for all t0 ≤ t ≤ T1.

The proofs of Lemmas 3.5 and 3.6 are similar to Lemmas 9 and 10 of [10]
and hence they are omitted.

Proof of Theorem 3.1.
Uniqueness: Let Xτ1(t) and X̄τ1(t) be two solutions of (2.1) on [t0, τ1 ∧ T ].
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Then we have

E
∣∣Xτ1(t)− X̄τ1(t)

∣∣2 = E

∣∣∣∣G (t,Xτ1(t), i0)−G
(
t, X̄τ1(t), i0

)
+

∫ t

t0

[
f (s,Xτ1

s , i0)− f
(
s, X̄τ1

s , i0
)]
ds

+

∫ t

t0

[
g (s,Xτ1

s , i0)− g
(
s, X̄τ1

s , i0
)]
dW (s)

+

∫ t

t0

∫ +∞

−∞

[
h (s,Xτ1

s , u)− h
(
s, X̄τ1

s , u
)]
ṽ (ds, du)

∣∣∣∣2.
So, we derive

E

[
sup
t0≤s≤t

∣∣Xτ1(s)− X̄τ1(s)
∣∣2]

≤ 4K0E
∥∥Xτ1

t − X̄
τ1
t

∥∥2
+ 4 ((τ1 ∧ T )− t0 + 2)E

∫ t

t0

κ
(∥∥Xτ1

s − X̄τ1
s

∥∥2
)
ds

≤ 4K0E

[
sup
t0≤s≤t

∣∣Xτ1(s)− X̄τ1(s)
∣∣2]

+4 ((τ1 ∧ T )− t0 + 2)E

∫ t

t0

κ
(∥∥Xτ1

s − X̄τ1
s

∥∥2
)
ds.

From Jensen’s inequality, we get

E

[
sup
t0≤s≤t

∣∣Xτ1(s)− X̄τ1(s)
∣∣2]

≤ 4 ((τ1 ∧ T )− t0 + 2)

(1− 4K0)

∫ t

t0

κ
(
E
(∥∥Xτ1

s − X̄τ1
s

∥∥2
))

ds

≤ 4 ((τ1 ∧ T )− t0 + 2)

(1− 4K0)

∫ t

t0

κ

(
E sup
t0≤r≤s

∣∣Xτ1(r)− X̄τ1(r)
∣∣2) ds.

Bihari inequality yields

E

[
sup
t0≤s≤t

∣∣Xτ1(s)− X̄τ1(s)
∣∣2] = 0, t0 ≤ t ≤ (τ1 ∧ T ).

The above expression means that Xτ1(t) = X̄τ1(t) for all t0 ≤ t ≤ (τ1 ∧ T ).
Therefore, for all −∞ < t ≤ (τ1 ∧ T ), Xτ1(t) = X̄τ1(t) a.s.

We now consider Eq.(2.1) on [τ1 ∧ T, τ2 ∧ T ]. Following the same path of
the above proof, we can obtain that Eq.(2.1) has a unique solution Xτ2(t) on
[τ1∧T, τ2∧T ]. Repeating this procedure, we get Eq.(2.1) has a unique solution
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X(t) on [0, T ]. This establish the uniqueness.

Existence: We claim

E

[
sup
t0≤s≤t

∣∣(Xτ1)n+m(s)− (Xτ1)n(s)
∣∣2]→ 0

for all t0 ≤ t ≤ T1 < τ1 ∧ T, as n,m → ∞. Note that ϕn is continuous on
[t0, T1]. Note also that for each n ≥ 1, ϕn(.) is decreasing on [t0, T1], and for
each t, ϕn(t) is a decreasing sequence. Therefore, we can define the function
ϕ(t) as

ϕ(t) = lim
n→∞

ϕn(t) = lim
n→∞

C2

∫ t

t0

κ (ϕn−1(s)) ds = C2

∫ t

t0

κ (ϕ(s)) ds

for all t0 ≤ t ≤ T1. Bihari inequality implies that ϕ(t) = 0 for all t0 ≤ t ≤ T1.
Now, from Lemma 3.6, we have

ϕn,n(t) ≤ sup
t0≤t≤T1

ϕn(t) ≤ ϕn(T1)→ 0

as n→∞. That is (Xτ1)n(t) is a Cauchy sequence in L2 on (−∞, T1]. From
Lemma 3.3, we can easily derive

E |Xτ1(t)|2 ≤ C,
where C is a positive constant.

Using the property of the function to κ(.), we can obtain that for all t0 ≤
t ≤ T1,

E

∣∣∣∣∫ t

t0

[f (s, (Xτ1)ns , i0)− f (s, (Xτ1)s, i0)] ds

∣∣∣∣2 → 0, as n→∞,

E

∣∣∣∣∫ t

t0

[g (s, (Xτ1)ns , i0)− g (s, (Xτ1)s, i0)] dW (s)

∣∣∣∣2 → 0, as n→∞,∣∣∣∣∫ t

t0

∫ +∞

−∞
[h (s, (Xτ1)ns , u)− h (s, (Xτ1)s, u)] ṽ (ds, du)

∣∣∣∣2 → 0, as n→∞.

For all t0 ≤ t ≤ T1, taking limits on both sides of (3.1), we have

lim
n→∞

[Xn(t)−G (t, (Xτ1)nt , i0)]

= ξ(0)− lim
n→∞

G
(
t0, (X

τ1)nt0 , i0
)

+ lim
n→∞

∫ t

t0

f
(
s, (Xτ1)n−1

s , i0
)
ds

+ lim
n→∞

∫ t

t0

g
(
s, (Xτ1)n−1

s , i0
)
dW (s)

+ lim
n→∞

∫ t

t0

∫ +∞

−∞
h
(
s, (Xτ1)n−1

s , u
)
ṽ (ds, du) .
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That is

(Xτ1)(t)

= ξ(0) +G (t, (Xτ1)t, i0)−G (t0, ξ, i0) +

∫ t

t0

f (s, (Xτ1)s, i0) ds

+

∫ t

t0

g (s, (Xτ1)s, i0) dW (s) +

∫ t

t0

∫ +∞

−∞
h (s, (Xτ1)s, u) ṽ (ds, du) .

The above expression demonstrates that Xτ1(t) is one solution of (2.1) with
initial value (2.2) on [t0, T1]. By iteration, the existence of solutions to (2.1)
on [t0, τ1 ∧ T ] can be obtained. �

We now consider Eq.(2.1) on [τ1 ∧ T, τ2 ∧ T ]. Following the same way
of the above proof, we can obtain that Eq.(2.1) has a solution Xτ2(t) on
[τ1 ∧ T, τ2 ∧ T ]. Repeating this procedure, the existence of solutions X(t) on
[0, T ] can be obtained.

4. Stability of Solutions

In this section, we study the continuous dependence of solutions on the
initial value by means of the Corollary 2.7.

Definition 4.1. A solution Xξ(t) of NSIDDEPM (2.1) with initial value (2.2)
is said to be stable in mean square if for all ε > 0 there exists δ > 0 such that

E
∣∣∣Xξ(t)−Xη(t)

∣∣∣2 ≤ ε, when E ‖ξ − η‖2 < δ,

where Xη(t) is another solution of NSIDDEPM (2.1) with initial value η de-
fined in (2.2).

Theorem 4.2. Assume the hypotheses of Theorem 3.1 are satisfied, then the
solution of NSIDDEPM (2.1) is stable in mean square.

Proof. By assumptions, Xτ1 and Y τ1 are two solutions of (2.1) on [t0, τ1 ∧ T ]
with initial value ξ and η, respectively. We have

Xτ1(t) = ξ(0) +G (t,Xτ1
t , i0)−G (t0, ξ, i0)

+

∫ t

t0

f (s,Xτ1
s , i0) ds+

∫ t

t0

g (s,Xτ1
s , i0) dW (s)

+

∫ t

t0

∫ +∞

−∞
h (s,Xτ1

s , u) ṽ (ds, du) , t0 ≤ t ≤ τ1 ∧ T, a.s. (4.1)
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and

Y τ1(t) = η(0) +G (t, Y τ1
t , i0)−G (t0, η, i0)

+

∫ t

t0

f (s, Y τ1
s , i0) ds+

∫ t

t0

g (s, Y τ1
s , i0) dW (s)

+

∫ t

t0

∫ +∞

−∞
h (s, Y τ1

s , u) ṽ (ds, du) , t0 ≤ t ≤ τ1 ∧ T, a.s. (4.2)

Subtracting equation (4.2) from equation (4.1), we get

Xτ1(t)− Y τ1(t)

= ξ(0)− η(0) +G (t,Xτ1
t , i0)−G (t, Y τ1

t , i0)

− (G (t0, ξ, i0)−G (t0, η, i0)) +

∫ t

t0

(f (s,Xτ1
s , i0)− f (s, Y τ1

s , i0)) ds

+

∫ t

t0

(g (s,Xτ1
s , i0)− g (s, Y τ1

s , i0)) dW (s)

+

∫ t

t0

∫ +∞

−∞
(h (s,Xτ1

s , u)− h (s, Y τ1
s , u)) ṽ (ds, du) , t0 ≤ t ≤ τ1 ∧ T, a.s.

So, using the same arguments as Lemma 3.3, we have

E

[
sup
t0≤s≤t

|Xτ1(s)− Y τ1(s)|2
]

≤ 10

1− 5K0
E ‖ξ − η‖2 +

5 ((τ1 ∧ T )− t0 + 2)

(1− 5K0)
E

∫ t

t0

κ
(
‖Xτ1

s − Y τ1
s ‖

2
)
ds

≤ 10

1− 5K0
E ‖ξ − η‖2

+
5 ((τ1 ∧ T )− t0 + 2)

(1− 5K0)
E

∫ t

t0

κ

(
E sup
t0≤r≤s

|Xτ1(r)− Y τ1(r)|2
)
ds.

Let κ1(u) = 5((τ1∧T )−t0+2)
(1−5K0) κ(u), for κ is a concave increasing function from <+

to <+ such that κ(0) = 0, κ(u) > 0 for u > 0 and
∫

0+
du
κ(u) = +∞. So, κ1(u) is

obviously a concave function from <+ to <+ such that κ1(0) = 0, κ(u) ≥ κ1(u),

for any 0 ≤ u ≤ 1 and
∫

0+
du

κ1(u) = +∞. So, for any ε > 0, ε1
∆
= 1

2ε, we have

lims→0

∫ ε1
s

du
κ1(u) = +∞. So, there is a positive constant δ < ε1 such that∫ ε1

δ
du

κ1(u) ≥ (τ1 ∧ T ) − t0. From Corollary 2.7, let u0 = 10
1−5K0

E ‖ξ − η‖2,

u(t) = E
[
supt0≤s≤t |X

τ1(s)− Y τ1(s)|2
]
, v(t) = 1, when u0 ≤ δ ≤ ε1, we have∫ ε1

u0
du

κ1(u) ≥
∫ ε1
δ

du
κ1(u) ≥ (τ1∧T )−t0 =

∫ τ1∧T
t0

v(s)ds. So, for any t ∈ [t0, (τ1∧T )],
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the estimate u(t) ≤ ε1 holds. This implies that the solution of NSIDDEPM
(2.1) is stable in mean square on [t0, τ1 ∧ T ].

Now we consider Eq.(2.1) on [τ1 ∧T, τ2 ∧T ]. Following the same way of the
above proof, we can obtain that the solution of NSIDDEPM (2.1) is stable
in mean square on [τ1 ∧ T, τ2 ∧ T ]. Repeating this procedure, the solution of
NSIDDEPM (2.1) is stable in mean square on [t0, T ]. This completes the proof
of the theorem. �
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