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Abstract. In this paper we establish a set of sufficient conditions for the existence of mild

solutions of nonlinear neutral integrodifferential equations in Banach spaces. The results are

obtained by using the fixed point theorems. An example is provided to illustrate the theory.

1. Introduction

Neutral differential equations arise in many areas of science and engineering
and for this reason these equations have received much attention in the last
decades. The theory of neutral integrodifferential equations has been studied
by several authors [1, 2, 3, 6, 13]. Grimmer [7] studied the resolvent operators
for integral equations in Banach spaces. Using the method of semigroups,
existence and uniqueness of mild, strong and classical solutions of semilinear
equations have been discussed by Pazy [15]. Ntouyas and Tsamatos [14] stud-
ied the global existence of solutions for functional integrodifferential equations
of neutral type by using the Schaefer fixed point theorem.
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The purpose of this paper is to prove the existence of mild solutions for
neutral evolution integrodifferential equations of the form

d

dt

[
x(t)− g

(
t, xt,

∫ t

0
k(t, s, xs)ds

)]
= A(t)x(t) +

∫ t

0
B(t, s)x(s)ds+ f

(
t, xt,

∫ t

0
h(t, s, xs)ds

)
, (1.1)

for all t ∈ J = [0, b] and

x0 = φ, on [−r, 0] (1.2)

where A(t) and B(t, s) are closed linear operators on a Banach space X with
a dense domain D(A) which is independent of t, h : ∆ × C → X, k : ∆ ×
C → X, f : J × C × X → X and g : J × C × X → X are continuous
functions and ∆ = {(t, s) : 0 ≤ s < t ≤ b}. Denote C = C([−r, 0] : X),
the Banach space of all continuous functions φ : [−r, 0] → X with the norm
‖φ‖ = sup {|φ(θ)| : −r ≤ θ ≤ 0}. Also for x ∈ C([−r, b] : X) we have xt ∈ C
for t ∈ [0, b], xt(θ) = x(t+ θ) for all θ ∈ [−r, 0]. Related work in this type of
equations can also be found in [9, 10].

2. Preliminaries

We shall make the following assumptions:

(1) A(t) generates a strongly continuous semigroup of evolution operators.
(2) Suppose Y is a Banach space formed from D(A) with the graph norm.

A(t) and B(t, s) are in the set L(Y,X), of bounded linear operators
from Y to X, for 0 ≤ t ≤ b and 0 ≤ s ≤ t ≤ b,respectively. A(t) and
B(t, s) are closed linear operators, it follows that A(t) and B(t, s) are
continuous on 0 ≤ t ≤ b and 0 ≤ s ≤ t ≤ b, respectively, into L(Y,X).

Definition 2.1. A resolvent operator for (1.1)-(1.2) is a bounded operator
valued function R(t, s) ∈ L(X), 0 ≤ s ≤ t ≤ b, the space of bounded linear
operators on X, having the following properties.

(i) R(t, s) is strongly continuous in s and t, R(s, s) = I, (the identity

operator on X) 0 ≤ s ≤ b. ‖R(t, s)‖ ≤Meβ(t−s) t, s ∈ J and M,β are
constants.

(ii) R(t, s)Y ⊂ Y,R(t, s) is strongly continuous in s and t on Y .
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(iii) For each x ∈ D(A), R(t, s)x is strongly continuously differentiable in t
and s and

∂R(t, s)

∂t
x = A(t)R(t, s)x+

∫ t

s
B(t, r)R(r, s)xdr,

∂R(t, s)

∂s
x = −R(t, s)A(s)x−

∫ t

s
R(t, r)B(r, s)xdr,

with
∂R(t, s)

∂t
x and

∂R(t, s)

∂s
x being strongly continuous on 0 ≤ s ≤ t ≤ b.

Definition 2.2. A solution x ∈ C([−r, b] : X) is called a mild solution of the
problem (1.1)-(1.2) if the following holds: x0 = φ on [−r, 0] and for s ∈ [0, t],
the function

A(s)R(t, s)g(s, xs,

∫ s

0
k(s, τ, xτ )dτ)

is integrable and for t ∈ [0, b] the integral equation

x(t) = R(t, 0)[φ(0)− g(0, φ, 0)] + g
(
t, xt,

∫ t

0
k(t, s, xs)ds

)
+

∫ t

0
R(t, s)A(s)g

(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)
ds

+

∫ t

0
R(t, s)

∫ s

0
B(s, θ)g

(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)
dθds

+

∫ t

0
R(t, s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds

is satisfied.

Schaefer’s Theorem [16] Let E be a normed linear space. Let F : E → E
be a completely continuous operator , that is, it is continuous and the image
of any bounded set is contained in a compact set and let

ζ(F ) = {x ∈ E;x = λFx for some 0 < λ < 1} .

Then either ζ(F ) is unbounded or F has a fixed point.

Further we assume the following hypotheses:

(H1) There exists a resolvent operator R(t, s) which is compact and contin-
uous in the uniform operator topology for t > s. Further, there exist
constants Mi > 0, i = 1, 2, 3, such that
(i) |R(t, s)| ≤M1,
(ii) |A(t)g(t, x, y)| ≤M2 and

(iii) |B(t, s)g(t, x, y)| ≤M3.
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(H2) For each s ∈ J, x ∈ C the function k(., s, x) : J → X is completely
continuous, the function k(., ., x) : ∆→ X is strongly measurable and
{t→ k(t, s, xs)} is equicontinuous in C([0, b] : X).

(H3) For each t, s ∈ ∆, the function h(t, s, .) : C → X is continuous and for
each x ∈ C, the function h(., ., x) : ∆→ X is strongly measurable.

(H4) For each t ∈ J, f(t, ., .) : C × X → X is continuous and for each
(x, y) ∈ C ×X, the function f(., x, y) : J → X is strongly measurable.

(H5) There exists an integrable function p : J → [0,∞), such that

|f(t, x, y)| ≤ p(t)Ω0(‖x‖+ |y|), t ∈ J, x ∈ C, y ∈ X,

where Ω0 : [0,∞)→ (0,∞) is nondecreasing function.
(H6) The function g : J ×C×X → X is completely continuous and for any

bounded set D in C([−r, b] : X), the set {t→ g(t, xt,
∫ t

0 k(t, s, xs)ds) :
x ∈ D} is equicontinuous in C([0, b] : X) and there exist constants
c1 ∈ (0, 1), c2 > 0 and c3 ≥ 0, such that

|g(t, φ, y)| ≤ c1 ‖φ‖+ c2 |y|+ c3, for all t ∈ J, φ ∈ C, y ∈ X.

(H7) There exist integrable functions mi : J → [0,∞) and constants ri, i =
0, 1, such that

(i) |k(t, s, x)| ≤ r0m0(s)Ω1(‖x‖), x ∈ C,
(ii) |h(t, s, x)| ≤ r1m1(s)Ω2(‖x‖), x ∈ C,

where Ωi : [0,∞) → (0,∞), i = 1, 2 are continuous nondecreasing
functions.

(H8)

∫ b

0
m̂(s)ds <

∫ ∞
c

ds

Ω0(s) + Ω1(s) + Ω2(s)

where c = 1
1−c1

{
M1(1 + c1) ‖φ‖+ (1 +M1)c3 +M1M2b+M1M3b

2
}

and m̂(t) = max
{

c2
1−c1 r0m0(t), M1p(t)

1−c1 , r1m1(t)
}

3. Existence Results

Theorem 3.1. Assume that hypotheses (H1)-(H8) hold. Then the problem
(1.1)-(1.2) admits a mild solution on [−r, b].

Proof. Consider the space Cb=C([−r, b] :X), with the norm ‖x‖1 =sup {|x(t)| :
−r ≤ t ≤ b}. Define C0

b = {x ∈ Cb : x0 = 0}. To prove the existence of mild
solutions of (1.1)-(1.2), consider the following operator equation

x(t) = λFx(t), 0 < λ < 1, (3.1)
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where F : C0
b → C0

b is defined as

(Fx)(t) = R(t, 0)[φ(0)− g(0, φ, 0)] + g
(
t, xt,

∫ t

0
k(t, s, xs)ds

)
+

∫ t

0
R(t, s)A(s)g

(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)
ds

+

∫ t

0
R(t, s)

∫ s

0
B(s, θ)g

(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)
dθds

+

∫ t

0
R(t, s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds.

From (3.1), we have

|x(t)| = |λFx(t)| ≤ |Fx(t)|
≤ M1(1 + c1) ‖φ‖+ (1 +M1)c3 +M1M2b

+M1M3b
2 + c1 ‖xt‖+ c2r0

∫ t

0
m0(s)Ω1(‖xs‖)ds

+M1

∫ t

0
p(s)Ω0

(
‖xs‖+ r1

∫ s

0
m1(τ)Ω2(‖xτ‖)dτ

)
ds.

Consider the function µ defined by

µ(t) = sup {|x(s)| : −r ≤ s ≤ t} , 0 ≤ t ≤ b.

Let t∗ ∈ [−r, t] be such that µ(t) = |x(t∗)|. If t∗ ∈ [0, b], by the previous
inequality, we have

µ(t) ≤ M1(1 + c1) ‖φ‖+ (1 +M1)c3 +M1M2b

+M1M3b
2 + c1µ(t) + c2r0

∫ t∗

0
m0(s)Ω1(µ(s))ds

+M1

∫ t∗

0
p(s)Ω0

(
µ(s) + r1

∫ s

0
m1(τ)Ω2(µ(τ))dτ

)
ds.

µ(t) ≤ M1(1 + c1) ‖φ‖+ (1 +M1)c3 +M1M2b

+M1M3b
2 + c1µ(t) + c2r0

∫ t

0
m0(s)Ω1(µ(s))ds

+M1

∫ t

0
p(s)Ω0

(
µ(s) + r1

∫ s

0
m1(τ)Ω2(µ(τ))dτ

)
ds.
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If t∗ ∈ [−r, 0], then µ(t) = ‖φ‖ and the previous inequality holds since M1 ≥ 1.
Hence

µ(t) ≤ 1

1− c1

{
M1(1 + c1) ‖φ‖+ (1 +M1)c3

+M1M2b+M1M3b
2 + c2r0

∫ t

0
m0(s)Ω1(µ(s))ds

+M1

∫ t

0
p(s)Ω0

(
µ(s) + r1

∫ s

0
m1(τ)Ω2(µ(τ))dτ

)
ds
}
.

Let us denote the right hand side of the above inequality as v(t). Then,

c = v(0) =
1

1− c1

{
M1(1 + c1) ‖φ‖+ (1 +M1)c3 +M1M2b+M1M3b

2
}
,

and µ(t) ≤ v(t), t ∈ J,

v′(t)

=
1

1− c1

{
c2r0m0(t)Ω1(µ(t))+M1p(t)Ω0

(
µ(t)+r1

∫ t

0
m1(s)Ω2(µ(s))ds

)}
≤ 1

1− c1

{
c2r0m0(t)Ω1(v(t))+M1p(t)Ω0

(
v(t)+r1

∫ t

0
m1(s)Ω2(v(s))ds

)}
.

Let w(t) = v(t) + r1

∫ t
0 m1(s)Ω2(v(s))ds. Then w(0) = v(0), v(t) ≤ w(t) and

w′(t) = v′(t) + r1m1(t)Ω2(v(t))

≤ 1

1− c1
{c2r0m0(t)Ω1(w(t)) +M1p(t)Ω0(w(t))}+ r1m1(t)Ω2(w(t))

≤ m̂(t){Ω0(w(t)) + Ω1(w(t)) + Ω2(w(t))}.

This implies that∫ w(t)

w(0)

ds

Ω0(s) + Ω1(s) + Ω2(s)
≤
∫ b

0
m̂(s)ds <

∫ ∞
c

ds

Ω0(s) + Ω1(s) + Ω2(s)
.

This inequality implies that w(t) must be bounded by some positive constant L
on [0, b]. Consequently, ‖x‖1 ≤ L, where L depends on b and on the functions
mi, i = 0, 1 and Ωi, i = 0, 1, 2.

Next we shall prove that the operator F is a completely continuous operator.
Let Bq = {x ∈ C0

b : ‖x‖1 ≤ q} for some q ≥ 1. We first show that the set
{Fx : x ∈ Bq} is equicontinuous. Let x ∈ Bq and t1, t2 ∈ J . Then, if
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0 < t1 < t2 ≤ b, we have

|(Fx)(t1)− (Fx)(t2)|
≤ |R(t1, 0)−R(t2, 0)||φ(0)− g(0, φ, 0)|

+
∣∣∣g(t1, xt1 , ∫ t1

0
k(t1, s, xs)ds

)
− g
(
t2, xt2 ,

∫ t2

0
k(t2, s, xs)ds

)∣∣∣
+
∣∣∣ ∫ t1

0
[R(t1, s)−R(t2, s)]A(s)g

(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)
ds
∣∣∣

+
∣∣∣ ∫ t2

t1

R(t2, s)A(s)g
(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)
ds
∣∣∣

+
∣∣∣ ∫ t1

0
[R(t1, s)−R(t2, s)]

∫ s

0
B(s, θ)g

(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)
dθds

∣∣∣
+
∣∣∣ ∫ t2

t1

R(t2, s)

∫ s

0
B(s, θ)g

(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)
dθds

∣∣∣
+
∣∣∣ ∫ t1

0
[R(t1, s)−R(t2, s)]f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds
∣∣∣

+
∣∣∣ ∫ t2

t1

R(t2, s)f
(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds
∣∣∣

≤ |R(t1, 0)−R(t2, 0)||φ(0)− g(0, φ, 0)|

+
∣∣∣g(t1, xt1 , ∫ t1

0
k(t1, s, xs)ds

)
− g
(
t2, xt2 ,

∫ t2

0
k(t2, s, xs)ds

)∣∣∣
+M2

∫ t1

0
|R(t1, s)−R(t2, s)|ds+M2

∫ t2

t1

|R(t2, s)|ds

+M3b

∫ t1

0
|R(t1, s)−R(t2, s)|ds+M3b

∫ t2

t1

|R(t2, s)|ds

+

∫ t1

0
|R(t1, s)−R(t2, s)|p(s)Ω0(q′)ds+

∫ t2

t1

|R(t2, s)|p(s)Ω0(q′)ds

where q′ = q + qr1

∫ b
0 m1(s)ds. The right hand side of the above inequality is

independent of x ∈ Bq and tends to zero as t2 − t1 → 0, since g is completely
continuous and by (H1), R(t, s) for t > s is continuous in the uniform operator
topology. Thus the set {Fx : x ∈ Bq} is equicontinuous.

We consider here only the case 0 < t1 < t2, since the other cases t1 < t2 < 0
and t1 < 0 < t2 are very simple.

It is easy to see that the family FBq is uniformly bounded. Next we show

that FBq is compact. Since we have shown FBq to be an equicontinuous
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collection, it suffices, by the Arzela-Ascoli theorem, to show that F maps Bq
into a precompact set in X.

Let 0 < t ≤ s ≤ b be fixed and let ε, a real number satisfying 0 < ε < t. For
x ∈ Bq, we define

(Fεx)(t) = R(t, 0)[φ(0)− g(0, φ, 0)] + g
(
t, xt,

∫ t

0
k(t, s, xs)ds

)
+

∫ t−ε

0
R(t, s)A(s)g

(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)
ds

+

∫ t−ε

0
R(t, s)

∫ s

0
B(s, θ)g

(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)
dθds

+

∫ t−ε

0
R(t, s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds.

Since R(t, s) is a compact operator, the set yε(t) = {(Fεx)(t) : x ∈ Bq} is
precompact in X for every ε, 0 < ε < t. Moreover, for every x ∈ Bq, we have

|(Fx)(t)− (Fεx)(t)|

≤
∫ t

t−ε
|R(t, s)|

∣∣∣A(s)g
(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)∣∣∣ds
+

∫ t

t−ε
|R(t, s)|

∫ s

0

∣∣∣B(s, θ)g
(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)∣∣∣dθds
+

∫ t

t−ε
|R(t, s)|

∣∣∣f(s, xs,∫ s

0
h(s, τ, xτ )dτ

)∣∣∣ds
≤M2

∫ t

t−ε
|R(t, s)|ds+M3b

∫ t

t−ε
|R(t, s)|ds

+

∫ t

t−ε
|R(t, s)|p(s)Ω0(q′)ds.

Therefore there are precompact sets arbitrarily close to the set {(Fx)(t) : x ∈
Bq}. Hence the set {(Fx)(t) : x ∈ Bq} is precompact in X.

It remains to show that F : C0
b → C0

b is continuous. Let {xn}∞n=0 be a
converging sequence in C0

b to x. Then there is an integer r such that ‖xn(t)‖ ≤
r for all n and t ∈ J , so xn ∈ Br and x ∈ Br.
By assumptions (H2)-(H4) and (H8),

f
(
t, xnt ,

∫ t

0
h(t, s, xns)ds

)
→ f

(
t, xt,

∫ t

0
h(t, s, xs)ds

)
,

g
(
t, xnt ,

∫ t

0
k(t, s, xns)ds

)
→ g

(
t, xt,

∫ t

0
k(t, s, xs)ds

)
,
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as n → ∞ for each t ∈ J . Moreover, by virtue of (H4), (H6) and (H7), we
obtain∣∣∣f(t, xnt ,∫ t

0
h(t, s, xns)ds

)
− f(t, xt,

∫ t

0
h(t, s, xs)ds

)∣∣∣ ≤ 2p(t)Ω0(q′)

and ∣∣∣g(t, xnt ,∫ t

0
k(t, s, xns)ds

)
− g
(
t, xt,

∫ t

0
k(t, s, xs)ds

)∣∣∣
≤ 2c2r0

∫ t

0
m0(s)Ω1(r)ds+ 2c1r + 2c3.

Since g is completely continuous, we have by dominated convergence theorem

‖Fxn − Fx‖

≤
∣∣∣g(t, xnt ,∫ t

0
k(t, s, xns)ds

)
− g
(
t, xt,

∫ t

0
k(t, s, xs)ds

)∣∣∣
+

∫ t

0
|R(t, s)|

∣∣∣A(s)
[
g
(
s, xns ,

∫ s

0
k(s, τ, xnτ )dτ

)
−g
(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)]∣∣∣ds
+

∫ t

0
|R(t, s)|

∫ s

0

∣∣∣B(s, θ)
[
g
(
θ, xnθ ,

∫ θ

0
k(θ, τ, xnτ )dτ

)
−g
(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)]∣∣∣dθds+

∫ t

0
|R(t, s)|

∣∣∣f(s, xns , ∫ s

0
h(s, τ, xnτ )dτ

)
−f
(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)∣∣∣ds → 0 as n→∞.

Thus F is continuous. Hence F is completely continuous. Finally, the set

ζ(F ) =
{
x ∈ C0

b : x = λFx, for some 0 < λ < 1
}

is bounded as we proved in the first step. By Schaefer’s theorem, the operator
F has a fixed point in C0

b . Hence (1.1)-(1.2) has a mild solution on [−r, b]. �

Krasnoselskii Theorem [4]: Let S be a closed convex and nonempty subset
of a Banach space X. Let P,Q be two operators such that

(i) Px+Qy ∈ S whenever x, y ∈ S;
(ii) P is a contraction mapping;
(iii) Q is compact and continuous.

Then there exists z ∈ S such that z = Pz +Qz.

For using the Krasnoselskii fixed point theorem we need the following hypothe-
ses:

(H9) There exist constants M4 > 0 and M5 > 0 such that
(i) |g(t, x, y)| ≤M4,
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(ii) |f(t, x, y)| ≤M5,
for t ∈ J, x ∈ C and y ∈ X.

(H10) M1[‖φ‖+M4] +M4 +M1M2b+M1M3b
2 +M1M5b ≤ q.

(H11) The function g is continuous and there exist constants Ni > 0(i =
1, 2, 3) such that

(i) |g(t, x1, y1)− g(t, x2, y2)| ≤ N1[‖x1 − x2‖+ |y1 − y2|],
(ii) |A(t)[g(t, x1, y1)− g(t, x2, y2)]| ≤ N2[‖x1 − x2‖+ |y1 − y2|],

(iii) |B(s, t)[g(t, x1, y1)− g(t, x2, y2)]| ≤ N3[‖x1 − x2‖+ |y1 − y2|],
for t ∈ J, x1, x2 ∈ C and y1, y2 ∈ X.

(H12) There exists a constant L1 > 0 such that∣∣∣ ∫ t

0
[k(t, s, x)− k(t, s, y)]ds

∣∣∣ ≤ L1‖x− y‖, t, s ∈ J and x, y ∈ C.

(H13) [N1 +M1N2b+M1N3b
2][1 + L1] < 1.

Theorem 3.2. Assume that the hypotheses (H1), (H3)-(H5), (H7)(ii) and
(H9)-(H13) hold. Then the problem (1.1)-(1.2) has a mild solution.

Proof. Define the operators P and Q on Bq as

Px(t) = R(t, 0)[φ(0)− g(0, φ, 0)] + g
(
t, xt,

∫ t

0
k(t, s, xs)ds

)
+

∫ t

0
R(t, s)A(s)g

(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)
ds

+

∫ t

0
R(t, s)

∫ s

0
B(s, θ)g

(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)
dθds,

Qx(t) =

∫ t

0
R(t, s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds.

Let x, y ∈ Bq. Then we have

|Px(t) +Qy(t)| ≤ |R(t, 0)[φ(0)− g(0, φ, 0)]|+
∣∣∣g(t, xt,

∫ t

0
k(t, s, xs)ds)

∣∣∣
+

∫ t

0
|R(t, s)|

∣∣∣A(s)g(s, xs,

∫ s

0
k(s, τ, xτ )dτ)

∣∣∣ds
+

∫ t

0
|R(t, s)|

∫ s

0

∣∣∣B(s, θ)g(θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ)

∣∣∣dθds
+

∫ s

0
|R(t, s)|

∣∣∣f(s, ys,

∫ s

0
h(s, τ, yτ )dτ)

∣∣∣ds
≤ M1[‖φ‖+M4] +M4 +M1M2b+M1M3b

2 +M1M5b

≤ q.
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Therefore Px+Qy ∈ Bq. Further

|Px(t)− Py(t)|

≤
∣∣∣g(t, xt,∫ t

0
k(t, s, xs)ds

)
− g
(
t, yt,

∫ t

0
k(t, s, ys)ds

)∣∣∣
+

∫ t

0
|R(t, s)|

∣∣∣A(s)
[
g
(
s, xs,

∫ s

0
k(s, τ, xτ )dτ

)
−g
(
s, ys,

∫ s

0
k(s, τ, yτ )dτ

)]∣∣∣ds
+

∫ t

0
|R(t, s)|

∫ s

0

∣∣∣B(s, θ)
[
g
(
θ, xθ,

∫ θ

0
k(θ, τ, xτ )dτ

)
−g
(
θ, yθ,

∫ θ

0
k(θ, τ, yτ )dτ

)]∣∣∣dθds
≤ N1

[
‖xt − yt‖+

∣∣∣ ∫ t

0
[k(t, s, xs)− k(t, s, ys)]ds

∣∣∣]
+M1N2

∫ t

0

[
‖xs − ys‖+

∣∣∣ ∫ s

0
[k(s, τ, xτ )− k(s, τ, yτ )]dτ

∣∣∣]ds
+M1N3

∫ t

0

∫ s

0

[
‖xθ − yθ‖+

∣∣∣ ∫ θ

0
[k(θ, τ, xτ )− k(θ, τ, yτ )]dτ

∣∣∣]dθds
≤ [N1 +M1N2b+M1N3b

2][1 + L1]‖x− y‖1.

By hypotheses (H13), P is a contraction.
The equicontinuity of (Qu)(t) is already proved in Theorem 3.1 and so

Q(Bq) is relatively compact. By the Arzela-Ascoli Theorem, Q is compact.
Hence by the Krasnoselskii Theorem there exists a mild solution to the problem
(1.1)-(1.2). �

4. Example

Consider the following equation which arises in the study of heat conduction
in materials with memory [8, 11, 12]

Cθ′′(x, t) + β(0)θ′(x, t) = α(0)∆θ(x, t)−
∫ t

−∞
β′(t− s)θ′(x, s)ds

+

∫ t

−∞
α′(t− s)∆θ(x, s)ds+ r′(x, t). (4.1)

Let us assume that Ω is a bounded open connected subset of R3 with C∞

boundary. Also, assume that α and β are in C2([0,∞), R) with C = α(0) =
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β(0) = 1. If we suppose the dependence on x ∈ Ω and assume that θ(x, t) is
known for t ≤ 0 we may pose the problem as

θ′′(t) + θ′(t) = ∆θ(t)−
∫ t

0
β′(t− s)θ′(s)ds+

∫ t

0
α′(t− s)∆θ(s)ds+ r(t)

where ∆ is the Laplacian on Ω with boundary condition θ|Γ = 0 and the initial
conditions are

θ(x, 0) = θ0(x) ∈ H2(Ω) ∩H1
0 (Ω), θ′(x, 0) = θ′0(x) ∈ H1

0 (Ω).

We rewrite this as(
θ
φ

)′
=

(
0, I

∆, −I

)(
θ(s)
φ(s)

)
ds+

(
0

r(t)

)
,(

θ(0)
φ(0)

)
=

(
θ0

θ′0

)
.

Letting ω = (θ, φ)∗ this can be written as

ω′(t) = Aω(t) +

∫ t

0
B(t− s)Aω(s)du+ f(t), ω(0) ∈ D(A) ⊂ H.

Here H is the space H1
0 (Ω)⊕H◦(Ω) with inner product

〈(θ1, φ1), (θ2, φ2)〉 =

∫
Ω

(∇θ1∇θ2 + θ1θ2)dx,

and A has domain D(A) = (H2(Ω)∩H1
0 (Ω))⊕H1

0 (Ω). It follows from [5] that
A generates a semigroup T (t) on H with ‖T (t)‖ ≤ Me−γt for some γ > 0.
Further the resolvent operator R(t) exists and it follows from Theorem 4.1
in [7] that the resolvent operator satisfies the condition ‖R(t)‖ ≤ Me−µt for
some µ > 0.

By introducing the neutral term in the above model (4.1) we can obtain the
following neutral integrodifferential equation

∂

∂t
[θ(x, t) +

∫ t

∞
k(s− t, η, x)θ(s, x)dηds]

= ∆θ(x, t)−
∫ t

−∞
β(t− s)θ(x, s)ds+

∫ t

0
a(t− s)∆θ(x, s)ds+f(x, t, θ)

and

θ(t, 0) = θ(t, 1) = 0; θ(τ, x) = θ0(τ, x), τ ≤ 0

for t ∈ [0, b] and x ∈ [0, 1]. By the similar analysis above the equation gener-
ates a semigroup and a resolvent operator R(t) which satisfies the hypothesis
(H1). Moreover imposing appropriate conditions on the functions a, k, β and
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f and applying the Theorem 3.1 we can see that the neutral integrodifferential
equation has at least one mild solution.
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