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Abstract. We use Newton’s method to approximate a locally unique solution of an equation
in a Banach space setting. We show that our error bounds on the distances involved can be
tighter than before [6]–[12], under new sufficient convergence conditions, provided that the
Fréchet–derivative of the operator involved is p–Hölder continuous, where p ∈ (0, 1].

Numerical examples validating our result are given at the end of this study.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x? of the nonlinear equation

F (x) = 0, (1.1)

where F is a Fréchet–differentiable operator such that F ′ is a p–Hölder con-
tinuous operator, p ∈ (0, 1], defined on an open, convex subset D of a Banach
space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
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of simplicity, assume that a time–invariant system is driven by the equation
ẋ = Q(x) (for some suitable operator Q), where x is the state. Then the equi-
librium states are determined by solving equation (1.1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
(single algebraic equations with single unknowns). Except in special cases, the
most commonly used solution methods are iterative — when starting from one
or several initial approximations a sequence is constructed that converges to
a solution of the equation. Iteration methods are also applied for solving op-
timization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

We study the convergence of Newton’s method

xn+1 = xn − F ′(xn)−1 F (xn), (n ≥ 0) (x0 ∈ D). (1.2)

A survey of sufficient conditions for the local as well as the semilocal conver-
gence of Newton–type methods as well as an error analysis for such methods
can be found in [1]–[4], [8], and the references there. This note is a contin-
uation of our work in [5], where, we projected that the order of convergence
(1 + p) not obtained in [5] can be achieved under new sufficient convergence
conditions.

2. Preliminaries and background

Let x0 ∈ D be such that F ′(x0)
−1 ∈ L(Y,X ) the space of bounded linear

operators from Y into X . Assume F ′ satisfies a center–Hölder condition

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ `0 ‖ x− x0 ‖p, `0 > 0, (2.1)

and a Hölder condition

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ ` ‖ x− y ‖p, ` > 0, (2.2)

for all x, y ∈ U(x0, R) = {x ∈ X : ‖ x− x0 ‖< R, R > 0} ⊆ D.

Note that in general

`0 ≤ ` (2.3)

holds, and that
`

`0
can be arbitrarily large [4].
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We refer the reader to [3], [4], [7], [9] for a historical background, and the
attempts made to provide new semilocal convergence results, and tighter error
bounds on the distances ‖ xn+1 − xn ‖, ‖ xn − x? ‖, (n ≥ 0).

Recently, a new sufficient condition was given in [7], which improves earlier
sufficient convergence conditions [1], [3], [6]–[8], [10]–[12], but not necessarily
the error bounds.

Let

c0 =
`+

√
`2 + 4 `0 ` (1 + p)p p1−p

2 `
, (2.4)

and

h0(t) =

(
1− 1

t

)p 1 + p(
(`0 (1 + p))

1
1−p + (` t (t− 1))

1
1−p

)1−p . (2.5)

Then, the condition is for b ≥‖ F ′(x0) ‖−1:

ηp b ≤ h0(c0). (2.6)

We show that our new sufficient convergence conditions can hold in cases (2.6)
is violated. In order for us to achieve this task, we note that the results in
[7] can be given in affine invariant form by simply replacing F by F ′(x0)

−1 F .
Therefore, the condition (2.6) becomes

ηp ≤ h0(c0), (2.7)

and the corresponding error estimates are:

0 ≤ sn − sn−1 ≤ sn
(
c0 − 1

cn0 − 1

)
, (n ≥ 1) (2.8)

where, the sequence {sn} (n ≥ 0) is given by:

s0 = 0, s1 = η,

sn+2 = sn+1 +
` (sn+1 − sn)1+p

(1 + p) (1− `0 spn+1)
, (n ≥ 0).

(2.9)

3. Semilocal convergence analysis for Newton’s method

We can show the following lemma on majorizing sequences for Newton’s
method (1.2).

Lemma 3.1. Assume there exist constants `0 ≥ 0, ` ≥ 0, η ≥ 0, and p ∈ (0, 1],
such that:

q = α η ≤ 1

1 + p
, (3.1)
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where,

α =
1

1 + p

{
1

`0

(
1− 2 `

`+
√
`2 + 4 (1 + p)p p1−p `0 `

)}− 1
p

. (3.2)

Then, scalar sequence {tn} (n ≥ 0) given by

t0 = 0, t1 = η,

tn+1 = tn +
`1 (tn − tn−1)1+p

(1 + p) (1− `0 tpn)
, (n ≥ 1).

(3.3)

is well defined, nondecreasing, bounded above by

t?? =
(1 + p) η

1 + p− δ
, (3.4)

and converges to its unique least upper bound t?, such that t? ∈ [0, t??], where,

`1 =

{
`0 if n = 1
` if n ≥ 2

, (3.5)

and

δ =
2 (1 + p) `

`+
√
`2 + 4 (1 + p)p p1−p `0 `

< 1 + p, (3.6)

Moreover the following estimates hold for all n ≥ 1:

`0 t
λ
? < 1, (3.7)

0 ≤ tn+1 − tn ≤
δ

1 + p
(tn − tn−1) ≤

(
δ

1 + p

)n
η, (3.8)

tn+1 − tn ≤
(

δ

1 + p

)n
((1 + p) q)(1+p)

n−1η, (3.9)

and

t? − tn ≤
(

δ

1 + p

)n ((1 + p) q)(1+p)
n−1 η

1− ((1 + p) q)(1+p)n
. (3.10)

Proof. The proof as very similar to the one in Lemma 3.1 in [5] is omitted. �

However, we will cover the cases `0 = 0, and ` = 0. If `0 = 0, then (3.7)
holds trivially. In this case, for ` > 0, an induction argument shows

tk+1 − tk =
1

a
(a (tk − tk−1))(1+p)

k
,

where,

a =

(
`

1 + p

) 1
p

.
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That is we have:

tk+1 = t1 + (t2 − t1) + · · ·+ (tk+1 − tk) =
1

a

k∑
m=0

(a η)(1+p)
m
,

and

t? = lim
k−→∞

tk =
1

a

∞∑
m=0

(a η)(1+p)
m
.

Clearly, this serie converges, if a η < 1, and is bounded by the number:

1

a

∞∑
m=0

(a η)(1+p)
m

=
1

a

1

1− (a η)1+p
.

If ` = 0, and 0 ≤ `0 ≤ `, we deduce: `0 = 0, t? = tk = η, (k ≥ 1).

We can show the main semilocal convergence theorem for Newton’s method
(1.2):

Theorem 3.2. Let F : D ⊆ X −→ Y be a Fréchet–differentiable operator.
Assume:
there exist a point x0 ∈ D and parameters `0 > 0, ` > 0, p ∈ (0, 1], R > 0,
and η ≥‖ F ′(x0)−1 F (x0) ‖> 0, such that: conditions (2.1), (2.2), hypotheses
of Lemma 3.1 hold,

and
U(x0, t?) ⊆ U(x0, R).

Then, {xn} (n ≥ 0) generated by Newton’s method (1.2) is well defined, re-
mains in U(x0, t?) for all n ≥ 0 and converges to a unique solution x? ∈
U(x0, t?) of equation F (x) = 0.

Moreover, the following estimates bounds hold for all n ≥ 0:

‖ xn+2 − xn+1 ‖≤
` ‖ xn+1 − xn ‖1+p

(1 + p) [1− `0 ‖ xn+1 − x0 ‖p]
≤ tn+2 − tn+1,

and
‖ xn − x? ‖≤ t? − tn,

where, iteration {tn} (n ≥ 0), and point t? are given in Lemma 3.1. Further-
more, if there exists R > t? such that

R0 ≤ R,
and

`0

∫ 1

0
[θt? + (1− θ)R]p dθ ≤ 1,

the solution x? is unique in U(x0, R0).
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Proof. The proof can be found in [5, Theorem 3.3] (see, also Theorem 5 in
[3]). Simply replace Lemma 3.1 of [5] by Lemma 3.1 in this proof. �

4. Special cases and applications

Case 1. (Lipschitz case: p = 1).

Application 4.1. It is simple algebra to show that all hypotheses of Lemma
3.1 hold true provided that

hA = α η ≤ 1

2
, (4.1)

where,

α =
1

8

(
`+ 4 `0 +

√
`2 + 8 ` `0

)
. (4.2)

The famous for its simplicity and clarity Newton–Kantorovich hypothesis for
solving nonlinear equations is given by:

hK = ` η ≤ 1

2
. (4.3)

It then follows from (4.1), (4.2), and (4.3):

hK ≤
1

2
=⇒ hA ≤

1

2
(4.4)

but not necessarily vice verca unless if `0 = `.

Note also that our ratio of convergence ”2 hA” is smaller that ”2 hK” (see
(3.9) and (3.10) for p = 1).

Example 4.2. Define the scalar function F by F (x) = c0 x+c1 +c2 sin ec3 x,
x0 = 0, where ci, i = 1, 2, 3 are given parameters. Then it can easily be seen

that for c3 large and c2 sufficiently small,
`

`0
can be arbitrarily large. That is

(4.1) may be satisfied but not (4.3).

Example 4.3. Let X = Y = R, x0 = 1, U0 = {x : |x − x0| ≤ 1 − β},

β ∈
[
0,

1

2

)
, and define function F on U0 by

F (x) = x3 − β. (4.5)

Using hypotheses of Theorem 3.2, we get:

η =
1

3
(1− β), `0 = 3− β, and ` = 2 (2− β).
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The Kantorovich condition (4.3) is violated, since

4

3
(1− β) (2− β) > 1 for all β ∈

[
0,

1

2

)
.

Hence, there is no guarantee that Newton’s method (1.2) converges to x? =
3
√
β, starting at x0 = 1. However, our condition (4.1) is true for all β ∈ I =[
.450339002,

1

2

)
.

Hence, the conclusions of our Theorem 3.2 can apply to solve equation (4.5)
for all β ∈ I.

Example 4.4. Let X = Y = C[0, 1] be the space of real–valued continuous
functions defined on the interval [0, 1] with norm

‖ x ‖= max
0≤s≤1

|x(s)|.

Let θ ∈ [0, 1] be a given parameter. Consider the ”Cubic” integral equation

u(s) = u3(s) + λu(s)

∫ 1

0
q(s, t)u(t) dt+ y(s)− θ. (4.6)

Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1] × [0, 1]; the parameter λ is a real number called the ”albedo” for scat-
tering; y(s) is a given continuous function defined on [0, 1] and x(s) is the
unknown function sought in C[0, 1]. Equations of the form (4.6) arise in the
kinetic theory of gasses [4]. For simplicity, we choose u0(s) = y(s) = 1, and

q(s, t) =
s

s+ t
, for all s ∈ [0, 1], and t ∈ [0, 1], with s + t 6= 0. If we let

D = U(u0, 1− θ), and define the operator F on D by

F (x)(s) = x3(s)− x(s) + λx(s)

∫ 1

0
q(s, t)x(t) dt+ y(s)− θ, (4.7)

for all s ∈ [0, 1], then every zero of F satisfies equation (4.6).
We have the estimates

max
0≤s≤1

|
∫

s

s+ t
dt| = ln 2.

Therefore, if we set ξ =‖ F ′(u0)−1 ‖, then it follows from hypotheses of The-
orem 3.2 that

η = ξ (|λ| ln 2 + 1− θ),
` = 2 ξ (|λ| ln 2 + 3 (2− θ)) and `0 = ξ (2 |λ| ln 2 + 3 (3− θ)).

It follows from Theorem 3.2 that if condition (4.1) holds, then problem (4.6)
has a unique solution near u0. This assumption is weaker than the one given
before using the Newton–Kantorovich hypothesis (4.3). Note also that `0 < `
for all θ ∈ [0, 1].
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Example 4.5. Consider the following nonlinear boundary value problem [4]{
u′′ = −u3 − γ u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+

∫ 1

0
Q(s, t) (u3(t) + γ u2(t)) dt (4.8)

where, Q is the Green function:

Q(s, t) =

{
t (1− s), t ≤ s
s (1− t), s < t.

We observe that

max
0≤s≤1

∫ 1

0
|Q(s, t)| = 1

8
.

Let X = Y = C[0, 1], with norm

‖ x ‖= max
0≤s≤1

|x(s)|.

Then problem (4.8) is in the form (1.1), where, F : D −→ Y is defined as

[F (x)] (s) = x(s)− s−
∫ 1

0
Q(s, t) (x3(t) + γ x2(t)) dt.

It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v] (s) = v(s)−
∫ 1

0
Q(s, t) (3 x2(t) + 2 γ x(t)) v(t) dt.

If we set u0(s) = s, and D = U(u0, R), then since ‖ u0 ‖= 1, it is easy to
verify that U(u0, R) ⊂ U(0, R+ 1). It follows that 2 γ < 5, then

‖ I − F ′(u0) ‖ ≤
3 ‖ u0 ‖2 +2 γ ‖ u0 ‖

8
=

3 + 2 γ

8
,

‖ F ′(u0)−1 ‖ ≤
1

1− 3 + 2 γ

8

=
8

5− 2 γ
,

‖ F (u0) ‖ ≤
‖ u0 ‖3 +γ ‖ u0 ‖2

8
=

1 + γ

8
,

‖ F (u0)
−1 F (u0) ‖ ≤

1 + γ

5− 2 γ
.

On the other hand, for x, y ∈ D, we have:

[(F ′(x)−F ′(y))v] (s) = −
∫ 1

0
Q(s, t) (3 x2(t)−3 y2(t)+2 γ (x(t)−y(t))) v(t) dt.
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Consequently,

‖ F ′(x)− F ′(y) ‖ ≤ ‖ x− y ‖ (2 γ + 3 (‖ x ‖ + ‖ y ‖))
8

≤ ‖ x− y ‖ (2 γ + 6 R+ 6 ‖ u0 ‖)
8

=
γ + 6 R+ 3

4
‖ x− y ‖,

‖ F ′(x)− F ′(u0) ‖ ≤
‖ x− u0 ‖ (2 γ + 3 (‖ x ‖ + ‖ u0 ‖))

8

≤ ‖ x− u0 ‖ (2 γ + 3 R+ 6 ‖ u0 ‖)
8

=
2 γ + 3 R+ 6

8
‖ x− u0 ‖ .

Therefore, conditions of Theorem 3.2 hold with

η =
1 + γ

5− 2 γ
, ` =

γ + 6 R+ 3

4
, `0 =

2 γ + 3 R+ 6

8
.

Note also that `0 < `.

Case 2. (Hölder Case: p 6= 1).

Application 4.6. Let ` = 1, `0 = p =
1

2
, and η = .2. Then, we have

δ = 1.13084151, α = 2.75172827, q = .550345654 < .6666.

Hence, hypotheses of Lemma 3.1, and (2.7) are satisfied. Then, we obtain:

t0 = 0, t1 = .2, t2 = .276801908, t3 = .296056509,

t4 = .298503386, t5 = .298614405, t6 = .298615478,

c0 = 1.326445825, δ0 = .444, h(c0) = .859253735.

Then, we get the following comparison table:

Comparison table
Actual ours [7]

n tn − tn−1 (2.9) (3.8) (2.8)
2 .076801908 .124470742 .118980595

3 .019254601 .035971114 .072458013

4 .002447296 .009445671 .46497804

5 .000111019 .001151911 .03138214

6 .000001073 .000030298 .021922049
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The table justifies the claims made in this study.

So far, we showed error bound (3.9) can be finer than (2.8). However,
the sufficient convergence condition (3.1) is stronger than (2.7) for p ∈ (0, 1),
unless if `0 = 0. Indeed, first note that

δ =
1 + p

c0
, (4.9)

and (3.1) can be written as

ηp ≤ h1(c0) =
1

`0

(
1− 1

c0

)
. (4.10)

We shall show

h1(c0) < h0(c0). (4.11)

Instead of showing (4.11), we can show

1

`0

(
1− 1

c0

)
≤
(

1− 1

c0

)p 1 + p(
(`0 (1 + p))

1
1−p + (` c0 (c0 − 1))

1
1−p

)1−p

or {(
1− 1

c0

) (
(`0 (1 + p))

1
1−p + (` c0 (c0 − 1))

1
1−p

)}1−p
< `0 (1 + p)

or (
1− 1

c0

) (
(`0 (1 + p))

1
1−p + (` c0 (c0 − 1))

1
1−p

)
≥ (`0 (1 + p))

1
1−p

or

(`0 (1 + p))
1

1−p + (` c0 (c0 − 1))
1

1−p − 1

c0
(`0 (1 + p))

1
1−p−

1

c0
(` c0 (c0 − 1))

1
1−p < (`0 (1 + p))

1
1−p

or (
1− 1

c0

)
(` c0 (c0 − 1))

1
1−p <

1

c0
(`0 (1 + p))

1
1−p

or (
1− 1

c0

)1−p
` c0 (c0 − 1) <

(
1

c0

)1−p
`0 (1 + p)

or

(c0 − 1)1−p ` c0 (c0 − 1) < `0 (1 + p)

or

(c0 − 1)2−p ` c0 < `0 (1 + p). (4.12)
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But, we have by (2.4):

c0 − 1 =
`+

√
`2 + 4 `0 ` (1 + p)p p1−p

2 `
− 1

=
2 `0 (1 + p)p p1−p

`+
√
`2 + 4 `0 ` (1 + p)p p1−p

.
(4.13)

It then follows from (4.12), and (4.13) that we must show:(
2`0(1 + p)pp1−p

`+
√
`2 + 4`0`(1 + p)pp1−p

)2−p `+
√
`2 + 4`0`(1 + p)pp1−p

2
< `0(1 + p)

or(
2`0 (1 + p)p p1−p

)2−p
< 2 `0 (1 + p)

(
`+

√
`2 + 4 `0 ` (1 + p)p p1−p

)1−p

or

21−p `1−p0 (1 + p)−(1−p)
2
p(1−p)(2−p) <

(
`+

√
`2 + 4 `0 ` (1 + p)p p1−p

)1−p

or

2 `0 (1 + p)−(1−p) p2−p < `+
√
`2 + 4 `0 ` (1 + p)p p1−p

or

2 `0 (1 + p)−(1−p) p2−p < `

(
1 +

√
1 + 4

`0
`

(1 + p)p p1−p
)

or

2
`0
`

(1 + p)−(1−p) p2−p < 1 +

√
1 + 4

`0
`

(1 + p)p p1−p. (4.14)

But, we have:

2
`0
`

(1 + p)−(1−p) p2−p = 2
`0
`

(
p

1 + p

)1−p
p < 2,

whereas

1 +

√
1 + 4

`0
`

(1 + p)p p1−p > 2,

which shows (4.11).

In case `0 = 0, (2.7) becomes

η ≤ 0, (4.15)

whereas from the proof of Lemma 3.1, we have:

L ηp

1 + p
≤ 1. (4.16)
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Conclusion

Case p = 1. Our condition (4.1) is weaker than (4.3) [4], [9], and the ratio of
convergence 2 qA is smaller than 2 qK for `0 < `.

If `0 = `, conditions (4.1), and (4.3) coincide.

Case p ∈ (0, 1). Condition (3.1) is stronger than (2.7) if `0 6= 0, but the error
bounds (3.9) can be finer than (2.8) [7]. If `0 = 0, condition (4.15) cannot
apply for η 6= 0, but (4.16) does apply.

Hence, in practice we will always use our results for p = 1, and a combination
of these results if p ∈ (0, 1). For example, if (3.1) and (2.7) hold, we use error
bounds (3.9). If (2.7) only holds, then we use bounds which xN0 (replacing x0)
satisfies (3.1), after which we use bounds (3.9) (for `0 6= 0). Finally, if `0 = 0,
and (4.16) holds, we use the bounds introduced in the proof of Lemma 3.1.
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