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Abstract. We approximate a locally unique solution of an equation in a Banach space
setting by using a quadratically convergent Secant–type method studied in [4]–[6]. Using
our new idea of recurrent functions, we extend the applicability of this method, and also
simlify the existing sufficient convergence conditions for this method [4]–[6].

Numerical examples, where the method is compared favorably to the Secant and Newton’s

methods are also provided in this study.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

F (x) = 0, (1.1)

where F is a Fréchet–differentiable operator defined on a subset D of a Banach
space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
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systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time–invariant system is driven by the equation
ẋ = T (x), for some suitable operator T , where x is the state. Then the equi-
librium states are determined by solving equation (1.1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
(single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative–when starting from
one or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

In [4]–[6], we studied the Secant–type method (STM)

xn+1 = xn −A−1n F (xn), (n ≥ 0)
An = [2 xn − xn−1, xn−1;F ], (x−1, x0 ∈ D)

to generate a sequence {xn} converging to x?.

Here, [x, y;F ] ∈ L(X ,Y) denotes a divided difference of order one at the
points (x, y) ∈ D2, satisfying (see [4], [11]):

[x, y;F ] (x− y) = F (x)− F (y), for all x 6= y. (1.2)

The (STM) has geometrical interpretation similar to the Secant method (SM):

xn+1 = xn − [xn, xn−1;F ]−1 F (xn), x−1, x0 ∈ D, (n ≥ 0)

in the scalar case [4]–[6]. The (STM) serves as an alternative to the usage of
Newton’s method (NM)

xn+1 = xn − F ′(xn)−1 F (xn), x0 ∈ D, (n ≥ 0)

in the case of solving nondifferentiable operator equations. Note also that even
if the analytical representation of F ′(xn) exists, it may be too expensive or
impossible to compute the inverse F ′(xn)−1 (n ≥ 0) at each step.

The quadratic convergence of (STM) was shown in [4]–[6]. We also note
though that the efficiency indices of (STM), (SM), (NM) are

√
2 = 1.414213562,

1 +
√

5

2
= 1.618033989, and

√
2, respectively.
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(STM) have been used by other reseachers. Potra [12] used a three point
method and divided differences of order one as an alternative to Ulm’s method
[4] using divided differences of order two. Potra’s method is of convergence
1.839 · · · (STM) of order between 1.618033989 and 1.839 · · · or less than two
can also be found in the works of Hernández, et al. [9], [10]. As already noted
above we studied the local as well as the semilocal convergence of (STM) in
[4]–[6] (see, also [2], [3]). Due to its importance, we use our new idea or recur-
rent functions to provide a new semilocal convergence, which is expanding the
applicability of the (STM) by on the one hand simplifying existing hypotheses
or replacing them by weaker ones.

Numerical examples where the method is compared favorably to the Secant
and Newton’s methods are also provided in this study.

2. Semilocal convergence analysis of (NTM)

It is convenient for us to define certain numbers, parameters, and polyno-
mials.

Let α > 0, β > 0, and γ ≥ 0 be given constants. Define numbers d, δi,
i = 1, · · · , 8 by

d = 1− β γ2, (2.1)

δ0 to be the minimal non–negative zero of polynomial P0 given by

P0(t) = β d2 t2 + 3 α d (1− 2 α t) t+ 2 α (1− 2 α t)2 t
−(1− 2 α t) d2,

(2.2)

δ1 =
d

2 α
, (2.3)

δ2 =
(
√

9 α2 + 4 β d− 5 α) d

2 (β d− 4 α2)
, (2.4)

δ3 =
2 + 3 d−

√
(2− d) (2 + 7 d)

8 α
, (2.5)

δ4 = min {δi, i = 0, 1, 2, 3}, (2.6)

δ5 =
d

5 α
, (2.7)

δ6 = min {δ0, δ1, δ3, δ5}, (2.8)

δ7 =
5 α+

√
9 α2 + 4 β d

4 α2 − β d
, (2.9)

δ8 = min {δ0, δ1, δ3, δ7}, (2.10)
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and polynomials P1, P2 by

P1(t) = (β d− 4 α2) t2 + 5 α d t− d2, (2.11)

P2(t) = 4 α2 t2 − α (2 + 3 d) t+ d2. (2.12)

Consider Conditions (Ci), i = 1, 2, 3:

(C1)
0 < d < 1, β d− 4 α2 > 0, δ ∈ [0, δ4];

(C2)
0 < d < 1, β d− 4 α2 = 0, δ ∈ [0, δ6];

(C3)
0 < d < 1, β d− 4 α2 < 0, δ ∈ [0, δ8].

It is simple algebra to show that under Conditions (Ci), the following hold

δ4 ≥ 0, (2.13)

δ6 ≥ 0, (2.14)

δ8 ≥ 0, (2.15)

and
P0(δ) ≤ 0, (2.16)

P1(δ) ≤ 0, (2.17)

P2(δ) ≥ 0, (2.18)

P0(δ0) = 0, (2.19)

P1(δ2) = 0, (2.20)

P2(δ3) = 0, (2.21)

in all three cases.

Let us also define polynomial g by:

g(t) := gδ(t) = 2 α t2 + (α+ β δ) t− (α+ β δ), (2.22)

and parameter s∞ := s∞(δ)

s∞ = 1− 2 α δ

d
. (2.23)

Note that

q =

√
(α+ β δ)2 + 8 α (α+ β δ)− (α+ β δ)

4 α
, (2.24)

is the only non–negative zero of polynomial g.

It is then simple algebra to show under any of Conditions (Ci), i = 1, 2, 3:

λ

2
= max

{
α δ + β γ2

d− 2 α δ
,

α s∞ δ + β δ2

d− 2 α (1 + s∞) δ
, q

}
≤ s∞. (2.25)
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We need the following result on majorizing sequences for (STM):

Lemma 2.1. Let α > 0, β > 0, γ ≥ 0 be given constants, and δ a non–
negative parameter. Define scalar iteration {tn} (n ≥ −1) by

t−1 = 0, t0 = γ, t1 = γ + δ,

tn+2 = tn+1 +
α (tn+1 − tn) + β (tn − tn−1)2

d− 2 α (tn+1 − γ)
(tn+1 − tn).

(2.26)

Then, under Conditions (C1) or (C2) or (C3), sequence {tn} (n ≥ −1) is
non–decreasing, bounded above by

t?? = γ +
2 δ

2− λ
, (2.27)

and converges to its unique least upper bound

0 ≤ t? ≤ t??. (2.28)

Moreover the following estimates hold for all n ≥ 0:

tn+1 − tn ≤
λ

2
(tn − tn−1) ≤

(
λ

2

)n
δ, (2.29)

and

t? − tn ≤
2 δ

2− λ

(
λ

2

)n
, (2.30)

where, λ is given in (2.25).

Proof. We shall show using induction on the integer m:

tm+2 − tm+1 ≤
λ

2
(tm+1 − tm), (2.31)

and

d− 2 α (tm+1 − γ) > 0. (2.32)

Estimates (2.31), and (2.32) hold for m = 0, 1, by (2.25), and (2.26). Let us
assume they hold for all k ≤ m, (m ≥ 1). We then obtain:

tk+1 − tk ≤
(
λ

2

)k
δ, (2.33)
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and

tk+1 ≤ tk +

(
λ

2

)k
δ

≤ tk−1 +

(
λ

2

)k−1
δ +

(
λ

2

)k
δ

≤ t1 +

(
1 +

λ

2
+ · · ·+

(
λ

2

)k)
δ

= γ +

1−
(
λ

2

)k+1

1− λ

2

δ

≤ γ +
2 δ

2− λ
= t??.

(2.34)

In view of (2.33), and (2.34), estimates (2.31), and (2.32) certainly hold if

0 ≤
α

(
λ

2

)k
δ + β

(
λ

2

)2 (k−1)
δ2

d− 2 α

1−
(
λ

2

)k+1

1− λ

2

δ

≤ λ

2
, (2.35)

or

0 ≤
α

(
λ

2

)k
δ + β

(
λ

2

)k
δ2

d− 2 α

1−
(
λ

2

)k+1

1− λ

2

δ

≤ λ

2
. (2.36)

It is convenient for us to set s =
λ

2
, which together with (2.35) leads to

showing:

fk(s) = (α+β δ) δ sk−1+2 α (1+s+s2+· · ·+sk) δ−d ≤ 0 (k ≥ 2). (2.37)

We have fk(0) = 2 α δ − d ≤ 0, fk(s) > 0 for sufficiently large s > 0, and
f ′k(s) ≥ 0. Hence, each fk has a unique nonnegative zero sk, by the interme-
diate value theorem.
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We need to find a relationship between two consecutive polynomials fk:

fk+1(s) = (α+ βδ)δsk + 2α((1 + s+ s2 + · · ·+ sk) + sk+1)δ − d
= fk(s) + (α+ βδ)δsk − (α+ βδ)δsk−1 + 2αsk+1δ
= fk(s) + g(s) sk−1 δ,

(2.38)

where, polynomial g is given in (2.22).

We must show estimate (2.36) holds for all s ∈ [0, sk]. If there exists k ≥ 0,
such that sk+1 ≥ q, then using (2.38), we get:

fk+1(sk+1) = fk(sk+1) + g(sk+1) s
k−1 δ,

or
fk(sk+1) ≤ 0, (2.39)

since fk+1(sk+1) = 0, and g(sk+1) s
k−1 δ ≥ 0.

We can certainly choose the last of the sk’s denoted by s∞ (obtained from
(2.35) by letting k −→∞, and given in (2.23)), to be sk+1. Hence, we get

sk+1 ≤ sk (k ≥ 2), (2.40)

since by the intermediate value theorem applied to function fk on [0, sk+1], sk
exists and satisfies (2.40).

Hence, sequence {sm} is non–increasing, bounded below by zero, and as
such it converges to its unique maximum lowest bound s? satisfying s? ≥ s∞.
Then, estimate (2.37) certainly holds on [0, sk] provided that

q ≤ s∞, (2.41)

which holds by (2.25). That completes the induction for (2.31), (2.32), and
(2.29).

Moreover, sequence {tn} is increasing, bounded above by t??, and as such
it converges to its unique least upper bound t?. Finally, estimate (2.30) fol-
lows from (2.29) by using standard majorization techniques [4], [11]. That
completes the proof of Lemma 2.1. �

We can show the main semilocal convergence result for (STM).

Theorem 2.2. Let F be a nonlinear operator defined on a subset D of a
Banach space X with values in a Banach space Y.

Assume:
F has divided differences [x, y;F ] and [x, y, z;F ] on D0 ⊆ D; there exist

points x−1, x0 in D0, such that A0 = [2x0 − x−1, x−1;F ] is invertible on D0;

for all x, y ∈ D0 =⇒ 2 y − x ∈ D0; (2.42)
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there exist constants α, β, γ, such that

‖ A−10 ([x, y;F ]− [u, v;F ]) ‖≤ α
(
‖ x− u ‖ + ‖ y − v ‖

)
, (2.43)

‖ A−10 ([y, x, y;F ]− [2 y − x, x, y;F ]) ‖≤ β ‖ x− y ‖ (2.44)

for all x, y, u, v ∈ D0;
‖ x0 − x−1 ‖≤ γ; (2.45)

any one of the following Conditions (C1), (C2), (C3) hold such that:

‖ A−10 F (x0) ‖≤ δ ≤ δ, (2.46)

where, δ is δ4 or δ6 or δ8, respectively; and

U(x0, t
?) = {x ∈ X , ‖ x− x0 ‖≤ t?} ⊆ D0. (2.47)

Then, sequence {xn} (n ≥ 0) generated by (STM) is well defined, remains in
U(x0, t

?) for all n ≥ 0, and converges to a solution x? of equation F (x) = 0
in U(x0, t

?). Moreover, the following estimates hold for all n ≥ 0:

‖ xn+1 − xn ‖≤ tn+1 − tn, (2.48)

and
‖ xn − x? ‖≤ t? − tn, (2.49)

where, sequence {tn} (n ≥ 0) is given in (2.26). Furthermore, if D0 is a
convex set, and

2 α (γ + 2 t?) < 1, (2.50)

then x? is the unique solution of equation (1.1) in U(x0, t
?).

Proof. We shall show (2.48) holds for all k. Using (2.26), (2.34), (2.42), (2.45),
and (2.46), we deduce x−1, x1 ∈ U(x0, t

?). Let us assume (2.48) holds for all
n ≤ k, and xk ∈ U(x0, t

?). In view of (2.43), (2.44), and the induction
hypotheses, we obtain in turn:

‖ A−10 (Ak+1 −A0)] ‖

= ‖ A−10

(
[2x0 − x−1, x−1;F ]− [x0, x−1;F ] + [x0, x−1;F ]

−[x0, x0;F ] + [x0, x0;F ]− [xk+1, x0;F ] + [xk+1, x0;F ]

−[xk+1, xk;F ] + [xk+1, xk;F ]− [2xk+1 − xk, xk;F ]

)
‖

= ‖ A−10

(
([2x0 − x−1, x−1, x0;F ]− [x0, x−1, x0;F ]) (x0 − x−1)

+([x0, x0;F ]− [xk+1, x0;F ]) + ([xk+1, x0;F ]− [xk+1, xk;F ])

+([xk+1, xk;F ]− [2xk+1 − xk, xk;F ])

)
‖

≤ βγ2 + α(‖ xk+1 − x0 ‖ + ‖ xk − x0 ‖ + ‖ xk+1 − xk ‖)
≤ β γ2 + 2 α (tk+1 − γ) < 1 (by (2.32)).

(2.51)
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It follows from (2.51), and the Banach lemma on invertible operators [4], [11]
that A−1k+1 exists, and

‖ A−1k+1A0 ‖

≤
(

1− βγ2 − α(‖ xk+1 − x0 ‖ + ‖ xk − x0 ‖ + ‖ xk+1 − xk ‖)
)−1

≤ (d− 2α(tk+1 − γ))−1.

(2.52)

We can also obtain in turn:

‖ A−10 ([xk+1, xk;F ]−Ak) ‖

=‖ A−10

(
[xk+1, xk;F ]− [xk, xk;F ] + [xk, xk;F ]

−[xk, xk−1;F ] + [xk, xk−1;F ]− [2xk − xk−1, xk−1;F ]

)
‖

=‖ A−10

(
([xk+1, xk;F ]− [xk, xk;F ])

+([xk, xk−1, xk;F ]− [2xk − xk−1, xk−1, xk;F ]) (xk − xk−1)
)
‖

≤ α ‖ xk+1 − xk ‖ +β ‖ xk − xk−1 ‖2
≤ α (tk+1 − tk) + β (tk − tk−1)2.

(2.53)

Using (STM), (2.26), (2.52), and (2.53), we get:

‖ xk+2 − xk+1 ‖
=‖ (A−1k+1 A0) (A−10 F (xk+1)) ‖
≤‖ A−1k+1 A0 ‖ ‖ A−10 (F (xk+1)− F (xk)−Ak (xk+1 − xk)) ‖
≤‖ A−1k+1 A0 ‖ ‖ A−10 ([xk+1, xk;F ]−Ak) ‖ ‖ xk+1 − xk ‖
≤ tk+2 − tk+1,

(2.54)

which together with

‖ xk+2 − x0 ‖ ≤
k+1∑
i=0

‖ xi+1 − xi ‖

≤
k+1∑
i=0

(ti+1 − ti) ≤ t?
(2.55)

complete the induction. Hence, sequence {xn} (n ≥ 0) is Cauchy in a Banach
space X , and as such it converges to some x? ∈ U(x0, t

?) (since U(x0, t
?) is

a closed set). By letting k −→ ∞ in (2.55), we obtain F (x?) = 0. Estimate
(2.49) follows from (2.48) by using standard majorization techniques [4], [11].



176 Ioannis K. Argyros and Säıd Hilout

Finally to show uniqueness, let y? ∈ U(x0, t
?) be a solution of equation

F (y?) = 0. Define linear operator M by:

M =

∫ 1

0
[y? + θ (x? − y?), y? + θ (x? − y?);F ] dθ. (2.56)

We have in turn by (2.43), and (2.50):

‖ A−10 (A0 −M) ‖

≤ α
∫ 1

0

(
‖ 2x0 − x−1 − y? − θ (x? − y?) ‖

+ ‖ x−1 − y? − θ (x? − y?) ‖
)
dθ

≤ α
(
‖ x0 − x−1 ‖ + ‖ x0 − y? ‖ +

‖ x0 − y? ‖ + ‖ x0 − x? ‖
2

+ ‖ x0 − x−1 ‖ + ‖ x0 − y? ‖ +
‖ x0 − x? ‖ + ‖ x0 − y? ‖

2

)
≤ 2 α (γ + 2 t?) < 1.

(2.57)

It follows by (2.57), and the Banach lemma on invertible operators, that M
is invertible. In view of the identity

F (x?)− F (y?) =M (x? − y?), (2.58)

we deduce x? = y?. That completes the proof of Theorem 2.2. �

Remark 2.3. (a) Delicate condition (2.42) is automatically satisfied if
D0 = D = X . Otherwise, as shown in [4]–[6] simply replace D0 by
D1 = U(x0, 3 t

?).
(b) The sufficient convergence conditions given in [5] are clearly more com-

plicated than the ones in Theorem 2.2, where the conditions in [4], [6]
require, e.g., 2 β γ2 < 1 compared to β γ2 < 1 (here).

3. Applications

Application 3.1. Let us define quadratic polynomial operator on X by

P (x) = B x2 + L x+ w, (3.1)

where, B is a bilinear operator on L(X ×X ,Y), L ∈ L(X ,Y), and w is a fixed
element in X ; see, [1], [7], [8].

Define divided difference [x, y;P ] satisfying (1.2) by

P (2y−x)−P (x) = 2 [2 y−x, x;P ] (y−x), for all x, y ∈ D, (x 6= y). (3.2)

It can then easily be seen that (STM) coincides with (NM), and is given by

xn+1 = xn − (2 B xn + L)−1 P (xn). (3.3)
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Let us provide a numerical example for equation P (x) = 0 to show that
(STM) is faster than (SM).

Example 3.2. Let X = Y = R, D0 = D = (.4, 1.5), and define polynomial P
on D0 by

P (x) = x2 − 6x+ 5. (3.4)

Then (STM) becomes (NM) (3.3), and is given by

xn+1 =
x2n − 5

2 (xn − 3)
, (3.5)

whereas the (SM) is:

xn+1 =
xn−1 xn − 5

xn−1 + xn − 6
. (3.6)

Choose x−1 = .6, and x0 = .7. Then, we have the results:

Comparison table
n (STM)=(NM) (SM)
1 .980434783 .96875
2 .999905228 .997835498
3 .999999998 .99998323
4 1=x? .99999991
5 1

Another example is suggested involving Chandrasekhar quadratic integral
equations appearing in radiative transfer [1], [4], [7], [11].

Example 3.3. Let X = Y = C[0, 1] be the space of real–valued continuous
functions defined on the interval [0, 1] with norm

‖ x ‖= max
0≤s≤1

|x(s)|.

Let θ ∈ [0, 1] be a given parameter. Consider the ”Cubic” integral equation:

u(s) = λu(s)

∫ 1

0
q(s, t)u(t) dt+ y(s)− θ. (3.7)

Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1] × [0, 1]; the parameter λ is a real number called the ”albedo” for scat-
tering; y(s) is a given continuous function defined on [0, 1] and x(s) is the
unknown function sought in C[0, 1]. Equations of the form (3.7) arise in the
kinetic theory of gasses [6]. For simplicity, we choose u0(s) = y(s) = 1, and

q(s, t) =
s

s+ t
, for all s ∈ [0, 1], and t ∈ [0, 1], with s + t 6= 0. If we let

D = U(u0, 1− θ), and define the operator P on D by

P (x)(s) = −x(s) + λx(s)

∫ 1

0
q(s, t)x(t) dt+ y(s)− θ, (3.8)
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for all s ∈ [0, 1], then every zero of P satisfies equation (3.7).

Finally, we suggest an example involving a more general nonlinear equation.

Example 3.4. Let G(x, t, x(t)) be a continuous function of its arguments,
which is sufficiently many times differentiable with respect to x. It can easily
be seen that if operator F is given by

F (x(s)) = x(s)−
∫ 1

0
G(s, t, x(t)) dt,

then, the divided difference An appearing in (STM) can be defined by

An(s, t) =
G(s, t, 2xn(t)− xn−1(t))−G(s, t, xn−1(t))

2 (xn(t)− xn−1(t))

provided that if for t = tm, we get xn(t) = xn−1(t), then, the above function
equals G′(s, tm, xn(tm)). Note that this way An(s, t) is continuous for all
t ∈ [0, 1].

Conclusion

Using our new idea of recurrent functions, we provided a semilocal conver-
gence analysis for (STM) in order to approximate a locally unique solution of
an equation in a Banach space, and extend the applicability of this method.
Numerical examples further validating the results are also provided in this
study, where the (STM) is compared favorably to the Secant and Newton’s
methods.
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