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Abstract. In this paper, Figiel’s lemma that concerns the isometric embedding from a

Banach space X into the continuous space C(L) are extended. That is a form of extension

of universal theorem. Besides we obtain some isometric extending mappings which satisfy

Aleksandrov’s, i.e., some mapping that preserve one distance can be extend to isometry in

whole space.

1. Introduction

In 1932, Mazur-Ulam ([1]) established the following problem: if X,Y are
normed linear spaces and f : X → Y is an surjective isometric mapping, then
f is an affine mapping. The “surjection” is a necessary condition. As a matter
of fact, there is an example ([2]) which shows that the above result may not
be true without this condition. When is this affinity result true without the
“surjectio”? Many authors today investigate the cases not restricted to this
surjection condition.

In 1968, T. Figiel ([3, 4]) extended Mazur-Ulam’s theorem and proved the
following theorem.

Theorem 1.1. Suppose that X, Y are both real Banach spaces. If F : X →
Y is an isometry mapping and F (0) = 0, then there exists a continuous linear

mapping f : spanF (X) 7→ X, which satisfies f ◦ F = iX , and that f is
unique and ||f ||spanF (x)|| = 1.
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Since 1983, T. Rassias, B. Mielnik, Ma Yumei etc., ([5-11]) gave a series
results about how to let a (DOPP) mapping between metric spaces to be an
isometry. “One Distance Preserving Property”(denoted by DOPP): Suppose
that (X, d), (Y, d) are two metric linear spaces. The mapping f : X → Y is
said to have if d(x, y) = 1 for any x, y ∈ X, then d(f(x), f(y)) = 1.

Many authors today, under certain additional conditions, keep investigating
analogous topics.

In this paper we work as follows: In section 2, we establish an extension of
Figiel’s lemma and obtain a generalized Universal theorem. In section 3, we
are concerned how to extend the (DOPP) mapping to an isometry.

2. Extension of universal theorem

Universal theorem ([4]) is very important in Banach space:
(1) Any separable Banach space X can be isometrically embedded to C[0, 1].
(2) Any Banach space X can be isometrically embedded to C(K). (Here K is
the unit ball of X∗, which is w∗− compact set.)

We know the following two properties.

Property 2.1. ([4]) Suppose that X, Y are two real Banach spaces. Let a is
one of smooth points of the spheres {x ∈ X, ||x|| = ||a||}, and F : X → Y is an
isometry mapping, such that F (0) = 0, and besides there exists f ∈ Y ∗, ||f || =
1, such that for any r ∈ R, f(F (ra)) = r||a||, then f ◦ F = fa, where fa is a
support function at a.

Property 2.2. ([4]) Suppose that Y is a real normed linear space, R is a
real space, and F : R → Y is an isometric embedding. Then there exists
f ∈ Y ∗, ||f || = 1 such that f ◦ F = idR. Here, idR is an identity operator on
R.

Now,we have the extension of Property 2.2, as follows:

Theorem 2.3. Suppose that X,Y are two real Banach spaces, F : X → Y is
an isometry mapping and F (0) = 0. Then,
i) There exists f ∈ Y ∗, ||f || = 1, such that f ◦ F ∈ S(X∗).
ii) f ◦ F = idR as X = R.
iii) There exists a compact LYX(w∗-topology), such that U : X 7→ C(LYX),
U(x) = F (x)|LX is an linear isometric mapping.

Remark 2.4. ([4]) If X = Y , then (2) in universal theorem is obvious by
Theorem 2.3.
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The proof of Theorem 2.3 need Mazur’s Theorem ([5]): “Suppose that A is
a solid closed convex set of a separable Banach space. Then the smooth points
set sm(A) of A, is the residual set of a bounded ∂(A), and sm(A) is dense in
∂(A).”

Thanks to R. Villa ([12]) we give proof of Theorem 2.3.

Proof. Case 1: Suppose X is a separable space. Let a ∈ X be the smooth
point of {x ∈ X, ||x|| = ||a||}, and fa be the support function at a, i.e. ||fa|| =
1, fa(a) = ||a||. Then for ∀ n ∈ N, by Hahn-Banach Theorem, there exists
gn ∈ Y ∗, ||gn|| = 1, so that

gn(F (na)− F (−na)) = ||F (na)− F (−(na))|| = 2n||a||,
and for ∀r, |r| ≤ n, we obtain

2n||a|| ≤ |gn(F (na)− F (ra))|+ |gn(F (ra)− F (−na))|
≤ ||F (na)− F (ra)||+ ||F (ra)− F (−na)||
= |n− r| · ||a||+ |n+ r| · ||a||
= 2n||a||.

This implies that

(n− r)||a|| = |gn(F (na)− F (ra))|. (2.1)

If r = 0, then |gn(F (na))| = n||a||. Let us take εn ∈ {{−1, 1}} such that

εngn(F (na)) = n||a||. (2.2)

Moreover, for any |r| ≤ n, we claim that

εngn(F (ra)) = r||a||. (2.3)

Indeed,
εn(gn(F (na))− gn(F (ra))) = n||a|| − εngnF (ra)

≥ n||a|| − |gnF (ra)|
≥ (n− |r|)||a||
≥ 0.

From (2.1),

εn(gn(F (na))− gn(F (ra))) = |(gn(F (na))− gn(F (ra)))| = (n− r)||a||
and from (2.2) we show that (2.3) is true. Because B(Y ∗) is w∗-compact, there
is ga ∈ B(Y ∗) such that

ga(F (ra)) = r||a|| (∀r ∈ R). (2.4)

By Property 2.1, we can show that ga ◦ F = fa and we denote that f = ga.
Thus complete the proof of i) under the condition of X is separable.
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For ii), we can let a = 1, then by (2.4), g1 ◦ F (r) = r, this also extend
Property 2.2.

Next, we will prove that iii). Let

LYX = {g ∈ B(Y ∗), g ◦ F ∈ B(X∗)}. (2.5)

Then LYX is w∗-compact. Let

U : X → C(LYX), U(x) = F (x)|LYX (x ∈ X). (2.6)

Obviously, ||U(x)|| ≤ ||F (x)|| = ||x|| and U is a continuous linear mapping on
X. In fact, for any x, y ∈ X,α, β ∈ R, g ∈ LYX ,

U(αx+ βy)(g) = F (αx+ βy)(g)

= g ◦ F (αx+ βy)

= αg ◦ F (x) + βg ◦ F (y)

= αU(x)(g) + βU(y)(g).

Since X is separable, then there exists ga ∈ S(Y ∗) such that |ga(F (a))| = ‖a‖
for any smooth point a ∈ X. Hence ‖U(a)‖ = ‖a‖ and again Mazur’s theorem
implies that the smooth points set of X is dense. Thus

||U(x)|| = ||x||. (2.7)

This completes the proof of iii) under the condition that f X is separable.

Case 2: If X is not separable, let Ξ = {Xγ : Xγ(⊂ X) is separable}. Again

Uγ : Xγ → C(LYXγ ), Uγ(x) = F (x)|LYXγ (x ∈ Xγ).

If X ′, X ′′ ⊂ X are two separable subspaces, then X ′ +X ′′ is also separable,
and

LX′+X′′ ⊂ LX′ ∩ LX′′ .
Then the w∗−closed set family {LYXγ : Xγ ⊂ X, Xγ is separable } have

finite intersection property. Because that B(Y ∗) is w∗− compact, LYX = {g ∈
B(Y ∗), g ◦ F ∈ B(X∗)}, so⋂

{LYXγ : Xγ ⊂ X,Xγ is separable} 6= ∅

and
LYX =

⋂
{LYXγ : Xγ ⊂ X,Xγ is separable}.

In fact, if g ∈ LYX , then g ◦ F ∈ X∗, so g ◦ F ∈ X∗γ for any subsets Xγ ⊂ X.
Conversely, if g ∈ LYXγ for any γ, then g ◦F is a continuous linear functional

on any Xγ , thus for any x1, x2 ∈ X, we set X1 = span{x1, x2}. We easily
prove that g ◦ F is a linear functional on X1, furthermore, g ◦ F ∈ X∗.
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Next, we claim that

||F (x)|LYX || = ||x||, ∀x ∈ X.

In fact, let x ∈ X, and set

Ξ′ = {Xγ : x ∈ Xγ , Xγ is separable}.

Then Ξ′ is a direction set which is non-empty, by (2.6) and (2.7) above Case 1

||UXγ (x)|| = ||x||.

For any Xγ ∈ Ξ′ there exists gγ ∈ LYXγ such that

|gγ ◦ F (x)| = ||x||.

So {gγ : Xγ ∈ Ξ′} is a net in B(Y ∗). Then there is a w∗− limit g0 ∈ B(Y ∗).
Hence for any V which is a w∗− neighborhood of g0, there exists Xβ ∈ Ξ, such
that Xβ ⊇ Xγ and gβ ∈ V.

Now, we will prove that g0 ∈ LYX . In fact, for any Xγ ∈ Ξ, g0 ∈ LYXγ .

Otherwise, assume that X̃0 ∈ Ξ, but g0 /∈ LY
X̃0
. Because LY

X̃0
is w∗−closed set,

then we can find a w∗−neighborhood V0 of g0 such that

V0 ∩ LYX̃0
= ∅.

Since g0 is a w∗−limit of {gγ : Xγ ∈ Ξ′}, then there exists Xγ ∈ Ξ′ such that

Xγ ⊇ X̃0 and gγ ∈ V0, therefore gγ ∈ LYXγ ⊂ L
Y
X̃0
, which implies that g0 ∈ LY

X̃0
,

leading to a contradiction. According to (2.6), (2.7), and |g0 ◦ F (x)| = ||x||,
then ||F (x)|LYX || = ||x||, U is an isometry and ||g0 ◦ F || = 1. This completes

the proof. �

3. The (Dopp) mapping

Yang ([13]) give that: Let X,Y be normed linear spaces, B be a bounded set
of X, and 0 ∈ intB. If f : X → Y satisfies the Lipschitz condition, and f |∂B
(the boundary of B) is an isometry, then f is an isometry on B. Furthermore

f can be extended to a positive homogeneous isometry f̃ from X to Y.

We instead some conditions and obtain the following results:

Theorem 3.1. Let X and Y be real normed vector spaces such that Br(X)
is a closed ball containing an original point 0, and its radius is r. If f :
Br(X) → Y, (2 ≥ r > 1) is a Distance One Preserving Property (DOPP)
satisfying the Lipschitz condition with k = 1, then

(1) f |B r−1
2

is an isometry on B r−1
2

(X).
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(2) f |B r−1
2

can be extended to a positive homogeneous isometry from X to

Y.

Proof. If x, y ∈ B r−1
2

(X), then by the Lipschitz condition we have that

||f(x)− f(y)|| ≤ ||x− y||.

Assume that ||f(x)− f(y)|| < ||x− y||, let

z = x+
1

||x− y||
(y − x).

Then ||z|| ≤ ||x|| + 1 ≤ r−1
2 + 1 = r+1

2 < r, so z ∈ Br(X) and ||y − x|| ≤
r− 1 ≤ 1, ||z−x|| = 1, ||z− y|| = 1−||y−x|| ≤ 1. So by Lipschitz condition
on Br(X), we have that

1 = ||f(z)− f(x)|| ≤ ||f(y)− f(z)||+ ||f(x)− f(y)||
< 1− ||x− y||+ ||x− y||
= 1.

This contradicts hence that ||f(x) − f(y)|| = ||x − y|| and f is an isometry
from B r−1

2
(X)→ Y.

Let

f̃(x) =

{ ||x||
r−1
2

f( x
||x|| · (

r−1
2 )), x 6= 0

0, x = 0
. (3.1)

Then for λ > 0, by (2.8) we have that

f̃(λx) = ||λx||
(r−1)

2

f( λx
||λx|| ·

(r−1)
2 ) = λf̃(x). (3.2)

Thus, for any x, y ∈ X, there exists λ > 0 with λx, λy ∈ Br−1(X) such that

||f̃(λx)− f̃(λy)|| = ||λx− λy||.

(2.9) implying that

||f̃(x)− f̃(y)|| = ||x− y||.
�

Corollary 3.2. Let X,Y be two normed spaces and let the mapping f : X →
Y satisfy the (DOPP), if ||f(x)−f(y)|| ≤ ||x−y|| for x, y ∈ X with ||x−y|| ≤ 1,
then f is an isometry on B1

2
(X). Furthermore f |B 1

2

(X) can be extended to a

positive homogeneous isometry f̃ from X to Y.
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Proof. At first, we prove that if ||x− y|| ≤ 1, then ||f(x)− f(y)|| = ||x− y||.
Assume that

||f(x)− f(y)|| < ||x− y||.
Set

z = x+
1

||y − x||
(y − x).

Clearly,
||z − x|| = 1 and ||z − y|| = 1− ||x− y|| ≤ 1.

It follows that

||f(z)− f(x)|| = 1 and ||f(z)− f(y)|| ≤ 1− ||x− y||.
Besides,

||f(z)− f(x)|| ≤ ||f(z)− f(y)||+ ||f(y)− f(x)||
< 1− ||x− y||+ ||x− y||
= 1,

which is a contradiction ||f(z)− f(x)|| = 1. Hence we have

||f(x)− f(y)|| = ||x− y||.
Second, it easy to see that ||x − y|| ≤ 1 for all x, y ∈ B1

2
(X). Then f is

an isometry on B1
2
(X), and f can be extended to a positive homogeneous

isometry f̃ from X to Y by Theorem 3.1. �

Benz ([15]) gave the following result. Let X,Y be real normed linear spaces
such that dimX > 2 and Y is strictly convex. Suppose that p > 0 is a fixed
real number and that N > 1 is a fixed integer. Finally, let f : X → Y be a
mapping such that.for all x, y ∈ X ||x − y|| = p ⇒ ||f(x) − f(y)|| ≤ p, and
||x− y|| = Np⇒ ||f(x)− f(y)|| ≥ Np. Then f is an affine isometry.

In this section we do not assume the above condition of “strictly convex
and dimX ≥ 2,” and show the following refined theorem.

Theorem 3.3. Let X,Y be two normed spaces, and the mapping f :
X → Y satisfying the (DOPP), ||f(x) − f(y)|| ≤ ||x − y|| for x, y ∈ X with
||x − y|| ≤ 1 and distance n preserving property(n > 0 is any integer, i.e.
||f(x)− f(y)|| = n with ||x− y|| = n). Then f is an isometry from X to Y.

Proof. First, we prove that if ||x − y|| ≤ 1, then ||f(x) − f(y)|| = ||x − y||.
Assume that

||f(x)− f(y)|| < ||x− y||.
Set

z = x+
1

||y − x||
(y − x).
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Clearly,

||z − x|| = 1 and ||z − y|| = 1− ||x− y|| ≤ 1.

Due to the (DOPP), it follows that

1 = ||f(z)− f(x)||
≤ ||f(z)− f(y)||+ ||f(x)− f(y)||
< 1− ||x− y||+ ||x− y||
= 1.

Hence ||f(x)− f(y)|| = ||x− y||.
Second, for any x, y ∈ X with ||x− y|| > 1, there exists an integer n

with n < ||x− y|| ≤ n+ 1,

z = x+ n
1

||y − x||
(y − x).

Then ||z − x|| = n, ||z − y|| = ||x − y|| − n < 1, since f satisfies (DOPP). It
follows that ||f(z) − f(x)|| = n and ||f(z) − f(y)|| = ||z − y|| by the above
proof. This implies that

||f(z)− f(x)||+ ||f(z)− f(y)|| = n+ ||x− y|| − n = ||x− y||,

then

||f(x)− f(y)|| ≤ ||x− y||.
Next we’ll prove that

||f(x)− f(y)|| = ||x− y||. (3.3)

Suppose that

||f(x)− f(y)|| < ||x− y||.
Let

z1 = x+ (n+ 1)
1

||y − x||
(y − x).

Thus ||z1 − x|| = n+ 1, ||z1 − y|| = n+ 1− ||x− y|| ≤ 1 and

n+ 1 = ||f(z1)− f(x)||
≤ ||f(z1)− f(y)||+ ||f(y)− f(x)||
< n+ 1− ||x− y||+ ||x− y||
= n+ 1.

This is a contradiction and we complete the proof of (3.3)

||f(x)− f(y)|| = ||x− y||.

�
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Remark 3.4. The above Theorems ture for Lipschitz condition ||f(x) −
f(y)|| ≤ ||x− y|| for any x, y ∈ X.
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Comp. Rend. Paris, 194 (1932), 946–948.
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