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Abstract. In this paper, concepts of pseudo semi-monotone and η-pseudo semi-monotone

mappings are introduced. These concepts are applied to prove the solvability for the class of

vector variational like-inequalities by using Kakutani-Fan-Glicksberg’s fixed point theorem.

The results presented in this paper generalize some known results for vector variational

inequalities in recent years. almost everywhere.

1. INTRODUCTION

Vector variational inequalities were initially introduced and considered by
Giannessi [5] in a finite-dimensional Euclidean space in 1980. This is a general-
ization of a scalar variational inequality to the vector case by virtue of multi-
criterion consideration. Later on vector variational inequalities have been
investigated in abstract spaces, e.g. [3], [4], [10]. For the past years, vector
variational inequalities and their generalizations have been studied and applied
in various directions; For details, we refer to [2]–[4], [6]– [16] and references
therein. It is known that monotonicity and the compactness operators are two
important concepts in nonlinear functional analysis and its applications. It was
Browder [1] who first combined the compactness and accretion of operators and
posed the concept of a semi-accretive operator. Recently, motivated by this
idea, Chen [2] posed the concept of semi-monotone operator, which combines
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the compactness and monotonicity of an operator and applied it to the study
of variational inequalities. Recently in 2005, Zheng [16] introduced vector
semi-monotone mapping, which generalizes the concept of semi monotonicity
and he studied several existence results for the vector variational inequality
problem related to concept of vector semi-monotone mapping. Very recently
in 2010, Khan [8] introduced the generalized vector variational inequality-type
problem and the generalized vector complementarity-type problem in the set-
ting of topological vector spaces and proved that the solution sets of both
problems are equivalent to each other under some suitable conditions.

Motivated and inspired by Chen [2], Khan [8] and Zheng [16], in this pa-
per, we introduced concept of η-pseudo semi-monotone mapping and investi-
gated the solvability of vector variational-like inequalities involving η-pseudo
semi-monotone mapping by means of the Kakutani-Fan-Glicksberg fixed-point
theorem. The results presented in this paper extend and unify corresponding
results of Chen [2], Zheng [16] and enrich the theory of variational inequalities.

2. PRELIMINARIES

Throughout the paper unless otherwise specified, let X and Y be two real
Banach spaces, K ⊂ X be a nonempty closed and convex subset of X. Recall
that P ⊂ Y , is said to be a closed convex cone, if P is closed and P +P = P ,
λP ⊂ P for all λ > 0. In addition, if P 6= Y , then P is called a proper closed
convex cone. A closed, convex cone is pointed if P ∩ (−P ) = {0}.

The partial order ≤P in Y , induced by the pointed cone P , is defined by
declaring x ≤P y if and only if y − x ∈ P for all x, y in Y . An ordered
Banach space is a pair (Y, P ) with the partial order induced by P . The weak
order ≤intP in an ordered Banach space (Y, P ) with intP 6= ∅ is defined as
x ≤intP y if and only if y−x ∈ intP for all x, y in Y , where intP denotes the
interior of P . Let L(X,Y ) denote the space of all continuous linear mappings
from X into Y . Let P : K → 2Y be such that for each x ∈ K, P (x) is a
proper, closed, convex cone with int P (x) 6= ∅ and let P− =

⋂
x∈K

P (x).

We recall the following concepts and results which are needed in the sequel.

Definition 2.1 ([15], Definition 2.3). Let P : K → 2Y be such that for each
x ∈ K,P (x) is a proper, closed, convex cone with int P (x) 6= ∅. Let T :
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K → L(X,Y ) and η : K × K → X be two mappings. T is said to be η-
pseudomonotone, if for any x, y ∈ K

〈T (x), η(y, x)〉 ≥P− 0 =⇒ 〈T (y), η(x, y)〉 ≤P− 0, where P− =
⋂
x∈K

P (x).

Remark that, if η(y, x) = y − x, ∀x, y ∈ K, then η-pseudo monotonicity of
T reduces to pseudo monotonicity of T .

Definition 2.2. A mapping f : K → Y is said to be

(i) P−-convex, if f(tx+ (1− t)y) ≤P− tf(x) + (1− t)f(y), ∀x, y ∈ K, t ∈
[0, 1];

(ii) P−-concave, if −f is P−-convex.

Definition 2.3. A mapping η : K × K → X is said to be affine in first

argument, if for any xi ∈ K and λi ≥ 0, (1 ≤ i ≤ n), with
n∑
i=1

λi = 1 and any

y ∈ K,

η(

n∑
i=1

λixi, y) =

n∑
i=1

λiη(xi, y).

Definition 2.4. Let T : X → 2Y be a set-valued mapping. Then T is said
to be lower semicontinuous at x0 ∈ X if and only if for any net {xα} ⊂ X
with xα → x0 and for any y0 ∈ T (x0), there exists a net {yα} such that
yα ∈ T (xα) and yα → y0. T is called lower semicontinuous on X if it is lower
semicontinuous at each point of X.

Definition 2.5. A mapping T : K → L(X,Y ) is said to be η-hemicontinuous,
if for any x, y ∈ K, the mapping t→ 〈Tx+ t(y − x), η(y, x)〉 is continuous at
0+.

The next two lemmas will be needed in the proof of the main results of this
paper.

Lemma 2.6. Let K ⊂ X be a nonempty, closed, and convex subset of X. Let
P : K → 2Y be such that for each x ∈ K,P (x) is a proper, closed, convex cone
with int P (x) 6= ∅. Suppose following conditions hold:

(i) η : K × K → X is an affine mapping in first argument, with the
condition η(x, y) + η(y, x) = 0, ∀x, y ∈ K;
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(ii) The set-valued mapping W : K → 2Y defined by W (x) = Y \{−int P (x)},
∀x ∈ K, such that graph of W is weakly closed in X × Y ;

(iii) T : K → L(X,Y ) is η-hemicontinuous and η-pseudomonotone map-
ping.

Then following two problems are equivalent:

(A) x ∈ K, 〈Tx, η(y, x)〉 6≤intP (x) 0, ∀y ∈ K,
(B) x ∈ K, 〈Ty, η(y, x)〉 6≤intP (x) 0, ∀y ∈ K.

Lemma 2.7. Let X be real reflexive Banach space and Y be a Banach space.
Let K ⊂ X be a nonempty, bounded, closed and convex subset of X. Let
P : K → 2Y be such that for each x ∈ K,P (x) is a proper, closed, convex cone
with int P (x) 6= ∅. Suppose following conditions hold:

(i) η : K ×K → X is affine mapping in first argument with the condition
η(x, y) + η(y, x) = 0, ∀x, y ∈ K and lower semicontinuous mapping in
second argument;

(ii) The set-valued mapping W : K→ 2Y defined by W(x)=Y \{−int P (x)},
∀x ∈ K, such that graph of W is weakly closed in X × Y ;

(iii) T : K → L(X,Y ) is η-hemicontinuous and η-pseudomonotone map-
ping.

Then there exist x ∈ K, such that

〈Tx, η(y, x)〉 6≤intP (x) 0, ∀y ∈ K.

3. Main Results

We now give the concepts of pseudo semi-monotone and η-pseudo semi-
monotone mappings.

Definition 3.1. Let K ⊂ X be a nonempty, closed and convex subset of X.
Let P : K → 2Y be such that for each x ∈ K,P (x) is a proper, closed, convex
cone with int P (x) 6= ∅. Let η : K × K → X be a mapping. A mapping
A : K × K → L(X,Y ) is said to be η-pseudo semi-monotone mapping, if
following conditions hold:

(i) for every u ∈ K, A(u, .) is η-pseudomonotone mapping; i.e.

〈A(u, x), η(y, x)〉 ≥P− 0 =⇒ 〈A(u, y), η(x, y)〉 ≤P− 0, ∀x, y ∈ K;

(ii) for every y ∈ K, A(., y) is completely continuous, i.e., when un →
wu, A(un, y)→ A(u, y) (by the norm of operators), where →w denotes
the weak convergence.
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Definition 3.2. If we take η(y, x) = y − x, ∀x, y ∈ K, then A : K × K →
L(X,Y ) is said to be pseudo semi-monotone mapping.

Example 3.3. Let X=R, K=R+, Y = R2, P− = R2
+. Let η : K ×K → X

is defined by η(y, x) = y − (
√
x+ 1)

2
, for all x, y ∈ K and let A : K ×K →

L(X,Y ) be defined by

A(x, y) =

(
3 + sin x+ cos y
3 + cos x+ sin y

)
, ∀x, y ∈ K.

Also, the norm of A is defined as ‖A‖ = |3+sin x+cos y|+ |3+cos x+sin y|,
∀x, y ∈ K.

First, we show that A is η-pseudomonotone mapping. Indeed, for each
u, v ∈ K

〈A(y, u), η(v, u)〉 =

(
3 + sin y + cos u
3 + cos y + sin u

)(
v − (

√
u+ 1)

2

)

=

(
(3 + sin y + cos u)(v − (

√
u+ 1)

2
)

(3 + cos y + sin u)(v − (
√
u+ 1)

2
)

)
≥P− 0.

The inequality implies that v ≥ (
√
u+ 1)

2
> u. It follows that

〈A(y, v), η(u, v)〉 =

(
3 + sin y + cos v
3 + cos y + sin v

)(
u− (

√
v + 1)

2

)

=

(
(3 + sin y + cos v)(u− (

√
v + 1)

2
)

(3 + cos y + sin v)(u− (
√
v + 1)

2
)

)
≤P− 0.

This shows that A(y, .) is η-pseudomonotone.
Now, for fixed v ∈ K, if un ∈ K, u ∈ K, un →w u, it is easy to prove that

‖A(un, v)−A(u, v)‖ → 0.

Hence, for every v ∈ K, A(., v) is completely continuous. Therefore, A is
η-pseudo semi-monotone mapping.

Now we will pose the main problem of our study. In this paper, we investi-
gate the following vector variational-like inequality problem (for short, VVLIP)
is to find a vector u ∈ K satisfying

〈A(u, u), η(v, u)〉 6≤intP (u) 0, ∀v ∈ K.

where A : K ×K → L(X,Y ) be a nonlinear mapping and η : K ×K → X is
a vector-valued bi-mapping.
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We recall the following fixed point theorem, by Kakutani-Fan-Glicksberg
[14], which will play an important role in establishing our existing results for
VVLIP.

Theorem 3.4 ([14]). Suppose that X is a Hausdorff locally convex space and
K is a nonempty convex compact subset of X. If F : K → K is an upper
semi-continuous mapping with nonempty convex closed values, then F has a
fixed point in K, i.e., there exists x0 ∈ K such that x0 ∈ F (x0).

Now, by using Kakutani-Fan-Glicksberg fixed point theorem[14] we prove
the existence result for VVLIP .

Theorem 3.5. Let X be real reflexive Banach space and Y be a Banach
space. Let K ⊂ X be a nonempty, bounded, closed and convex subset of X.
Let P : K → 2Y be such that for each x ∈ K,P (x) is a proper, closed, convex
cone with int P (x) 6= ∅. Suppose following conditions hold:

(i) η : K × K → X is an affine mapping with the condition η(x, y) +
η(y, x) = 0, ∀x, y ∈ K and lower semi-continuous mapping in second
argument;

(ii) The set-valued mapping W : K→ 2Y defined by W(x)=Y \{−int P (x)},
∀x ∈ K, such that graph of W is weakly closed in X ×Y and concave;

(iii) A : K ×K → L(X,Y ) is η-pseudo semi-monotone mapping;
(iv) For each fixed v ∈ K, A(v, .) : K × K → L(X,Y ) is continuous on

each finite dimensional subspace of X.

Then VVLIP has a solution in K.

Proof. Let F be a finite dimensional subspace of X and KF = K
⋂
F 6= ∅.

For each v ∈ KF , we consider the following vector variational-like inequality
problem: Find u0 ∈ KF such that

〈A(v, u0), η(u, u0)〉 6≤intP (u0) 0, ∀u ∈ KF .

Since KF ⊂ F is bounded, closed and convex, A(v, .) is continuous on KF

and η-pseudomonotone for each fixed v ∈ K. From Lemma 2.7, we know our
problem has solution u0 ∈ KF .

Define a set-valued mapping T : KF → 2KF as follows:

F (v) = {w ∈ KF : 〈A(v, w), η(u,w)〉 6≤intP (w) 0, ∀u ∈ KF }

It follows from Lemma 2.6, that for each fixed v ∈ KF

{w ∈ KF : 〈A(v, w), η(u,w)〉 6≤intP (w) 0, ∀u ∈ KF }

= {w ∈ KF : 〈A(v, u), η(u,w)〉 6≤intP (w) 0, ∀u ∈ KF }
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Now we shall use the fixed point theorem to verify the existence of solution of
problem in a finite dimensional. Since F is of finite dimensional, hence KF is
compact. First, we claim that

F (v) = {w ∈ KF : 〈A(v, u), η(u,w)〉 ∈ Y \{−int P (w)} = W (w)}
is convex. Indeed, let w1, w2 ∈ F (v) and m,n ≥ 0 , such that m+ n = 1

m[〈A(v, u), η(u,w1)〉] = mW (w1)

n[〈A(v, u), η(u,w2)〉] = mW (w2)

Since η is affine mapping, then from preceeding two inclusions we have

〈A(v, u), η(u,mw1 + nw2)〉 ∈ mW (w1) + nW (w2)

Since W is concave, we have mw1 + nw2 ∈ F (v), i.e., F (v) is convex and our
claim is then verified. Now, we claim that F (v) is closed. Let wj ∈ F (v) such
that wj → w, then

〈A(v, u), η(u,wj)〉 ∈ Y \{−int P (wj)} ∈W (wj)

Since A(v, u) ∈ L(X,Y ) and W is weakly closed, therefore

〈A(v, u), η(u,wj)〉 → 〈A(v, u), η(u,w)〉 ∈W (w)

This implies w ∈ F (v), hence F (v) is closed. Next, we claim that F is upper
semi-continuous. Let vj → v and wj → F (vj), wj → w, then we have

〈A(vj , u), η(u,wj)〉 ∈W (wj)

From the complete continuity of A(., u) and lower semicontinuity of η(u, .), we
have

〈A(vj , u), η(u,wj)〉 → 〈A(v, u), η(u,w)〉
Also W is weakly closed, which implies that

〈A(v, u), η(u,w)〉 ∈W (w)

i.e., w ∈ F (v), thus our claim is then verified. Hence F is upper semicontinuos.
By Fan-Glicksberg fixed point theorem, there exists a v0 ∈ F (v0) i.e., there
exists a v0 ∈ KF such that

〈A(v0, v0), η(u, v0)〉 6≤intP (v0) 0, ∀u ∈ KF .

Now we generalize this result to whole space.

Let Ω ≡ {F ⊂ X : F is finite dimensional, F
⋂
K 6= ∅} and let

ΓF ≡
{
w ∈ K : 〈A(w, u), η(u,w)〉 6≤intP (w) 0, ∀u ∈ KF }, F ∈ Ω.

From above we know that ∀F ∈ Ω, ΓF 6= ∅. Let ΓF
w denotes the weak

closure of ΓF . For any Fi ∈ Ω, i = 1, ..., n, we know that Γ n⋃
i=1

Fi

⊆
n⋂
i=1

ΓFi⊆
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n⋂
i=1

ΓFi

w
. Therefore,

n⋂
i=1

ΓFi

w 6= ∅. Since K is weakly compact, from the finite

intersection property, we have
⋂
F∈Ω

ΓF
w 6= ∅. Let w0 ∈

⋂
F∈Ω

ΓF
w

, we see that

〈A(w0, w0), η(u,w0)〉 6≤intP (w0) 0.

Indeed, for each u ∈ K, let F ∈ Ω, such that u ∈ KF , w0 ∈ KF . From
w0 ∈ ΓF

w
, there exists wj ∈ ΓF i.e.,

〈A(wj , u), η(u,wj)〉 ∈ Y \{−intP (wj)} ∈W (wj),

such that wj→ww0, from the complete continuity of A(., v), lower semiconti-
nuity of η(u, .) and weakly closedness of W , we have

〈A(w0, u), η(u,w0)〉 ∈W (w0)

From Lemma 2.6, we have

〈A(w0, w0), η(u,w0)〉 6≤intP (w0) 0, ∀u ∈ K.

This completes the proof. �

If the boundedness of K is dropped off, then we have the following theorem
under certain coercivity condition:

Theorem 3.6. Let X be real reflexive Banach space and Y be a Banach
space. Let K ⊂ X be a nonempty, unbounded, closed and convex subset of X
and 0 ∈ K. Let P : K → 2Y be such that for each x ∈ K,P (x) is a proper,
closed, convex cone with int P (x) 6= ∅. Suppose following conditions hold:

(i) η : K × K → X is an affine mapping with the condition η(x, y) +
η(y, x) = 0, ∀x, y ∈ K and lower semi-continuous mapping in second
argument;

(ii) The set-valued mapping W : K→ 2Y defined by W(x)=Y \{−int P (x)},
∀x ∈ K, such that graph of W is weakly closed in X ×Y and concave;

(iii) A : K ×K → L(X,Y ) is η-pseudo semi-monotone mapping;
(iv) For each fixed v ∈ K, A(v, .) : K × K → L(X,Y ) is continuous on

each finite dimensional subspace of X.
(v) lim‖u‖→∞〈A(u, u), η(u, 0)〉 ≥intP−

0, where P− =
⋂
u∈K

P (u).

Then VVLIP has a solution in K.

Proof. For each r > 0, let B[0, r] denote the closed ball in the Banach space
X with center 0 and radius r. By Theorem 3.5, for each r ∈ N, there exists
ur ∈ B[0, r] ∩K such that

〈A(ur, ur), η(v, ur)〉 6≤intP (ur) 0, ∀v ∈ B[0, r] ∩K.
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Since 0 ∈ K, we have

〈A(ur, ur), η(0, ur)〉 6≤intP (ur) 0.

From condition (i), above inclusion implies that,

〈A(ur, ur), η(ur, 0)〉 6≤−intP (ur) 0, ∀v ∈ K ∩Br.

We say that {ur}r∈N is bounded. If not, without loss of generality, we assume
that ‖ur‖ → ∞, when r →∞. Now, from condition (v), we have

limn→∞〈A(ur, ur), η(ur, 0)〉 ≥intP−
0,

From this, we know that when r is sufficiently large,

〈A(ur, ur), η(ur, 0)〉 ≥intP−
0,

This is a contradiction. Since X is reflexive, we may suppose that ur converges
to u as r →∞. Since A(., v), η(v, .) are completely continuous and lower semi-
continuous, respectively, also by the weak closedness of W , it follows that

〈A(u, v), η(v, u)〉 6≤intP (u) 0.

Again from Lemma 2.6, we get

〈A(u, u), η(v, u)〉 6≤intP (u) 0, ∀v ∈ K.

This completes the proof. �

Remark 3.7. Theorem 3.5 and Theorem 3.6 improve and generalize Theorem
3.1 and Theorem 3.2 of Zheng [16] and Theorem 2.1 to Theorem 2.6 of Chen
[2].
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